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Abstract. Using bag of words representations of time series is a pop-
ular approach to time series classification. These algorithms involve ap-
proximating and discretising windows over a series to form words, then
forming a count of words over a given dictionary. Classifiers are con-
structed on the resulting histograms of word counts. A 2017 evaluation
of a range of time series classifiers found the bag of Symbolic-Fourier Ap-
proximation symbols (BOSS) ensemble the best of the dictionary based
classifiers. It forms one of the components of hierarchical vote collective
of transformation-based ensembles (HIVE-COTE), which represents the
current state of the art. Since then, several new dictionary based algo-
rithms have been proposed that are more accurate or more scalable (or
both) than BOSS. We propose a further extension of these dictionary
based classifiers that combines the best elements of the others combined
with a novel approach to constructing ensemble members based on an
adaptive Gaussian process model of the parameter space. We demon-
strate that the Temporal Dictionary Ensemble (TDE) is more accurate
than other dictionary based approaches. Furthermore, unlike the other
classifiers, if we replace BOSS in HIVE-COTE with TDE, HIVE-COTE
is significantly more accurate. We also show this new version of HIVE-
COTE is significantly more accurate than the current best deep learning
approach, a recently proposed hybrid tree ensemble and a recently in-
troduced competitive classifier making use of highly randomised convo-
lutional kernels. This advance represents a new state of the art for time
series classification.
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1 Introduction

Dictionary based approaches adapt the bag of words model commonly used in
signal processing, computer vision and audio processing for time series classifi-
cation (TSC). A comparison of TSC algorithms, commonly known as the bake
off, formed a taxonomy of approaches based on representations of discrimina-
tory features, with dictionary approaches being one of these. From the bake off
the bag of Symbolic-Fourier-Approximation symbols (BOSS) [12] ensemble was
found to be the most accurate dictionary classifier by a significant amount. BOSS
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was found to be the third most accurate algorithm out of the 20 compared. This
highlights the utility of dictionary methods for TSC.

This performance lead to BOSS being incorporated into the hierarchical vote
collective of transformation-based ensembles (HIVE-COTE) [10], a heteroge-
neous ensemble encompassing multiple time series representations. The inclu-
sion of BOSS and the subsequent significant improvement in accuracy places
HIVE-COTE in the state of the art for TSC among three other algorithms pro-
posed more recently. These are the time series combination of heterogeneous
and integrated embeddings forest (TS-CHIEF) [15], which also a hybrid of mul-
tiple representations including BOSS, the random convolutional kernel transform
(ROCKET) [4], and the deep learning approach InceptionTime [6].

Since the bake off a number of dictionary algorithms have been published,
focusing on improving accuracy [14, 8], prediction time efficiency [14], train time
and memory efficiency [11]. These algorithms are mostly extensions of BOSS,
making alterations to different parts of the original algorithm. Word extraction
for time series classification (WEASEL) [14] abandons the ensemble structure in
favour of feature selection and changes the method of word discretisation. Spatial
BOSS (S-BOSS) [8] introduces temporal information and additional features
using spatial pyramids. Contractable BOSS (¢cBOSS) [11] changes the method
used by BOSS to form its ensemble to improve efficiency and allow for a number
of usability improvements.

Each of these methods constitutes an improvement to the dictionary repre-
sentation from BOSS. Our contribution is to combine design features of these
four classifiers (BOSS, WEASEL, S-BOSS and ¢BOSS) to make a new algorithm,
the Temporal Dictionary Ensemble (TDE). Like BOSS, TDE is a homogeneous
ensemble of nearest neighbour classifiers that use distance between histograms
of word counts and injects diversity through parameter variation. TDE takes the
ensemble structure from ¢cBOSS, which is more robust and scaleable. The use of
spatial pyramids is adapted from S-BOSS. From WEASEL, TDE uses bi-grams
and an alternative method of finding word breakpoints.

We found the simplest way of combining these components did not result in
significant improvement. We speculate that the massive increase in the param-
eter space made the randomised diversity mechanism result in too many poor
learners in the ensemble. We propose a novel mechanism of base classifier model
selection based on an adaptive form of Gaussian process (GP) modelling of the
parameter space. Through extensive evaluation with the UCR time series clas-
sification repository [3], we show that TDE is significantly more accurate than
WEASEL and S-BOSS while retaining the usability and scalability of ¢cBOSS.
We further show that if TDE replaces BOSS in HIVE-COTE;, the resulting clas-
sifier is significantly more accurate than HIVE-COTE with BOSS and all three
competing state of the art classifiers.

The rest of this paper is structured as follows. Section 2 provides background
information for the four dictionary based algorithms relevant to TDE. Section 3
describes the TDE algorithm, including the GP based parameter search. Sec-
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tion 4 presents the performance evaluation of TDE. Conclusions are drawn in
Section 5 and future work is discussed.

2 Dictionary Based Classifiers

Dictionary based classifiers have the same broad structure. A sliding window
of length w is run across a series. For each window, the real valued series of
length w is converted through approximation and discretisation processes into a
symbolic string of length I, which consists of a possible letters. The occurrence
in a series of each ‘word’ from the dictionary defined by [ and « is counted, and
once the sliding window has completed the series is transformed into a histogram.
Classification is based on the histograms of the words extracted from the series,
rather than the raw data.

The bag of Symbolic-Fourier-Approximation symbols (BOSS) [12] was found
to be the most accurate dictionary based classifier in a 2017 study [1]. Hence, it
forms our benchmark for new dictionary based approaches. BOSS is described
in detail in Section 2.1. A number of extensions and alternatives to BOSS have
been proposed.

— One of the problems with BOSS is that it can be memory and time ineffi-
cient, especially on data where many transforms are accepted into the final
ensemble. cBOSS (Section 2.2) addresses the scalability issues of BOSS [11]
by altering the ensemble structure.

— BOSS ignores the temporal location of patterns. Rectifying this led to an
extension of BOSS based on spatial pyramids, called S-BOSS [8], described
in Section 2.3.

— WEASEL [14] is a dictionary based classifier by the same team that produced
BOSS. It is based on feature selection from histograms for a linear model
(see Section 2.4).

We propose a dictionary classifier that merges these extensions and improve-
ments to the core concept of BOSS, called the Temporal Dictionary Ensemble
(TDE). It lends from the sped-up ensemble structure of cBOSS, the spatial pyra-
mid structure of S-BOSS, and the word and histogram forming improvements of
WEASEL. TDE is fully described in Section 3.

2.1 Bag of Symbolic-Fourier-Approximation Symbols (BOSS) [12]

Algorithm 1 gives a formal description of the bag forming process of an indi-
vidual BOSS classifier. Words are created using symbolic Fourer approximation
(SFA) [13]. SFA first finds the Fourier transform of the window (line 8), then dis-
cretises the first | Fourier terms into o symbols to form a word, using a bespoke
supervised discretisation algorithm called multiple coefficient binning (MCB)
(line 13). It has an option to normalise each window or not by dropping the
first Fourier term (lines 6-7). Lines 14-16 encapsulates the process of not count-
ing trivially self similar words: if two consecutive windows produce the same
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word, the second occurrence is ignored. This is to avoid a slow-changing pattern
relative to the window size being over-represented in the resulting histogram.

BOSS uses a non-symmetric distance function in conjunction with a nearest
neighbour classifier. Only the words contained in the test instance’s histogram
(i.e. the word’s count is above zero) are used in the distance calculation, but it
is otherwise the Euclidean distance.

Algorithm 1 baseBOSS(A list of n time series of length m, T = (X,y))

Parameters: the word length [, the alphabet size a, the window length w, normali-
sation parameter p
1: Let H be a list of n histograms (hi,...,hy,)
2: Let B be a matrix of | by «a breakpoints found by MCB
3: for i <~ 1 ton do

4: forj+ltom—w+1do
5: S Tij..-Tij+w—1

6: if p then

T s <—normalise(s)

8: q < DFT(s,l,a,p) { q is a vector of the complex DFT coefficients}
9: if p then

10: q' (g2 q/241)

11: else

12: q (g1 -qy2)

13: r < SFAlookup(q’, B)
14: if r # p then

15: pos <—index(r)

16: hipos < Pipos + 1

17: p+r

The final classifier is an ensemble of individual BOSS classifiers (parame-
terised transform plus nearest neighbour classifier) found through first fitting
and evaluating a large number of individual classifiers, then retaining only those
within 92% accuracy of the best classifier. The BOSS ensemble (also referred to
as just BOSS), evaluates and retains the best of all transforms parameterised in
the range w € {10...m} with m/4 values where m is the length of the series,
1 €{16,14,12,10,8} and p € {true, false}. a stays at the default value of 4.

2.2 Contractable BOSS (cBOSS) [11]

Due to its grid-search and method of retaining ensemble members BOSS is un-
predictable in its time and memory resource usage, and is impractical for larger
problems. ¢cBOSS significantly speeds up BOSS while retaining accuracy by im-
proving how the transform parameter space is evaluated and the ensemble is
formed. The main change from BOSS to ¢cBOSS is that it utilises a filtered ran-
dom selection of parameters to find its ensemble members. cBOSS allows the user
to control the build through a time contract, defined as the maximum amount
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of time spent constructing the classification model. Algorithm 2 describes the
decision procedure for search and maintaining individual BOSS classifiers for
cBOSS.

A new parameter k (default 250) for the number of parameter combinations
samples is introduced (line 7), of which the top s with the highest accuracy are
kept for the final ensemble (lines 13-19). The k parameter is replaceable with a
time limit ¢ through contracting. Each ensemble member is built on a subsample
of the train data, (line 10) using random sampling without replacement of 70%
of the whole training data. An exponential weighting scheme for the predictions
of the base classifiers is introduced, to produce a tilted distribution (line 18).

c¢BOSS was shown to be an order of magnitude faster than BOSS on both
small and large datasets from the UCR archive while showing no significant
difference in accuracy [11].

Algorithm 2 ¢cBOSS(A list of n cases length m, T = (X,y))

Parameters: the number of parameter samples k, the max ensemble size s
1: Let w be window length, [ be word length, p be normalise/not normalise and « be
alphabet size.
Let C be a list of s BOSS classifiers (c1,...,Cs)
Let E be a list of s classifier weights (e1, ..., es)
Let R be a set of possible BOSS parameter combinations
140
lowest_acc < 00, lowest_acc_idx < oo
while ¢ < k¥ AND |R| > 0 do
[, a,w,p] + random_sample(R)

9: R=R\{[,a,w,p|}
10: T’ « subsample_data(T)
11:  cls < baseBOSS(T',1,a,w,p)
12:  acc + LOOCV(cls) { train data accuracy}
13:  if i < s then

14: if acc < lowest_acc then

15: lowest_acc < acc, lowest_acc_idx < 1

16: ci < cls, e; acc*

17: else if acc > lowest_acc then

18: Clowest-acc_idz Cls, €lowest_acc_idx S aCC4

19: [lowest_ace, lowest_acc_idz] < find_new_lowest_acc(C)

20: i<+ i+1

2.3 BOSS with Spatial Pyramids (S-BOSS) [8]

BOSS intentionally ignores the locations of words in series, classifying based
on the frequency of patterns rather than their location. For some datasets we
know that the locations of certain discriminatory subsequences are important,
however. Some patterns may gain importance only when in a particular location,
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or a mutually occurring word may be indicative of different classes depending
on when it occurs. Spatial pyramids [9] bring some temporal information back
into the bag-of-words paradigm.

S-BOSS, described in Algorithm 3 and illustrated in figure 1, incorporates the
spatial pyramids technique into the BOSS algorithm. S-BOSS creates a standard
BOSS transform at the global level (line 6), which constitutes the first level of
the pyramid. An additional degree of optimisation is then performed to find the
best pyramid height h € {1,2,3} (lines 11-16). Height defines the importance of
localisation for this transform. Creating the next pyramid level involves creating
additional histograms each sub-region of the series at the next scale. Histograms
are weighted to give more importance to similarities in the same locations than
global similarity, and are concatenated to form an elongated feature vector per
instance. The histogram intersection distance measure, more commonly used
for approaches using histograms, replaces the BOSS distance for the nearest
neighbour classifiers. S-BOSS retains the BOSS ensemble strategy (line 17), such
that each S-BOSS ensemble member is a BOSS transform with its own spatial
pyramid optimisation plus nearest neighbour classifier.

W Raw time series
| | | |I I | || | Pyramid level 1
| I I I | | | Pyramid level 2

Pyramid level 3

Concatenated
and weighted

[ uJ.mLM“ FARr— \\\Mu fond It feature vector

Fig. 1. An example transformation of an OSULeaf instance to demonstrate the addi-
tional steps to form S-BOSS from BOSS. Note that each histogram is represented in a
sparse manner; the set of words along the x-axis of each histogram at higher pyramid
levels may not be equal.

2.4 Word Extraction for Time Series Classification (WEASEL) [14]

Like BOSS, WEASEL performs a Fourier transform on each window, creates
words by discretisation, and forms histograms of words counts. It also does this
for a range of window sizes and word lengths. However, there are important
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Algorithm 3 S-BOSS(A list of n cases length m, T = (X,y))

Parameters: the set of possible [a, w, p] parameter combinations R, the set of possible
[[] parameter values L, the maximum pyramid height H
: Let C be a list of s BOSS classifiers (ci,...,cs)
: for i < 1 to |L| do
bestAcc < 0, bestCls + @
for j + 1 to |R| do
la, w,p] ¢ R;
cls < baseBOSS(T, L;, a, w, p)
acc + LOOCV (cls) {train data accuracy}
if acc > bestAcc then
best Acc < acc, bestCls < cls
10:  cls < bestCls
11:  for h <+ 1to H do

I I ol e

©

12: cls < divideAndConcatenate Bags(cls)
13: acc + LOOCV (cls) {train data accuracy}
14: if acc > bestAcc then

15: best Acc < acc, bestCls < cls

16: C; < bestCls
17: keepWithinBest(C,0.92) {keep those cls with train accuracy within 0.92 of the
best}

differences. WEASEL is not an ensemble nearest neighbour classifiers. Instead,
WEASEL constructs a single feature space from concatenated histograms for
different parameter values, then uses logistic regression and feature selection.
Histograms of individual words and bigrams of the previous non-overlapping
window for each word are used. Fourier terms are selected for retention by the
application of an F-test. The retained values are then discretised into words using
information gain binning (IGB), similar to the MCB step in BOSS. The number
of features is further reduced using a chi-squared test after the histograms for
each instance are created, removing any words which score below a threshold.
It performs a parameter search for p (whether to normalise or not) and over a
reduced range of [, using a 10-fold cross-validation to determine the performance
of each set. The alphabet size « is fixed to 4 and the chi parameter is fixed to 2.
Algorithm 4 gives an overview of WEASEL, although the formation and addition
of bigrams is omitted for clarity.

3 Temporal Dictionary Ensemble (TDE)

The easiest algorithms to combine are ¢cBOSS and S-BOSS. ¢cBOSS speeds up
BOSS through subsampling training cases and random parameter selection. The
number of levels parameter introduced by S-BOSS can be included in the ran-
dom parameter selection used by ¢BOSS. For comparisons we call this naive
hybrid of algorithms ¢S-BOSS. We use this as a baseline to justify the extra
complexity we introduce in TDE. Algorithm 5 provides an overview of the en-
semble build process for TDE, which follows the general structure and weighting
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Algorithm 4 WEASEL(A list of n cases of length m, T = (X,y))

Parameters: the word length [, the alphabet size a, the maximal window length
Wmaz, Mean normalisation parameter p
1: Let H be the histogram h
2: Let B be a matrix of | by a breakpoints found by MCB using information gain
binning
for i <+ 1 ton do
for w < 2 t0 Wmas do
for j« 1tom—w+1do
O Tij.- Tij+w—1
q < DFT(o,w,p) { q is a vector of the complex DFT coefficients}
q' <+ ANOVA-F(q,l,y) { use only the 1 most discriminative ones}
9: r <+ SFAlookup(q’, B)
10: pos <—index(w,r)
11: hi,pos — hi,pos + 1
12: b+ x2(h,y) { feature selection using the chi-squared test }
13: fitLogistic(h,y)

scheme of cBOSS. The classifier returned by improvedBaseBOSS includes spatial
pyramids and also includes the following enhancements taken from both S-BOSS
and WEASEL. Like S-BOSS, it uses the histogram intersection distance mea-
sure which has been shown to be more accurate than BOSS distance [8]. It uses
bigram frequencies in the same way as WEASEL. Base classifiers can use either
IGB from WEASEL or MCB from BOSS in the discretisation. TDE samples
parameters from the range given in Table 1 using a method sampleParameters.

Table 1. Parameter ranges for TDE base classifier selection.

Parameter Range

Word lengths 1 ={16,14,12,10,8}
Window lengths |w = {10...m}
Normalise p = {true, false}
No.pyramid levels|h = {1, 2,3}
Discretisation b={MCB,IGB}

3.1 Gaussian process parameter selection

The increase in the parameter search space caused by the inclusion of pyramids
and IGB parameters makes the random parameter selection used by cBOSS less
effective. Instead, TDE uses a guided parameter selection for ensemble members
inspired by Bayesian optimisation [16]. A Gaussian process model is built over
the regressor parameter space R for parameters [l,a,w,p, h,b] to predict the
accuracy, using the previously observed (parameter, accuracy) pairs G.
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Algorithm 5 TDE(A list of n cases length m, T = (X,y))

Parameters: the number of parameter samples k, the max ensemble size s
1: Let w be window length, | be word length, p be normalise/not normalise, o be
alphabet size, h be number of pyramid levels and b be MCB or IGB discretisation.
2: Let C be a list of s BOSS classifiers (c1,...,cs)
3: Let E be a list of s classifier weights (e1,...,es)
4: Let G be a list of K BOSS parameter and accuracy pairs (g1, ..., gk)
5: Let R be a set of possible BOSS parameter combinations
6
7
8

11+ 0

. lowest_acc <+ 0o, lowest_acc_idxr <+ oo

. while i < k AND |R| > 0 do
9:  [l,a,w,p,h,b] < chooseParameters(R,G,i)
10: R =R\ {[l,a,w,p,h,b]}
11: T’ + subsampleData(T)
12:  cls < improvedBaseBOSS(T',l,a,w,p, h,b)
13:  acc + LOOCV(cls) { train data accuracy}
14: if i < s then

15: if acc < lowest_acc then

16: lowest_acc < acc, lowest_acc_idx < 1

17: ci < cls, e; acc*

18: else if acc > lowest_acc then

19: Clowest-acc_idz Cls, €lowest_acc_idx S aCC4

20: [lowest_ace, lowest_acc_idz] < findNewLowestAcc(C)

21: gi < {[lva’?vav h, b]7CLCC}
22: i<+ 1+41

A Gaussian Process [17] describes a distribution over functions, f(x) ~
GP(m(x, k(xz,2'))), characterised by a mean function, m(z), and a covariance
function, k(x,x’), such that

m(x) = E[f(z)],
k(z, @) =B [(f(x) — m(z))(f(x') —m(z))],

where any finite collection of values has a joint Gaussian distribution. Commonly
the mean function is constant, m(x) = -, or even zero, m(x) = 0. The covariance
function k(x,z’) encodes the expected similarity of the function evaluated at
pairs of input-space vectors, © and x’. For example, the squared exponential
covariance function,

n_ 2 (x — ')’
k(m,m):CTfeXp 72762 y

encodes a preference for smooth functions, where ¢ is a hyper-parameter that
specifies the characteristic length-scale of the covariance functions (large values
yield smoother functions) and oy governs the magnitude of the variance.
Typically in a regression setting the response variables of the training sam-
ples, D = {(z;,y:;) | i =1,2,...,n}, are assumed to be realisations of a deter-
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ministic function that have been corrupted by additive Gaussian noise, i.e.
yi = f(x;) + &4, where ei~N (0, Ui) )

In that case, the joint distribution of the training sample, and a single test point,

x,, is given by,
Y K+oiI k.
AL (o )

where K is the matrix of pairwise evaluation of the covariance function for
all points belonging to the training sample and k, is a column vector of the
evaluation of the covariance function for the test point and each of the training
points. The Gaussian predictive distribution for the test point is then specified
by

f* = kf (K+O-3LI)71 Y,
V] = k(z., ) — kT (K +021) " k..

The hyper-parameters of the Gaussian process can be handled by tuning
them, often via maximisation of the marginal likelihood, or by full Bayesian
marginalisation, using an appropriate hyper-prior distribution. For further de-
tails, see Williams and Rasmussen [17]. We use a basic form of GP and treat all
the regressors (TDE parameters) as continuous. The bestPredictedParameters
operation in line 5 of Algorithm 6 is limited to the same parameter ranges used
for random search given in Table 1.

Algorithm 6 chooseParameters(R,G,i)
1: if ¢ < 50 then

2 [, a,w,p, h,b] < randomSample(R)
3: else
4:  gp < buildGaussianProcesses(G)

5
6

[, a,w,p, h,b] < bestPredictedParameters(R, gp)
: return [l,a,w,p,h,b|

4 Results

Our experiments are run on 112 datasets from the recently expanded UCR/UEA
archive [3], removing any datasets that are unequal length or contain missing
values. We also remove the dataset Fungi as it only provides a single train case
for each class. For each classifier-dataset combination we run 30 stratified resam-
ples, with the first sample being the original train test split. For reproducability
each dataset resample and classifier is seeded to its resample number. All exper-
iments were run single threaded on a high performance computing cluster with
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BOSS 41651 | . 2316 TDE
cBOSS 4.0236 3.3066 WEASEL
cS-BOSS 3.8113 3.3774 S-BOSS

Fig. 2. Critical difference diagram for six dictionary based classifiers on 107 UCR time
series classification problems. Full results are available on the accompanying website.

a run time limit of 7 days. We used an open source Weka compatible code base
called tsml for experimentation'. Implementations of BOSS, cBOSS, S-BOSS,
WEASEL, HIVE-COTE and TS-CHIEF provided by the algorithm inventors
are all available in tsml. InceptionTime and ROCKET experiments were run
using the Python based package sktime and a deep learning extension thereof?.

Guidance on how to recreate the resamples and code to reproduce the re-
sults is available on the accompanying website?. We also provide results for all
classifiers used in experimentation.

Our experiments are designed to test whether TDE is better in terms of
predictive performance and run time than other dictionary based classifiers, and
whether it improves HIVE-COTE when it replaces BOSS in the meta ensemble
HIVE-COTE.

4.1 TDE vs other dictionary classifiers

For the dictionary classifiers, we were only able to obtain complete results for 107
of the 112 datasets. This was due to the long run time of S-BOSS and WEASEL.
For consistency, in this Section we only present results with these datasets.
The missing problems are: ElectricDevices; FordA; FordB; HandOutlines; and
NonlnvasiveFetal ECGThorax2.

Figure 2 shows a a critical difference diagram [5] for the six dictionary based
classifiers considered. The number on each line is the average rank of an algo-
rithm over 107 UCR datasets (lower is better). The solid bars are cliques. There
is no detectable significant difference between classifiers in the same clique. Com-
parison of the performance of classifiers is done using pairwise Wilcoxon signed
rank tests and cliques are formed using the Holm correction, following recom-
mendations from [2] and [7].

TDE is significantly more accurate than all other classifiers. There are then
two cliques: BOSS and ¢BOSS are significantly worse than S-BOSS, ¢S-BOSS

! https://github.com/uea-machine-learning/tsml
2 https://github.com/sktime
3 https:/ /sites.google.com /view /ecmlpkdd-tde/home
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and WEASEL. This also confirms that the simple hybrid ¢S-BOSS is no better
than S-BOSS in terms of accuracy.

Table 2 summarises the run time of these classifiers. All the classifiers can
complete on most of the UCR problems in minutes. S-BOSS is the slowest al-
gorithm. Four problems are not included in this study because either S-BOSS
or WEASEL did not to finish within seven days. For WEASEL this was caused
by the requirement to cross validate to estimate the accuracy for HIVE-COTE.
S-BOSS is just relatively slow. We omit these four problems from all analysis for
completeness. All experiments are conducted sequentially on a single processor.
TDE completes all the problems in under a day. It is faster than WEASEL and
considerably faster than S-BOSS.

Table 2. Summary of run time for six dictionary based classifiers over 107 UCR
problems. The median time over 30 resamples is used for each dataset.

Classifier [Max run time (hrs)|Total run time (hrs)
BOSS 11.33 52.10
cBOSS 0.63 3.74
S-BOSS 34.11 148.82
c¢S-BOSS 2.91 12.62
WEASEL 4.86 28.50

TDE 5.67 21.73

The max run timings for BOSS and S-BOSS demonstrate the problem with
the traditional BOSS algorithm addressed by cBOSS and ¢S-BOSS: the ensemble
design means they may require a long runtime, and it is not very predictable
when this will happen. Figure 3 shows the scatter plot of runtime for BOSS vs
TDE and demonstrates that TDE scales much better than BOSS.

4.2 TDE with HIVE-COTE

TDE is significantly more accurate than all other dictionary based time se-
ries classification algorithms, and faster than the best of the rest, S-BOSS and
WEASEL. We believe there is merit in finding the best single representation
classifier because there will be occasions when domain knowledge would recom-
mend a single approach. However, with no domain knowledge, the state of the art
in time series classification involves hybrids built on multiple representations, or
deep learning to fit a bespoke representation. HIVE-COTE is a meta ensemble
of classifiers built using different representations.

All HIVE-COTE variants used in our experiments are built with four com-
ponents: the random interval spectral ensemble (RISE), shapelet transform clas-
sifier (STC) and time series forest (TSF) plus one other classifier (see [10] for
details). We omit the elastic ensemble because it is infeasible to run it on a large
number of problems. The other components are relatively fast and can complete
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Fig. 3. Pairwise scatter diagram, on log scale, of TDE and BOSS training times. TDE
has larger overheads which make it slower on smaller problems, but it scales much
better towards larger problems.

a single resample of one problem in under a day for all problems. The latest ver-
sion of STC on the open source repository tsml does not do a full enumeration
of the shapelet space. Instead, it randomly samples shapelets for a fixed time.
We set this to 4 hours for all experiments with STC.

With these other settings fixed, we have reconstructed HIVE-COTE using
TDE instead of BOSS. We call this HC-TDE for differentiation purposes.

TS-CHIEF [15] is a tree ensemble that embeds dictionary, spectral and dis-
tance based representations, and is set to build 500 trees. InceptionTime [6] is a
deep learning ensemble, combining 5 homogeneous networks each with random
weight initialisations for stability. ROCKET [4] uses a large number, 10,000, of
randomly parameterised convolution kernels in conjunction with a linear ridge

5 4 3 2 1
L 1 [ R
InceptionTime 3.2706 2.5688 HC-TDE
ROCKET 3.1055 3.0229 H|VE-COTE
3.0321 TS-CHIEF

Fig. 4. Critical difference diagram for six dictionary based classifiers on 109 UCR time
series classification problems. Full results are available on the accompanying website.
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Fig. 5. Scatter plot of TS-CHIEF against HC-TDE. HC-TDE wins on 62, draws on 6
and loses on 41 data sets.

regression classifier. We use the configurations of each classifier described in their
respective publications.

Figure 4 shows the ranked performance of HC-TDE against HIVE-COTE,
TS-CHIEF, InceptionTime and ROCKET on 109 problems. We are missing
three data, HandOutlines, NonInvasiveFetal ECGThorax1 and NonlnvasiveFe-
talECGThorax2 because TS-CHIEF could not complete them within the seven
day limit.

HC-TDE is significantly better than all four algorithms currently considered
state of the art. The actual differences between HIVE-COTE and HC-TDE are
understandably small, given their similarities. However, they are consistent: re-
placing BOSS with TDE improves HIVE-COTE on 69 problems, and makes it
worse on just 32 (with 8 ties). HC-TDE does show significant variation to T'S-
CHIEF (see Figure 5) and is on average over 1% more accurate. HC-TDE is the
top performing algorithm using a range of performance measures such as AU-
ROC, F1 and balanced accuracy (see accompanying website). The improvement
over InceptionTime is even greater: it is on average 1.5% more accurate.

It is worth considering whether replacing BOSS with either S-BOSS or WEASEL
would give as much improvement to HIVE-COTE as TDE does. We replaced
BOSS with WEASEL (HC-WEASEL) and S-BOSS (HC-S-BOSS). Figure 6
shows the performance of these relative to HC-TDE, InceptionTime and TS-
CHIEF. Whilst it is true that HC-S-BOSS is not significantly worse than HC-
TDE, it is also not significantly better than the current state of the art. HC-
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HC-WEASEL 4.533 3.1934 HC-TDE
InceptionTime 4.4623 3.7453 HC-S-BOSS
ROCKET 4.1557 3.9292 HIVE-COTE

3.9811 TS-CHIEF

Fig. 6. Critical difference diagram for seven classifiers on 106 UCR time series classi-
fication problems. Full results are available on the accompanying website.

WEASEL does not perform well. We speculate that this is because the major
differences in WEASEL mean that its improvement is at problems better suited
to other representations, and this improvement comes at the cost of worse per-
formance at problems suited to dictionary classifiers.

5 Conclusion

TDE combines the best elements of existing dictionary based classifiers with
a novel method of improving the ensemble through a Gaussian process model
for parameter selection. TDE is more accurate and scalable than current top
performing dictionary algorithms. When we replace BOSS with TDE in HIVE-
COTE, the resulting classifier is significantly more accurate than the current
state of the art. TDE has some drawbacks. It is memory intensive. It requires
about three times more memory than BOSS, and the maximum memory required
was 10 GB for ElectricDevices. Like all nearest neighbour classifiers, TDE is
relatively slow to classify new cases. If fast predictions are required, WEASEL
may be preferable. Future work will focus on making TDE more scalable.
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