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ABSTRACT
Understanding the evolution of the angle χ between a magnetar’s rotation and magnetic axes
sheds light on the star’s birth properties. This evolution is coupled with that of the stellar
rotation �, and depends on the competing effects of internal viscous dissipation and external
torques. We study this coupled evolution for a model magnetar with a strong internal toroidal
field, extending previous work by modelling – for the first time in this context – the strong
protomagnetar wind acting shortly after birth. We also account for the effect of buoyancy
forces on viscous dissipation at late times. Typically, we find that χ → 90◦ shortly after
birth, then decreases towards 0◦ over hundreds of years. From observational indications that
magnetars typically have small χ , we infer that these stars are subject to a stronger average
exterior torque than radio pulsars, and that they were born spinning faster than ∼100–300 Hz.
Our results allow us to make quantitative predictions for the gravitational and electromagnetic
signals from a newborn rotating magnetar. We also comment briefly on the possible connection
with periodic fast radio burst sources.

Key words: stars: evolution – stars: interiors – stars: magnetic field – stars: neutron – stars:
rotation.

1 IN T RO D U C T I O N

Magnetars contain the strongest long-lived magnetic fields known
in the Universe. Unlike radio pulsars, the canonical neutron stars
(NSs), magnetars do not have enough rotational energy to power
their emission, and so the energy reservoir must be magnetic
(Thompson & Duncan 1995). Through sustained recent effort in
modelling, we now have a reasonable idea of the physics of the
observed mature magnetars.

The early life of magnetars is far more poorly understood,
although models of various phenomena rely on them being born
rapidly rotating. Indeed, the very generation of magnetar strength
fields is likely to involve one or more physical mechanisms
that operate at high rotation frequencies f: a convective dynamo
(Thompson & Duncan 1993) and/or the magnetorotational instabil-
ity (Rembiasz et al. 2016). Uncertainties about how these effects
operate at the ultrahigh electrical conductivity of proto-NS matter
– where the crucial effect of magnetic reconnection is stymied
– could be partially resolved with constraints on the birth f of
magnetars. In addition, a rapidly rotating newborn magnetar could
be the central engine powering extreme electromagnetic (EM)
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phenomena – superluminous supernovae and gamma-ray bursts
(GRBs; Thompson, Chang & Quataert 2004; Kasen & Bildsten
2010; Woosley 2010; Metzger et al. 2011). Such a source might
also emit detectable gravitational waves (GWs; Cutler 2002; Stella
et al. 2005; Dall’Osso, Shore & Stella 2009; Kashiyama et al. 2016),
though signal-analysis difficulties (Dall’Osso, Stella & Palomba
2018) make it particularly important to have realistic templates
of the evolving star. As we will see later, detection of such a
signal would provide valuable constraints on the star’s viscosity
(i.e. microphysics) and internal magnetic field.

A major weakness in all these models is the lack of convincing
observational evidence for newborn magnetars with such fabulously
high rotation rates; the Galactic magnetars we observe have spun
down to rotational periods P ∼ 2–12 s (Olausen & Kaspi 2014), and
heavy protomagnetars formed through binary inspiral may since
have collapsed into black holes. Details of magnetar birth are there-
fore of major importance. In this paper, we show that an evolutionary
model of magnetar inclination angles – including, for the first time,
the key effect of a neutrino-driven protomagnetar wind – allows
one to infer details about their birth rotation, GW emission, and the
prospects for accompanying EM signals. Furthermore, two poten-
tially periodic fast radio burst (FRB) sources have very recently been
discovered (Rajwade et al. 2020; The CHIME/FRB Collaboration
2020), which may be powered by young precessing magnetars
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Figure 1. Interior and exterior field of a newborn magnetar. Poloidal field
lines are shown in blue; the internal toroidal field (directed perpendicular
to the page) is located in the red shaded region. The exterior field geometry
and the star’s spin-down depend on the rotation and magnetic field strength.
The open field line region of the magnetosphere, with opening half-angle
θop, begins at a line joining to an equatorial current sheet at the Y-point,
located at a radius RY from �. Both RY and the Alfvén radius RA evolve in
time towards the light cylinder radius RL, with RY ≤ RA ≤ RL.

(Levin, Beloborodov & Bransgrove 2020; Zanazzi & Lai 2020);
we show that our work allows constraints to be put on such models.

2 MAG N E TA R EVO L U T I O N

We begin by outlining the evolutionary phases of interest here. We
consider a magnetar a few seconds after birth, once processes related
to the generation and rearrangement of magnetic flux have probably
saturated. The physics of each phase will be detailed later.

Early phase (∼seconds): the proto-NS is hot and still partially
neutrino-opaque. A strong particle wind through the evolving
magnetosphere removes angular momentum from the star. Bulk
viscosity – the dominant process driving internal dissipation – is
suppressed.

Intermediate phase (∼minutes–hours): now transparent to neu-
trinos, the star cools rapidly, and bulk viscosity turns on. The wind is
now ultrarelativistic, and the magnetospheric structure has settled.

Late phase (∼days and longer): the presence of buoyancy forces
affects the nature of fluid motions within the star, so that they are no
longer susceptible to dissipation via bulk viscosity. The star slowly
cools and spins down.

2.1 Precession of the newborn, fluid magnetar

Straight after birth, a magnetar (sketched in Fig. 1) is a fluid body; its
crust only freezes later, as the star cools. Normally, the only steady
motion that such a fluid body can sustain is rigid rotation about one
axis �. However, the star’s internal magnetic field1 Bint provides
a certain ‘rigidity’ to the fluid, manifested in the fact that it can
induce some distortion εB to the star (Chandrasekhar & Fermi 1953).
For a dominantly poloidal Bint this distortion is oblate; whereas a

1Later on we will use Bint more precisely, to mean the volume-averaged
internal magnetic field strength.

dominantly toroidal Bint induces a prolate distortion. If the magnetic
axis B is aligned with �, the magnetic and centrifugal distortions
will also be aligned, and the stellar structure axisymmetric and
stationary – but if they are misaligned by some angle χ , the primary
rotation about � will no longer conserve angular momentum; a slow
secondary rotation with period

Pprec = 2π

�εB cos χ
(1)

about B is also needed. These two rotations together constitute
rigid-body free precession, but since the star is fluid this bulk
precession must be supported by internal motions (Spitzer 1958;
Mestel & Takhar 1972). The first self-consistent solution for these
motions, requiring second-order perturbation theory, was only
recently completed (Lander & Jones 2017).

On secular time-scales these internal motions undergo viscous
damping, and the star is subject to an external EM torque (Mestel &
Takhar 1972; Jones 1976). The latter effect tends to drive χ → 0◦,
as recently explored by Şaşmaz Muş et al. (2019) in the context of
newborn magnetars; and if the star’s magnetic distortion is oblate,
viscous damping of the internal motions supporting precession also
causes χ to decrease. Viscous damping of a prolate star (i.e. one
with a dominantly toroidal Bint) is more interesting: it drives χ

→ 90◦, and thus competes with the aligning effect of the exterior
torque. Therefore, while it is not obvious how the internal motions
could themselves be directly visible, the effect of their dissipation
may be.

In our previous paper, Lander & Jones (2018), we presented the
first study of the evolution of χ including the competing effects of
the exterior torque and internal dissipation. The balance between
these effects was shown to be delicate – and so it is important to
capture the complex physics of the newborn magnetar as faithfully
as possible. In attempting to do so, our calculation will resort
to a number of approximations and parameter-space exploration
of uncertain quantities. Nonetheless, as we will discuss at the
end, we believe our conclusions are generally insensitive to these
uncertainties – and that confronting these issues is better than
ignoring them.

2.2 The evolving magnetar magnetosphere

The environment around an NS determines how rapidly it loses
angular momentum, and hence spins down. This occurs even if the
exterior region is vacuum, through Poynting-flux losses at a rate
(proportional to sin 2χ ) that may be solved analytically (Deutsch
1955). The vacuum-exterior assumption is still fairly frequently
employed in the pulsar observational literature, although it exhibits
the pathological behaviour that spin-down decreases as χ → 0◦ and
ceases altogether for an aligned rotator (χ = 0◦).

The magnetic field structure outside an NS, and the associated
angular momentum losses, change when one accounts for the
distribution of charged particles that will naturally come to populate
the exterior of a pulsar (Goldreich & Julian 1969). Solving for
the magnetospheric structure is now analytically intractable, but
numerical force-free solutions for the cases of χ = 0◦ (Contopoulos,
Kazanas & Fendt 1999) and χ �= 0◦ (Spitkovsky 2006) demonstrate
a structure similar to that sketched in Fig. 1: one region of closed,
corotating equatorial field lines and another region of ‘open’ field
lines around the polar cap. The two are delineated by a separatrix:
a cusped field line that joins an equatorial current sheet at the Y-
point RY. Corotation of particles along magnetic fields ceases to
be possible if their linear velocity exceeds the speed of light; this
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sets the light cylinder radius RL = c/�. In practice, simulations
employing force-free electrodynamics find magnetospheric struc-
tures with RY = RL, although solutions with RY < RL are not,
a priori, inadmissible. The angular momentum losses from these
models proved to be non-zero in the case χ = 0◦, in contrast with
the vacuum-exterior case. These losses again correspond to the
radiation of Poynting flux, but are enhanced compared with the
vacuum case, since there is now additional work done on the charge
distribution outside the star (Timokhin 2006). Results from these
simulations should be applicable in the ultrarelativistic wind limit,
and since it appears RY = RL generically for this case, the losses are
also independent of any details of the magnetospheric structure.

Shortly after birth, however, a magnetar exterior is unlikely
to bear close resemblance to the standard pulsar magnetosphere
models. A strong neutrino-heated wind of charged particles will
carry angular momentum away from the star (Thompson et al.
2004) – a concept familiar from the study of non-degenerate stars
(Schatzman 1962) – and these losses may dominate over those of
Poynting-flux type. At large distances from the star, a particle carries
away more angular momentum than if it were decoupled from the
star at the stellar surface. At sufficient distance, however, there
will be no additional enhancement to angular momentum losses as
the particle moves further out; the wind speed exceeds the Alfvén
speed, meaning the particle cannot be kept in corotation with the
star. The radius at which the two speeds become equal is the Alfvén
radius RA.

An additional physical mechanism for angular momentum loss
becomes important at rapid rotation: as well as thermal pressure,
a centrifugal force term assists in driving the particle wind. Each
escaping particle then carries away an enhanced amount of angular
momentum (Mestel 1968a; Mestel & Spruit 1987). The mechanism
is active up to the sonic radius Rs = (GM/�2)1/3, at which these
centrifugal forces are strong enough to eject the particle from its
orbit. If it is still in corotation with the star until the point when it is
centrifugally ejected, i.e. RA ≥ Rs, the maximal amount of angular
momentum is lost.

Another source of angular momentum losses is plausible in the
aftermath of the supernova creating the magnetar: a magnetic torque
from the interaction of the stellar magnetosphere with fallback
material. The physics of this should resemble that of the classic
problem of a magnetic star with an accretion disc (Ghosh & Lamb
1978), but the dynamical aftermath of the supernova is far messier,
and results will be highly sensitive to the exact physical conditions
of the system. Attempting to account for fallback matter would
therefore not make our model any more quantitatively accurate.

We recall that there are four radii of importance in the magnetar
wind problem. Two of them, RL and Rs, depend only on the stellar
rotation rate. The others are RY, associated with EM losses, and RA,
associated with particle losses. We will need to account for how
these quantities, which both grow until reaching RL, evolve over the
early phase of the magnetar’s life. Finally, we also need to know, at
a given instant, the dominant physics governing the star’s angular
momentum loss. This is captured in the wind magnetization σ 0, the
ratio of Poynting-flux to particle kinetic energy losses:

σ0 = B2
extF2

opR
4
∗�

2

Ṁc3
, (2)

where Fop is the fraction of field lines that remain open beyond RY

(see Fig. 1) and Bext is the surface field strength. Note that the limits
σ 0 
 1 (σ 0 � 1) correspond to non(ultra)-relativistic winds.

At present there are neither analytic nor numerical solutions pro-
viding a full description of the protomagnetar wind. In the absence

of these, we will adapt the model of Metzger et al. (2011, hereafter
M11), which at least attempts to incorporate, semiquantitatively, the
main ingredients that such a full wind solution should have. Based
on their work, we have devised a simplified semi-analytic model for
the magnetar wind, capturing the same fundamental wind physics
but more readily usable for our simulations. Our description of the
details is brief, but self-contained if earlier results are taken on trust;
we denote some equation X taken from M11 by (M11; X).

To avoid cluttering what follows with mass and radius factors,
we report equations and results for our fiducial magnetar model
with R∗ = 12 km and a mass 1.4 M�. We have, however,
performed simulations with a 15-km radius, 2.4 M� model, as a
crude approximation to a massive magnetar formed through binary
inspiral (Giacomazzo & Perna 2013), finding similar results.

We start from the established mass-loss rate Ṁν (Qian & Woosley
1996) of a non-rotating, unmagnetized proto-NS:

Ṁν = −6.8 × 10−5 M� s−1

(
Lν

1052erg s−1

)5/3(
Eν

10 MeV

)10/3

, (3)

where M� is the solar mass and Lν and Eν are the neutrino luminosity
and energy per neutrino, respectively. The idea will be to adjust this
result to account for the effects of rotation and a magnetic field.
From the simulations of Pons et al. (1999; see M11, fig. A1), we
make the following fits to the evolution of Lν and Eν :

Lν

1052 erg s−1
≈ 0.7 exp

(
− t [s]

1.5

)
+ 0.3

(
1 − t [s]

50

)4

,

Eν

10 MeV
≈ 0.3 exp

(
− t [s]

4

)
+ 1 − t [s]

60
. (4)

Our model does not allow for evolution of the radius R∗, so our
time zero corresponds to 2 s after bounce, at which point R∗ has
stabilized at ∼12 km.

Charged particles can only escape the magnetized star along the
fraction of open field lines, so the original mass-loss rate (3) should
be reduced to Ṁ = ṀνFop, where (M11; A4)

Fop = 1 − cos(θop) = 1 − cos
[
arcsin

(√
R∗/RY

)]
. (5)

Now since cos(arcsin x) = √
1 − x2, we have

Fop = 1 −
√

1 − R∗RLY /RL, (6)

where RLY ≡ RL/RY . When f � 500 Hz, the mass-loss may expe-
rience a centrifugal enhancement Fcent > 1, so that (M11; A15):

Ṁ = ṀνFopFcent. (7)

Our approach will be first to ignore this to obtain a slow-rotation
solution, which we then use to calculateFcent (and hence the general
Ṁ) ‘perturbatively’. We start by combining equations (2) and (6)
(with Fcent = 1) to get a relation between RLY and σ 0. But another,
phenomenological relation RLY = max{(0.3σ 0.15

0 )−1, 1} (Buc-
ciantini et al. 2006; Metzger, Thompson & Quataert 2007) also links
the two. The relations may therefore be combined to eliminate σ 0:(

1 −
√

1 − R∗
RL

RLY

)
R

1/0.15
LY = 0.3−1/0.15c3Ṁν

B2
extR

4∗�2
. (8)

This equation may be solved to find RLY for given Bext, � and t.
It has real solutions as long as R∗/RY < 1; the Y-point cannot be
within the star. As RY → R∗ all magnetospheric field lines become
open, and the following limits are attained:

RLY = RL/R∗ , Fop = 1 , σ0 = B2
extR

4
∗�

2/(Ṁνc
3). (9)
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Accordingly, in cases where equation (8) has no real solutions, we
use the above limiting values.

Next we move on to calculate the centrifugal enhancement. As
discussed earlier, this depends strongly on the location of RA with
respect to Rs. Only the former quantity depends on the magneto-
spheric physics, and as for the Y-point location we find it convenient
to work with the dimensionless radius RLA ≡ RL/RA. Now, M11
employ the phenomenological relation RLA = max{σ−1/3

0 , 1}; we
therefore just need to find σ 0. To do so, we use the solution we have
just obtained for RLY , plugging it in equation (7) to make a first
calculation of Ṁ in the absence of any centrifugal enhancement (i.e.
setting Fcent = 1), then using the result in equation (2) to find σ 0.
We may now calculate the centrifugal enhancement:

Fcent = Fmax
cent [1 − exp(−RA/Rs)] + exp(−RA/Rs), (10)

where (M11; A12, A13)

Fmax
cent = exp

[(
f [kHz]

2.8 max{sin(θop), sin χ}
)1.5

]
(11)

is the maximum possible enhancement factor to the mass-loss,
occurring when RA ≥ Rs.

The centrifugal enhancement relies on particles reaching large
distances from � while remaining in corotation; we can see this will
not happen if open field lines remain close to this axis out to large
distances. As a diagnostic of this, M11 assume that enhancement
will not occur if a typical open field line angle (χ + θop) 
 π /2,
but will do if (χ + θop) � π /2. In practice we have to decide on an
angle delineating the two regimes: we take π /4. Accordingly, we
will adopt equation (7) for the full mass-loss rate, but set Fcent = 1
when χ + θop < π /4. We now recalculate equation (2) to find the
full σ 0, and so the EM energy-loss rate (M11; A5):

ĖEM =

⎧⎪⎨
⎪⎩

c2Ṁσ
2/3
0 σ0 < 1 and t < 40s

2
3 c2Ṁσ0 σ0 ≥ 1 and t < 40s

− R2∗
4c3 �4B2

ext(1 + sin2 χ ) t ≥ 40s.
(12)

Within 1 min, the bulk of the star’s neutrinos have escaped and so the
protomagnetar wind weakens greatly. Here, we take the wind to be
negligible after 40 s, at which point we switch to a fit (Spitkovsky
2006) to numerical simulations of pulsar magnetospheres, corre-
sponding to the ultrarelativistic limit of the wind (i.e. kinetic losses
being negligible). For all our models σ 0 becomes large and RY →
RL before the 40-s mark at which we switch to this regime; see M11
for more details.

Note that the first and second lines of equation (12) are formally
correct only in the limits σ 0 
 1 and σ 0 � 1, respectively, with no
such simple expressions existing for the case σ 0 ∼ 1. Treating the
latter case is beyond the scope of this work, so we simply switch
between the first two regimes of equation (12) at σ 0 = 1. We do
not expect this to introduce any serious uncertainty in our work,
however: the wind magnetization makes a rapid transition between
the two limiting regimes over a time-scale short compared with the
evolution of both χ and �.

Fig. 2 shows sample evolutions, comparing the magnetar wind
prescription with one often used for pulsars (and also used, with
a slightly different numerical pre-factor, in Lander & Jones 2018).
For the extreme case of f0 = 1 kHz, Bext = 1016 G (left-hand panel),
we see that the rotation rate has roughly halved after 40 s for all
models – although the most rapid losses are suffered by the model
with χ = 90◦ and the pulsar prescription. For less extreme cases
(middle and right-hand panels), however, the magnetar wind always
gives the greatest losses. Finally, as expected from equation (12),

we see that the value of χ often has less effect on the magnetar wind
losses than those from the pulsar prescription.

2.3 Buoyancy forces

At a much later stage, another physical effect needs to be modelled,
related to the role of buoyancy forces on internal motions.

The proportions of different particles in an NS varies with depth.
If one moves an element of NS matter to a different depth, chemical
reactions act to re-equilibrate it with its surroundings, on a time-
scale τ chem. When the temperature T is high, τ chem 
 Pprec, so
moving fluid elements are kept in chemical equilibrium. Once the
star has cooled sufficiently, however, reactions will have slowed
down enough for fluid elements to retain a different composition
from their surroundings (Lander & Jones 2018); they will therefore
be subject to a buoyancy force due to the chemical gradient
(Reisenegger & Goldreich 1992). This force tends to suppress radial
motion, and hence will predominantly affect the compressible piece
of the motions (Mestel & Takhar 1972; Lasky & Glampedakis
2016). For this phase, one would ideally generalize the lengthy
calculation of Lander & Jones (2017) to include buoyancy forces,
but this is very likely to be intractable. In lieu of this, we will
simply impose that the motions become divergence free below
some temperature Tsolen, which we define to be the temperature for
which

Pprec = τchem = 0.2

(
T

109 K

)−6 (
ρ̄

ρnuc

)2/3

, (13)

taking the expression for τ chem from Reisenegger & Goldreich
(1992), and where ρnuc is nuclear density and ρ̄ the average core
density. Tsolen is clearly a function of Bint and �; its typical value
is 109–1010 K. For T < Tsolen, bulk viscous dissipation (depending
on the compressibility of the internal motions) therefore becomes
redundant, and we shut it off in our evolutions, leaving only the
ineffective shear-viscous dissipation. Without significant viscous
damping, the star’s proclivity towards becoming an orthogonal
rotator (χ = 90◦) is suppressed.

Our evolutionary model employs standard fluid physics, and can-
not therefore describe any effects related to the gradual formation of
the star’s crust. The star’s motion depends on distortions misaligned
from the rotation axis; at late stages this may include, or even be
dominated by, elastic stresses in the crust. For the magnetar-strength
fields we consider, however, it is reasonable to assume that magnetic
distortions dominate. Our fluid model of a magnetar’s χ -evolution
should predict the correct long-time-scale trend, even if it cannot
describe short-time-scale seismic features (see discussion).

Finally, as the star cools the core will form superfluid components,
and the interaction between these may provide a new coupling
mechanism between the rotation and magnetic field evolution
(Ruderman, Zhu & Chen 1998). It is not clear what effect – if
any – this will have on the long-time-scale evolution of χ .

3 EVO L U T I O N EQUAT I O N S

We follow the coupled � − χ evolution of a newborn magnetar
with a strong, large-scale toroidal Bint in its core – the expected
outcome of the birth physics (Jones 1976; Thompson & Duncan
1993). For stability reasons (Tayler 1980) this must be accompanied
by a poloidal field component, but we will assume that within the star
it is small enough to be ignored here (it also retains consistency with
the solution we have for the internal motions; Lander & Jones 2017).
We assume there is no internal motion, and hence no dissipation, in
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Figure 2. The first 80 s of rotational evolution for different model newborn magnetars, with fixed χ and (from left to right): f0 = 1 kHz, Bext = 1016 G; f0 =
100 Hz, Bext = 1016 G; f0 = 1 kHz, Bext = 1015 G. Linestyles 1 and 2 show (respectively) χ = 0, 90◦ models evolved with the magnetar wind prescription
described in Section 2.2 for 40 s and thereafter with a ‘pulsar’ prescription (third line of equation 12); linestyles 3 and 4 show the corresponding results using
the ‘pulsar’ prescription from birth. Note that before 40 s, lines 1 and 2 become indistinguishable from one another for higher f0 and Bext.

the outer envelope (the region that becomes the crust once the star
has cooled sufficiently).

One unrealistic feature of purely toroidal fields is that Bext = 0.
As in Lander & Jones (2018), we will assume that the poloidal field
component – negligible within the star – becomes significant as one
moves further out, and links to a substantial Bext sharing the same
symmetry axis as Bint. We then express the magnetic ellipticity as

εB = −3 × 10−4

(
Bint

1016 G

)2

= −3 × 10−4

(
Bint

Bext

)2 (
Bext

1016 G

)2

, (14)

where the first equality comes from self-consistent solutions of
the star’s hydromagnetic equilibrium (Lander & Jones 2009) with
a purely toroidal internal field, and the second equality links
this ellipticity to the exterior field strength (somewhat arbitrarily)
through the ratio Bext/Bint. Note that the negative sign of εB indicates
that the distortion is prolate.

A typical model encountered in the literature (e.g. Stella et al.
2005) assumes a ‘buried’ magnetic field, with Bext/Bint 
 1,
although self-consistent equilibrium models with vacuum exteriors
have Bext ∼ Bint (Lander & Jones 2009). The results for f and χ vary
little with the choice of this ratio, since it is mostly the exterior
torque, i.e. Bext, that dictates the last-phase evolution, and we
therefore set the ratio to unity for simplicity unless stated otherwise
– an upper limit for our model, as Bext/Bint � 1 would be inconsistent
with the toroidal field dominating within the star. Only in Section 6
do we explore varying this ratio, as the predicted gravitational and
EM emission are affected by the relative strength of the magnetic
field inside and outside the star.

The �-evolution is given by the simple, familiar expression:

�̇ = ĖEM

I�
, (15)

where I is the moment of inertia, while the χ -evolution involves an
interplay between viscous dissipation Ėvisc of internal fluid motions,
and external torques:

χ̇ = Ėvisc

IεB sin χ cos χ�2
+ Ė

(χ)
EM

I�2
. (16)

Now, χ̇ should vanish for χ = 0◦, 90◦ (Mestel 1968b). The ĖEM

from equation (12) does not satisfy this, however; it represents the
spin-down part of the full external torque, whereas χ̇ depends on a
torque component orthogonal to this. As a simple fix that gives the

correct limiting behaviour of χ̇ , we take Ė
(χ)
EM = sin χ cos χĖEM for

t < 40 s. For the later phase, Philippov, Tchekhovskoy & Li (2014)
suggest the expression

Ė
(χ)
EM = R2

∗
4c3

�4B2
extk sin χ cos χ, (17)

based on fits to numerical simulations, and finding k ≈ 1 for
dipolar pulsar magnetospheres. This is a sensible result, since setting
k = 1 in equation (17) gives the analytic result for the case of a
vacuum exterior. Evolutions for a vacuum exterior were performed
in Lander & Jones (2018); we also considered pulsar-like models,
but with an alignment torque that did not vanish as χ → 0◦. The
present treatment improves upon this.

Although equation (17) reflects the physics of pulsar magneto-
spheres, the coronae of magnetars have a different physical origin
and are likely to be complex multipolar structures, which will in
turn affect the alignment torque. Furthermore, there are hints that a
magnetar corona may lead to an enhanced torque, k > 1, compared
with the pulsar case (Thompson, Lyutikov & Kulkarni 2002; Younes
et al. 2017). On the other hand, for relatively modest magnetic
fields (B ∼ 1014 G) these coronae are likely to be transient features
(Beloborodov & Thompson 2007; Lander 2016); while we may still
think of k as embodying the long-term average torque, it therefore
seems implausible for the appropriate value of k to be far larger than
unity. In the absence of suitable quantitative results for magnetars,
here we will simply adopt equation (17) to describe the alignment,
but explore varying the torque pre-factor k to check how strong the
alignment torque needs to be for our model to be consistent with
observations.

Finally, the gravitational radiation reaction torque on the star –
like its EM counterpart – has an aligning effect on the B and � axes.
It is given by a straightforward expression that could be included in
our evolutions; we neglect it, however, as one can easily show that
the GW energy losses (Cutler & Jones 2001) in (15) and (16) are
always negligible compared with ĖEM for the models we consider.
For instance, for a star with Bext = 1016 G and f = 1 kHz, the ratio of
GW-driven spin-down to EM Poynting-type spin-down is ∼10−4.
This ratio scales as f 2B4

int/B
2
ext, so would be even smaller for more

slowly spinning and less strongly magnetized stars. Furthermore,
we have not considered the torque enhancement due to the magnetar
wind, which would further reduce the ratio.

Viscosity coefficients have strong T-dependence, so this should
also be accounted for. We assume an isothermal stellar core (recall
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Figure 3. Distribution of inclination angles (colour scale) after 1 d, for a
range of f0 and Bext as shown, and with χ0 = 1◦ for all models. Virtually all
models in the considered parameter range have already reached either the
aligned- or orthogonal-rotator limit, though the orthogonal rotators will all
start to align at later times.

that we do not consider dissipation in the envelope/crust) with

T (t)

1010 K
=

{
40 − 39

40 t[s] t ≤ 40 s,
[1 + 0.06(t[s] − 40)]−1/6 t > 40 s,

(18)

which mimics the differing cooling behaviour in the neutrino
diffusion and free-streaming regimes, with the latter expression
coming from Page, Geppert & Weber (2006). The isothermal
assumption is indeed quite reasonable for the latter case, though
less so for the former (see e.g. Pons et al. 1999); the temperature
may vary by a factor of a few in the core at very early times.

In calculating the viscous energy losses Ėvisc we assume the
same well-known forms for shear and bulk viscosity as described in
Lander & Jones (2018). While shear viscosity is always assumed to
be active (albeit inefficient), bulk viscosity is not. We have already
discussed why we take it to be inactive at late times when T <

Tsolen, but it is also suppressed in the early era, whilst the proto-NS
matter is still partially neutrino opaque and reactions are inhibited.
Following Lai (2001), we will switch on bulk viscosity once the
temperature drops below 3 × 1010 K. Note that while we include
the viscosity mechanisms traditionally considered in such analyses
as ours, other mechanisms can act. Of possible relevance in the
very early life of our star is the shear viscosity contributed by the
neutrinos themselves (see e.g. Guilet, Müller & Janka 2015). We
leave study of this to future work, merely noting for now that its
inclusion would increase the tendency for our stars to orthogonalize.

Whatever its microphysical nature, viscous dissipation acts on
the star’s internal fluid motions, for which we use the only self-
consistent solutions to date (Lander & Jones 2017). We do not
allow for any evolution of Bint.

4 SI M U L AT I O N S

We solve the coupled � − χ equations (15) and (16) with the
physical input discussed above. The highly coupled and non-
linear nature of the equations means that numerical methods are
required, and we therefore use adapted versions of the Mathematica
notebooks described in detail in Lander & Jones (2018). Only in a
few limits are analytic results possible, e.g. at late times where χ has
reduced to nearly zero (see below), and the spin-down then proceeds
as the familiar power-law solution to equation (12). Unless stated

Figure 4. Evolution of f (solid line) and χ (dashed line) for two magnetars.
Top: f0 = 1 kHz, Bint = Bext = 1016 G, bottom: f0 = 100 Hz, Bint =
Bext = 1014 G. For illustrative purposes χ0 = 30◦ is chosen, but a smaller
value is more likely. For both models χ decreases for the first ∼40 s, then
increases rapidly to 90◦ as bulk viscosity becomes active, staying there until
the internal motions become solenoidal (at t ∼ 103 s for the left-hand model;
at t ∼ 108 s for the right-hand one), after which the spin-down torque is
able, slowly, to drive χ back towards 0◦.

otherwise, we start all simulations with a small initial inclination
angle, χ0 ≡ χ (t = 0) = 1◦.

Fig. 3 shows the distribution of χ after 1 d, for our cho-
sen newborn-magnetar parameter space f0 ≡ f(t = 0) = 10–
103 Hz, Bext = 1014–1016 G, and with k = 2. This is similar to our
earlier results (Lander & Jones 2018), where the effect of buoyancy
forces on interior motions was not considered. As the orthogonaliz-
ing effect of internal viscosity becomes suppressed, the orthogonal
rotators can be expected to start aligning at later times, while the
small region of aligned rotators will obviously remain with χ ≈ 0◦.
If rapid rotation drives magnetic field amplification, however, a real
magnetar born with such a low f could not reach B ∼ 1016 G.

Fig. 4 shows the way f and χ evolve, for all models in our
parameter space except the aligned rotators of Fig. 3: an early phase
of axis alignment, rapid orthogonalization, then slow re-alignment.
The evolution for most stars in our considered parameter range is
similar, though proceeds more slowly for lower Bint, Bext and f0, as
seen by comparing the top and bottom panels (see also Figs 5 and 6).

5 C OMPARI SON W I TH OBSERVATI ONS

Next we compare our model predictions with the population of
observed magnetars. Typical magnetars have P ∼ 2–12 s and Bext

∼ 1014–1015 G; comparing these values with Fig. 5, we see that
they are consistent with the expected ages of magnetars, roughly
1000–5000 yr (see e.g. Tendulkar, Cameron & Kulkarni 2012). The
results in Fig. 5 are virtually insensitive to the exact value of the
alignment-torque pre-factor k (we take k = 2 in these plots). The
model results are very similar for different Bint and χ0, and the
vertical contours show that present-day periods are set primarily by
Bext, and give no indication of the birth rotation.
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4844 S. K. Lander and D. I. Jones

Figure 5. Distribution of spin periods (colour scale) for magnetars with the shown range of Bext and f0 at ages of 1000 (left) and 5000 yr (right). For all models
χ0 = 1◦ and Bint = Bext.

Figure 6. Distribution of χ (colour scale) for magnetars with an alignment torque prefactor of (from left to right) k = 1, 2, and 3; and at ages of 1000 (top
panels) and 5000 yr (bottom panels). As before, χ0 = 1◦ and Bint = Bext for all models.

Observations contain more information than just P and the
inferred Bext, however. The four magnetars observed in radio
(Olausen & Kaspi 2014):

Name P/s Bext/(1014 G)

1E 1547.0−5408 2.1 3.2
PSR J1622−4950 4.3 2.7
SGR J1745−2900 3.8 2.3
XTE J1810−197 5.5 2.1

are particularly interesting. They have in common a flat
spectrum and highly polarized radio emission that suggests they
may all have a similar exterior geometry, with χ � 30◦ (Camilo
et al. 2007, 2008; Kramer et al. 2007; Levin et al. 2012; Shannon &
Johnston 2013). The probability of all four radio magnetars having
χ < 30◦, assuming a random distribution of magnetic axes relative
to spin axes, is (1 − cos 30◦)4 ≈ 3 × 10−4, indicating that such

a distribution is unlikely to happen by chance. Low values of
χ could explain the paucity of observed radio magnetars: if the
emission is from the polar-cap region, it would only be seen from a
very favourable viewing geometry. Beyond the four radio sources,
modelling of magnetar hard X-ray spectra also points to small χ

(Beloborodov 2013; Hascoët, Beloborodov & den Hartog 2014),
giving further weight to the idea that small values of χ are generic
for magnetars.

Now comparing with Fig. 6, we see that – by contrast with the
present-day P – the present-day χ does encode interesting infor-
mation about magnetar birth. Unfortunately, as noted by Philippov
et al. (2014), the results are quite sensitive to the alignment-torque
pre-factor k. We are also hindered by the dearth of reliable age
estimates for magnetars. Nonetheless, we will still be able to draw
some quite firm conclusions, and along the way constrain the value
of k.

Let us assume a fiducial mature magnetar with χ < 30◦, Bext =
3 × 1014 G (i.e. roughly halfway between 1014 and 1015 G on a
logarithmic scale) and a strong internal toroidal field (so that it will
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Magnetar rotation and GWs 4845

Figure 7. GW signal hc from four model newborn magnetars, against the
noise curves hrms for aLIGO and ET. Three models are for 1 week of signal
at d = 20 Mpc (i.e. Virgo galaxy cluster): (1) f0 = 1 kHz, Bext = Bint =
1016 G, (2) f0 = 1 kHz, Bext = 0.05Bint = 5 × 1014 G, (3) f0 = 200 Hz,
Bext = 0.05Bint = 1015 G; and the final signal (4) is at d = 10 kpc (i.e. in
our galaxy) and has duration of 1 yr (solid line for the first week, dotted for
the rest), with Bext = 0.05Bint = 5 × 1013 G, f0 = 100 Hz.

have had χ ≈ 90◦ at early times). We first observe that such a star
is completely inconsistent with k = 1 unless it is far older than
5000 yr, so we regard this as a strong lower limit.

If k = 2, Fig. 6 shows us that the birth rotation must satisfy f0

� 1000 Hz if our fiducial magnetar is 1000 yr old, or f0 � 300 Hz
for a 5000-yr-old magnetar. The former value may just be possible,
in that the break-up rotation rate is typically over 1 kHz for any
reasonable NS equation of state – but is clearly extremely high. The
latter value of f0 is more believable, but does require the star to be
towards the upper end of the expected magnetar age range.

Finally, if k = 3 the birth rotation is essentially unrestricted:
it implies f0 � 20–100 Hz for the age range 1000–5000 yr. As
discussed earlier, however, this represents a very large enhancement
to the torque – with crustal motions continually regenerating the
magnetar’s corona – and sustaining this over a magnetar lifetime
(especially 5000 yr) therefore seems very improbable.

An accurate value of k (or at least, its long-term average) cannot
be determined without more detailed work, so we have to rely on the
qualitative arguments above. From these, we tentatively suggest that
existing magnetar observations indicate that f0 � 100–300 Hz and 2
� k < 3 for these stars. Furthermore, from Fig. 6, we see that a single
measurement of χ � 10◦ from one of the more highly magnetized
(i.e. Bext ∼ 1015 G) observed magnetars would essentially rule out
k ≥ 3.

6 G R AV I TAT I O NA L A N D
ELECTROMAG NETIC RADIATION

6.1 GWs from newborn magnetars

An evolution χ → 90◦ brings an NS into an optimal geometry
for GW emission (Cutler 2002), and a few authors have previously
considered this scenario applied to newborn magnetars (Stella et al.
2005; Dall’Osso et al. 2009), albeit without the crucial effects of the
protomagnetar wind and self-consistent solutions for the internal
motions. By contrast, we have these ingredients, and hence can
calculate GWs from newborn magnetars more quantitatively. In
Fig. 7, we plot the characteristic GW strain at distance d:

hc(t) = 8G

5c4

εBI�(t)2 sin2 χ (t)

d

(
f 2

GW

|ḟGW|
)1/2

(19)

from four model magnetars with χ0 = 1◦, averaged over sky location
and source orientation, following Jaranowski, Królak & Schutz
(1998). This signal is emitted at frequency fGW = 2f = �/π . We also
show the design rms noise hrms = √

fGWSh(fGW) for the detectors
aLIGO (Abbott et al. 2018) and ET-B (Hild, Chelkowski & Freise
2008), where Sh is the detector’s one-sided power spectral density.
Models 1 and 2 from Fig. 7 both have f0 = 1000 Hz and Bint =
1016 G, but the former model has a much stronger exterior field. As
a result, it is subject to a strong wind torque, which spins it down
greatly before χ → 90◦, thus reducing its GW signal compared
with model 2.

Next we calculate the signal-to-noise ratio (SNR) for our selected
models, following Jaranowski et al. (1998):

SNR =
⎡
⎣ tfinal∫

t=0

(
hc

hrms

)2 |ḟGW|
fGW

dt

⎤
⎦

1/2

. (20)

Note that this expression assumes single coherent integrations. In
reality it will be difficult to track the evolving frequency well enough
to perform such integrations; see discussion in Section 7.

Using aLIGO, models 1, 2, 3, and 4 have SNR = 0.018, 0.38,
0.43, and 4.0 for tfinal = 1 week. With ET, we find SNR values of
0.19, 4.5, 4.4, and 47 for models 1, 2, 3, and 4, again taking tfinal = 1
week. Model 4 would be detectable for longer; taking instead tfinal =
1 yr gives SNR = 16 (200) for aLIGO (ET). Once χ for this model
reduces below 90◦, the GW signal will gain a second harmonic at
f, in addition to the one at 2f (Jones & Andersson 2002). However,
even after 150 yr (when the model 4 signal drops below the ET noise
curve), the star is still an almost-orthogonal rotator, with χ = 81◦.
In this paper therefore it is enough to consider only the 2f harmonic.

Recently, Dall’Osso et al. (2018) studied GWs from newborn
magnetars, finding substantial SNR values even using aLIGO. To
compare with them, we take one of their SNR = 5 models, which
has Bext/Bint = 0.019 and f0 = 830 Hz. From their equations (25) and
(26), however, they appear to have a different numerical pre-factor
from ours; if this was used in their calculations their SNR values
should be multiplied by

√
2/5 for direct comparison, meaning the

SNR = 5 model would become SNR ≈ 3. With our evolutions
we find SNR ≈ 2 for the same model. This smaller value is to be
expected, since we account for two pieces of physics not present
in the Dall’Osso et al. (2018) model – the magnetar wind and the
aligning effect of the EM torque – which are both liable to reduce
the GW signal.

6.2 Rotational-energy injection: jets and supernovae

The rapid loss of rotational energy experienced by a newborn NS
with very high Bext and f may be enough to power superluminous
supernovae, and/or GRBs. Because our wind model is based on
M11, our results for energy losses are similar to theirs, and the
evolving χ only introduces order-unity differences to the overall
energy losses. What may change with χ , however, is which
phenomenon the lost rotational energy powers: Margalit et al. (2018)
argue for a model with a partition of the energy, predominantly
powering a jet and GRB for χ ≈ 0◦ and thermalized emission
contributing to a more luminous supernova for χ ≈ 90◦.

The amplification of a nascent NS’s magnetic field to magnetar
strengths is likely to require dynamo action, with differential
rotation playing a key role, and so we anticipate both poloidal
and toroidal components of the resulting magnetic field to be
approximately orientated around the rotation axis. In this case, χ at
birth would be small – and decreases further while the stellar matter
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is still partially neutrino opaque (∼38 s in our model). For all of
this phase we therefore find – following Margalit et al. (2018) – that
most lost rotational energy manifests itself as a GRB. Following this,
the stellar matter becomes neutrino transparent and bulk viscosity
activates, rapidly driving χ towards 90◦. By this point f will have
decreased considerably, but could still be well over 100 Hz. The
star remains with χ ≈ 90◦ for ∼106 s in the case of an extreme
millisecond magnetar, or otherwise longer; see Fig. 4. Now the
rotational energy is converted almost entirely to thermal energy
and ceases to power the jet. Therefore, at any one point during
the magnetar’s evolution, one of the two EM scenarios is strongly
favoured.

6.3 Fast radio bursts

Finally, we will comment briefly on the periodicities that have been
seen in two repeating FRB sources (to date). The CHIME/FRB Col-
laboration (2020) reported evidence for a 16-d periodicity in FRB
180916.J0158+65 over a data set of ∼1 yr, whilst Rajwade et al.
(2020) found somewhat weaker evidence for a 159-d periodicity in
FRB 121102 from a ∼5-yr data set. The possibility of magnetar
precession providing the required periodicity was pointed out by
The CHIME/FRB Collaboration (2020), and developed further in
Levin et al. (2020) and Zanazzi & Lai (2020), with the periodicity
being identified with the free precession period.

As noted by Zanazzi & Lai (2020), the lack of a measurement of a
spin period introduces a significant degeneracy (between P and εB,
in our notation). Nevertheless, a few common sense considerations
help to further constrain the model. In addition to reproducing the
free precession period, a successful model also has to predict no
significant evolution in spin frequency (as noted by Zanazzi & Lai
2020) or in χ , over the ∼1–5 yr durations of the observations. Also,
the precession angle cannot be too close to zero or π /2, as otherwise
there would be no geometric modulation of the emission. Finally, a
requirement specific to the model of Levin et al. (2020) is that the
magnetar should be only tens of years old.

Our simulations show that requiring χ to take an intermediate
value is a significant constraint. At sufficiently late times the EM
torque wins out, and the star aligns (χ → 0), an effect not considered
in either Levin et al. (2020) or Zanazzi & Lai (2020). We clearly can
accommodate stars of ages ∼10–100 yr with such intermediate χ

values; see the top panel of Fig. 4. Such magnetars in this age range
experience, however, considerable spin-down: from our evolutions
we find a decrease of around 4 per cent in the spin and precession
frequencies over a year at age 10 yr, and a 0.5 per cent annual
decrease at age 100 yr. More work is clearly needed to see whether
this is compatible with the young magnetar model, and we intend
to pursue this matter in a separate study.

7 D ISCUSSION

Inclination angles encode important information about NSs that
cannot be otherwise constrained. In particular, hints that observed
magnetars generically have small χ places a significant and inter-
esting constraint on their rotation rates at birth, f0 � 100–300 Hz,
and shows that their exterior torque must be stronger than that
predicted for pulsar magnetospheres. More detailed modelling of
this magnetar torque may increase this minimum f0. Because our
models place lower limits on f0 (from the shape of the contours of
Fig. 6), they complement other work indicating upper limits of f0 �
200 Hz, based on estimates of the explosion energy from magnetar-
associated supernovae remnants (Vink & Kuiper 2006).

Typically, a newborn magnetar experiences an evolution where
χ → 90◦ within 1 min. At this point it emits its strongest GW
signal. For rapidly rotating magnetars born in the Virgo cluster,
for which the expected birth rate is �1 per year (Stella et al.
2005), there are some prospects for detection of this signal with
ET, provided that the ratio Bext/Bint is small. Such a detection would
allow us to infer the unknown Bint. A hallmark of the magnetar-birth
scenario we study would be the onset of a signal with a delay of
roughly 1 min from the initial explosion. The delay is connected
with the star becoming neutrino transparent, and so measuring
this might provide a probe of the newborn star’s microphysics.
Note, however, that the actual detectability of GWs depends upon
the signal analysis method employed – most importantly single-
coherent verses multiple-incoherent integrations of the signal – and
on the amount of prior information obtained from EM observations,
most importantly signal start time and sky location. For a realistic
search, reductions of sensitivity by a factor of 5–6 are possible
(Dall’Osso et al. 2018; Miller et al. 2018).

Stronger magnetic fields do not necessarily improve prospects
for detecting GWs from newborn magnetars. A strong Bext causes
a dramatic initial drop in f before orthogonalization, resulting in
a diminished GW signal. The lost rotational energy from this
phase will predominantly power a GRB, and later energy losses
may be seen through increased luminosity of the supernova. Less
electromagnetically spectacular supernovae may therefore be better
targets for GW searches.

The birth of an NS in our galaxy2 need not have such extreme
parameters to produce interesting levels of GW emission, as long
as it has a fairly strong internal toroidal field, Bint � 1014 G, and f0

� 100 Hz. These are plausible birth parameters for a typical radio
pulsar, since Bext will typically be somewhat weaker than Bint. Such
a star will initially experience a similar evolution to that reported
here, but slower, giving the star time to cool and begin forming
a crust. Afterwards, the evolution of χ will probably proceed in
a slow, stochastic way dictated primarily by crustal-failure events:
crustquakes or episodic plastic flow. Regardless of the details of
this evolutionary phase, we find that the long-time-scale trend for
all NSs should be the alignment of their rotation and magnetic axes,
which is in accordance with observations (Tauris & Manchester
1998; Weltevrede & Johnston 2008; Johnston & Karastergiou
2019).

Many of our conclusions will not be valid for NSs whose magnetic
fields are dominantly poloidal, rather than toroidal. In this case the
magnetically induced distortion is oblate, and there is no obvious
mechanism for χ to increase; it will simply decrease from birth.
The expectation that all NSs eventually tend towards χ ≈ 0◦

remains true, but our constraints on magnetar birth would likely
become far weaker and the GW emission from this phase negligible.
The lost rotational energy from the newborn magnetar would
power a long-duration GRB almost exclusively, at the expense of
any luminosity enhancement to the supernova. Poloidal-dominated
fields are, however, problematic for other reasons: it is not clear how
they would be generated, whether they would be stable, or whether
magnetar activity could be powered in the absence of a toroidal field
stronger than the inferred exterior field. This aspect of the life of
newborn magnetars clearly deserves more detailed modelling.

2It is optimistic – but not unreasonable – to anticipate seeing such an event,
with birth rates of maybe a few per century (Faucher-Giguère & Kaspi 2006;
Lorimer et al. 2006).
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