
This is the accepted manuscript of an article published in Energy Research & Social Science 
available here: https://doi.org/10.1016/j.erss.2020.101572  

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

Page 1 of 16 
 

When activities connect: Sequencing, network analysis, and energy 

demand modelling in the United Kingdom  

 
Eoghan McKennaA,1, Sarah HigginsonA, Tom HargreavesB, Jason ChilversB and Murray 

ThomsonA 

 
A Centre for Renewable Energy Systems Technology (CREST), 
Wolfson School of Mechanical, Manufacturing and Electrical Engineering 
Loughborough University, LE11 3TU, UK 
B Science, Society and Sustainability (3S) Research Group, School of Environmental Sciences, 
University of East Anglia, Norwich, NR4 7TJ, UK 
1 Present address: UCL Energy Institute, University College London (UCL), Central House, 14 
Upper Woburn Place, London, WC1H 0NN. e.mckenna@ucl.ac.uk 

Abstract 
This work applies a network analysis technique to the study of real and synthetic residential 
activity data commonly used in activity and energy demand research. 

UK Time Use Survey activity diaries are converted into network graphs of activity sequences. 
Differences between weekday and weekend networks are compared using network metrics: 
size, density, centrality and homophily. The results show that the weekday activity sequence 
network is smaller, less dense, more central and has lesser homophily than the weekend 
network.  

The technique is applied to test the validation of a model of residential active occupancy in 
buildings that uses a first-order Markov chain technique to generate synthetic data. The 
results show that the synthetic data reproduces relative differences between the network 
metrics for weekdays and weekends but the differences between real and synthetic data 
are statistically significant and greater or comparable to the differences observed between 
real weekday and weekend data. The first-order Markov chain technique fails to capture 
important characteristics of the sequence network that are present in the real data.  

The analysis technique presented here can be used to improve the testing and validation of 
such models in future, as well the comparative analysis of sets of aggregated activity data 
for periods of known difference in energy demand.  
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Markov chain; bottom-up modelling. 
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1. Introduction 
To secure a low-carbon future, energy consumption behaviour will need to change. In 
particular, there is value in securing energy demand that is flexible in time (flexible 
demand), to reduce peak demand and help integrate intermittent sources of renewable 
energy into power systems [1]. In assessing the potential of flexible demand it is essential to 
understand the activities that drive energy demand in terms of their timing, energy intensity 
and possible flexibility [2,3].  

The study of activities and their relationship with energy demand is an active area of 
research with numerous sub-fields. The present work aligns and contributes to several of 
these: the comparative analysis of sets of activity data [2–4]; the analysis of sequences of 
activities [5,6]; and ‘bottom-up’ models of energy demand that are based on activity data 
[7–11]. 

In this work we demonstrate a technique developed by Cornwell [12] that: converts activity 
data into network graphs in a way that retains information about the sequences of 
activities; calculates metrics for these networks that contain information about the 
characteristics of the aggregated sequences such that they are meaningful global 
descriptions of the underlying data; and compares differences in these metrics between sets 
of activity data that are the result of differences in the structure of the sequences present in 
the underlying data. With two examples, we show that this technique can add value to 
energy demand research by revealing novel insights into data and modelling techniques that 
are used in the sub-fields mentioned above. 

In the first case, we compare residential activity data between weekdays and weekends, 
using data from the UK Time Use Survey [13]. Energy demand profiles for weekdays and 
weekends are known to be significantly different from each other, and previous research on 
time use survey data has shown that this difference is reflected in the nature of activities 
performed on these days e.g. what activities occur, and their timing and synchronisation [2]. 
We add insight to this literature by revealing differences between the two types of day in 
terms of the characteristics of the aggregated sequences of activities that underpin them.  

In the second case, we compare real activity data with synthetic activity data generated by 
an algorithm that is commonly used in the field of energy demand modelling (the first-order 
Markov chain technique). Previous research has validated this technique by demonstrating 
the synthetic data generated by the technique was sufficiently comparable to real data for 
the purposes of this class of energy demand model [8,14]. Contrary to previous research, 
our results show that the synthetic data differs considerably from the real data in ways that 
suggest the technique fails to capture characteristics of the activity sequences present in the 
real data. This work adds value to the field of bottom-up activity-based energy demand 
modelling by providing novel constructive criticism of a commonly used modelling algorithm 
and demonstrating the use of a new technique that can be used in future for the validation 
of the output of such models.  



2. Literature review 
Activity data has been the subject of analysis within energy demand research community 
before. This section provides a brief summary of the relevant literature.  

2.1. Analysis of activity data within energy demand research 
Torriti et al. [3] analysed 10-min activity diary data, questionnaires and 1-min GPS data for 
175 days and 153 participants to better understand the synchronisation of activities, the 
greenhouse gas intensity of activities and the potential flexibility to shift activities 
throughout the day. They found greenhouse gas intensity and flexibility to shift activities 
varies throughout the day, with morning peaks characterised by high levels of 
synchronisation, and evening peaks characterised by low levels of synchronisation and high 
spatial mobility. 

Anderson and Torriti [2] analysed and compared UK time-use survey data from 1974 to 2014 
to identify changes to the timing of aggregated activities, with a focus on changes in energy-
intensive activities and to patterns of activities during the evening peak period (4pm to 
8pm). Their findings suggest that the changes in social structures such as labour market 
participation and their knock-on impact on patterns of activities may have contributed to 
the observed changes in electricity demand over this period. 

Sekar et al. [15] analysed and compared the American Time Use Survey between 2003 and 
2012 to identify changes in the timing that high-level aggregated activities are performed 
and to estimate the impact of these changes on aggregated energy demand. Their findings 
indicate that more time at home and less time spent travelling and at work reduced national 
energy demand by 1.8%.  

McKenna et al. [6] used network theory techniques to analyse 2000-2001 UK Time Use 
Survey. They used network metrics of degree and centrality to identify that personal care, 
household and family care, and travel are categories of activities are the most connected 
and suggested these act as ‘hubs’ or ‘anchors’ – particularly central or important activities – 
within the overall network of activities. 

Lorincz et al. [5] analysed the timing and sequences of activities in the 2014-2014 UK Time 
Use Survey. They used network analysis techniques to create network graphs from 
individual activity diaries to identify the most frequent sequences of activities during 
periods of peak national energy demand. Using the degree network metric, they identified 
that travel activities have the highest number of connections, followed by food preparation, 
eating and mass media activities. 



A key limitation of these studies are the lack of combined observations of activities and 
energy demand. Such studies are limited by the assumptions they must make regarding the 
link between activities and energy consumption. For example, what appliances are being 
used when an activity is performed, and how the energy-intensity of activities may vary 
between or within households. Grunewald and Diakonova [4] bridged these gaps by 
developing new methods to collect and analyse household activity and electricity 
consumption data. Based on data for 293 households and over 16,000 reported activities 
combined with 1-min concurrent electricity readings, they identified typical electricity 
intensities of household activities. They developed the concept of marginal electricity 
demand which allows the contribution of specific activities to electricity demand to be 
isolated. Their results show, for example, that hot meal related activities have strong 
contributions to electricity demand, while cold meals have the opposite effect.   

This paper contributes to this field of research by demonstrating the value of a technique 
which explicitly captures properties of the sequences of activities, facilitating the 
comparison of these characteristics between sets of activity data, in particular where these 
are observed to have associated significant differences in energy demand profiles.  

2.2. Bottom-up activity-based energy demand modelling 
Time use activity data is also used in the field of energy demand modelling. It is used in 
‘bottom-up’ activity-based models [10,11,14,16] which are used to simulate energy demand 
in residential buildings at high resolution, and which are typically used in low-voltage 
network analyses [17] and urban energy systems modelling [18]. 

A defining feature of such models is that they use real activity data, typically large national 
surveys such as the UK Time Use Survey, to calibrate an algorithm which is then used to 
create synthetic activity data at scale. The use of synthetic data rather than real data within 
this class of model stems, in part, from the historic lack of good quality real data at the time 
of the development of early models, and the need therefore to generate large amounts of 
‘realistic looking’ data given limited availability of real data. There was also a general desire 
for such models to be ‘self-contained’ and open-source, and not require the accompaniment 
of large datasets with their distribution, which may have restrictive licencing conditions 
regarding onward distribution. Finally, there is a value in models having the functionality of 
producing realistic synthetic data at scale to suit the needs of whatever scenario is of 
interest to the modeller. 

A key requirement, however, is that the output of such models (the synthetic data) provides 
an accurate enough representation of the real data which the algorithm was calibrated on 
[8]. As a result, these models are generally ‘validated’ by comparing the synthetic data they 
produce with the original real data on which the model was based.  

By way of example, the ‘first-order Markov chain’ algorithm, which is the subject of scrutiny 
in this paper, was first validated in terms of state probabilities [14,19,20]. This means that, 
given a sufficiently large number of runs of the model, the probability that an activity occurs 
throughout the day is the same in the model as it is in the real data. Subsequent research 



then criticised the algorithm’s ability to accurately capture state (activity) durations [11]. 
This refers to whether, given a sufficiently large number of runs, the probability distribution 
of the duration of activities matches between the model and real data. Partly in response to 
this criticism, McKenna et al. [8] quantified the discrepancy in activity durations of the 
model and found that “the first-order Markov chain technique produces output that 
matches closely the original data, with good agreement in terms of state probabilities and 
state durations”. 

In this work we contribute to this literature by taking the same data used by McKenna et al 
[8] to validate the first-order Markov chain model in terms of state probability and 
durations, and analyse it using a network analysis technique to test whether the algorithm 
can be validated in terms of the characteristics of the sequences of activity data it produces. 

3. Method 
3.1. Sequence network analysis of residential activity diaries 

Network theory is a broad field of research devoted to the scientific analysis of the structure 
and dynamics of networks, including technical, information, biological and social networks 
[21–23]. It has proven to be a useful method for understanding networks that consist of 
flows, traffic, or sequences, such as the diffusion of viruses or innovations through social 
networks [24], or the transcriptional regulation networks that regulate gene expression in 
cells [25].  

In this work, network theory techniques are applied to sequence data to produce and 
analyse sequence networks [26]. Sequence networks are networks comprising multiple 
overlapping individual chains of sequences. We adopt the method developed by Cornwell 
[12] of converting sets of individual activity chains into sequence network graphs and 
analysing the resulting networks using network analysis metrics. The method is described in 
detail in [12] and briefly summarised here. 

Figure 1 shows a simple illustrative example of how multiple sequences of activity data are 
converted into a network graph for subsequent analysis. Activity sequence data is 
structured as a simple two-dimensional array. Each row represents a separate sequence, 
with columns representing consecutive time periods. The data analysed in this paper 
consists of 10-minute resolution activity data for a 24-hour period, so each sequence 
consists of 144 elements. Each element contains a code representing the activity that 
individual performed in that 10-minute period. 



 
Figure 1 – illustrative example of steps involved in converting activity sequence data into a network graph. 

Network graphs consist of nodes and edges which are the connections between the nodes. 
The nodes of a network of activity sequences consist of an activity and the time at which it 
occurred. In the simple example there are six distinct activity-time combinations and 
therefore six nodes in the graph. The two sequences ‘overlap’ during times 2 and 3 as the 
same activity occurred at the same times for both.  

The edges, or connections, of the graph represent the observed sequences of activities. 
Node 1_A is connected to 2_A because in Sequence 1 Activity A occurred at Time 1 and was 
followed by Activity A at Time 2. The sequence data is converted in this way into an 
‘adjacency list’ which is a list of edges. The adjacency list includes information about the 
‘weight’ of each edge. In this case, both Sequence 1 and Sequence 2 contain the same 
transition between time 2 and 3. This connection is therefore given a weight of 2. In this 
case, therefore, higher weights represent paths that are more common. Because the data 
represents sequences, there is a meaningful direction to the connections between nodes. 
The edges are directed, and these therefore produce a directed graph. 

The adjacency list can then be converted into a directed network graph and analysed using 
numerous publicly available network software. Here the NetworkX package [27] is used with 
Python. 

3.2. Data  
The data for this paper’s first case-study is the 2000-2001 UK Time Use Survey [13]. This 
consists of 20,981 diary entries of 24-hour diaries of people’s reported activities, at 10-
minute resolution. Each person who participated completed a weekend and a weekday 
diary entry. In total, there are 253 activities logged under ten broad categories, such as 
‘personal care’, or ‘mass media’. The weighted sample is intended to be nationally 
representative. Weightings are not used in this work as the focus is on the comparative 
difference between weekday and weekend activities. The UK Time Use Survey reports 
primary and secondary activities. Only the former are used here. 



The data was processed to ensure that an equal number of weekend and weekday diaries 
and that diaries were only included where a participant completed both. This resulted in a 
final set of 10,338 diaries for each set. 

The data for the second case-study was used previously to validate the output of a model 
that produces synthetic data of residential ‘active occupancy’ in buildings [8]. Active 
occupancy is defined as when an occupant is at home and not asleep. The model generates 
time-series active occupancy data at 10-minute resolution for a 24-hour period for a 
specified number of occupants in a specified number of residential buildings. The data is 
different from the individual activity diaries of the UK Time Use Survey in two ways (see 
Figure 2). First it is a more basic representative of activity, in that it only indicates whether 
occupants are at home and not asleep. This is represented by two digits, the first for the 
occupants’ presence in the building and the second for their activity. “10” means one 
occupant at home and asleep, while “11” means one occupant at home and awake (active). 
Second, it is aggregated across all members of a household. For example, for a three-person 
household, the UK Time Use Survey data would consist of three activity diaries. By contrast 
the model data consists of one (aggregated) active occupancy sequence.  

 
Figure 2 – example of aggregated active occupancy data and its conversion to a network graph. 

The UK Time Use Survey is converted into aggregated activity occupancy sequences and split 
into weekend data and weekday data. A random selection of 5000 sequences from each are 
chosen and compared to 5000 sequences of weekend and weekday synthetic data which 
has been generated to have the same distribution of occupants as in the real data. 
Aggregated sequence data is then converted into adjacency lists and then directed network 
graphs for analysis. 



3.3. Metrics 
This section describes the metrics used in this paper to analyse and compare the network 
graphs created using the data described above. The metrics are network size, density, 
centrality and homophily. These are common metrics in network analysis. Cornwell [12] 
describes these metrics and their relevance to activity sequence networks, and which we 
summarise below.  

Network size refers to the number of unique nodes in a network. For activity sequence 
networks the size describes the number of unique observations of activities and the time 
they occur at. A larger network is one where more activities were observed and gives an 
indication of the diversity of activities that occurred.  

Network density is the fraction of the total maximum number of possible connections that 
are actually observed in the network. There are 253 unique activities reported in the UK 
Time Use Survey, so the maximum possible number of connections is 253 x 253 x 143 = 
9,153,2871. Network density is calculated by counting the number of unique edges observed 
in the network and dividing it by this maximum. It is a measure of the diversity of sequences 
present in the network. A denser network is one where there are more alternative pathways 
between time periods by different people. 

Centrality refers to how dominant certain pathways or nodes are within a network. Central 
activity nodes are those that are highly connected to others. Central connections or edges 
are those that appear in many individual sequences i.e. those with high ‘weight’. There are 
multiple ways of calculating centrality, here we use edge weight as a measure of (path) 
centrality and compute the mean and standard deviation of the distribution of edge weights 
for each network. 

Homophily refers to the likelihood that a node is connected to another node of the same 
type. Here this refers to when an activity in one time period is connected to the same 
activity in an adjacent time period. It is a measure of the extent to which activities tend to 
endure in unbroken lasting sequences. A simple measure of homophily used here is the 
proportion of times an activity in one time period is followed by the same activity in the 
following time period. This is calculated for each sequence and the mean of the distribution 
is taken as the measure of the homophily of the network. 

 
1 Each time period can have a maximum of 253 activity nodes and each of these can be connected to a 
maximum of 253 activity nodes for the next time period. There are 144 10 minute time periods in a day and so 
there are 143 of such possible connections between activity nodes in consecutive time periods. 



4. Results 
4.1. Weekday activities versus weekend activities 

Table 1 shows the results of calculating the network metrics described previously for the UK 
Time Use Survey and compares these for weekdays and weekends. The comparison of 
network size shows that the weekend network is larger, meaning there is a greater diversity 
of activities performed on these days. The weekend network is also denser, meaning there 
are a greater number of alternative pathways between time periods by different people on 
weekends than on weekdays. When changes of activity do happen, there is a greater variety 
of change of activity on the weekend. In line with this, the centrality metric shows that the 
weekend network is less central than the weekday as it has smaller edge weights. This 
means that on weekdays more people tend to be following the same sequences of activities 
than on the weekend. The homophily measure is greater for the weekend network meaning 
that while weekends have greater diversity of activities (network size) and changes to 
activities (density) activities occurring on weekends tend to endure longer than those that 
occur on weekdays. 

Table 1 – a comparison of network analysis metrics for weekday and weekend UK Time Use Survey activity 
sequence data.  

 
Weekday Weekend 

Number of diaries 10338 10338 

Network size 20235 21220 

Network density (%) 1.13 1.20 

Centrality: mean edge weight (and std. dev.) 14.2 (217.5) 13.5 (209.9) 

Homophily (%) 84.00 84.09 

 

4.2. Real versus synthetic active occupancy data 
Table 2 shows the results of calculating the network metrics described previously for real 
and synthetic active occupancy networks broken down by weekday and weekend. Looking 
first at the real data, the metrics are different than those for the activity data shown in 
Table 1. This is to be expected as the data is different (see 3.2). Nonetheless the 
comparative differences between weekday and weekend networks are the same as for the 
activity data: the weekend network is larger, denser, less central, and has greater 
homophily. This indicates that while active occupancy is different from activity data it 
retains the comparative difference between weekdays and weekends from a sequence 
network perspective. 



Table 2 – network analysis metrics for real and synthetic active occupancy sequence networks for weekday 
and weekend. 

 
Weekday 
(real data) 

Weekend 
(real data) 

Weekday 
(synthetic 

data) 

Weekend 
(synthetic 

data) 

Number of sequences 5000 5000 5000 5000 

Network size 5553 5723 4554 4846 

Network density (%) 8.77 9.25 7.03 7.48 

Centrality: mean edge 
weight (and std. dev.) 

44.0 (172.4) 41.7 (166.4) 54.9 (192.3) 51.6 (184.8) 

Homophily (%) 91.41 91.76 91.47 91.84 

 

The synthetic data also captures the expected differences between weekday and weekend 
networks: the synthetic weekend network is larger, denser, less central, and has greater 
homophily than the synthetic weekday network.  

There are however considerable differences between the metrics for the real and synthetic 
networks. The synthetic networks are smaller, less dense, and more central than the real 
networks. The synthetic data does not capture the full diversity of nodes (active occupancy 
states) or connections (state transitions) and synthetic sequences are more likely to follow 
central pathways. By contrast, while the synthetic networks have greater homophily than 
their real counterparts, the difference is small and, arguably, this metric is reasonably well 
reproduced by the synthetic data.  

4.3. Test of statistical significance 
We test the statistical significance of these differences using a subsampling ‘bootstrap’ 
technique. Subsamples from each sample (weekday real data, weekend real data, weekday 
synthetic data, weekend synthetic data) are chosen each comprising 1000 sequences 
randomly selected without replacement. Network graphs are created using the subsamples 
and the network metrics are calculated. This is repeated 1000 times, resulting in 
distributions for each metric for each sample. Of these, the mean and 99% confidence 
interval are calculated and an unequal independent sample t-test is calculated to test for 
statistically significant difference between sample means (Table 3). For real data, the 
weekend sample is tested against weekday, and the synthetic samples are tested against 
their equivalent day real samples. 

Table 3 – results for 1000 sub-samples of 1000 sequences randomly selected without replacement. Results 
show mean values with 99% confidence interval provided in brackets. Asterisks indicate statistically significant 
difference (*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1) between mean values for weekday and 
weekend for real data, and between real and synthetic data for days of the same type. 

 
Weekday 
(real data) 

Weekend  
(real data) 

Weekday 
(synthetic data) 

Weekend 
(synthetic data) 



Network size 4045  
(4041, 4050) 

4226***  
(4222, 4231) 

3850***  
(3843, 3857) 

4059***  
(4051, 4067) 

Network 
density (%) 

4.65  
(4.65, 4.66) 

4.87***  
(4.87, 4.87) 

4.41*** (4.40, 
4.42) 

4.62***  
(4.61, 4.62) 

Centrality: 
mean edge 
weight  

16.6  
(16.6, 16.6) 

15.8***  
(15.8, 15.8) 

17.5***  
(17.5, 17.5) 

16.7***  
(16.7, 16.8) 

Homophily (%) 91.40  
(91.40, 91.41) 

91.76***  
(91.76, 91.76) 

91.47***  
(91.46, 91.48) 

91.83*** 
(91.82, 91.84) 

 

The results show that some metrics are affected by the number of sequences used to form 
the network graph. Network size, density and centrality (mean edge weight) are all smaller 
for graphs made from fewer sequences (in this case 1000 rather than 5000) and this makes 
sense as these are metrics that should scale with the number of sequences. By contrast, 
homophily values are replicated, which is again to be expected.  

The tests of statistical significance show that the relative differences between graphs that 
were indicated by the results in the previous section are reproduced here at the 99% 
confidence level. With the exception of homophily, the differences between synthetic and 
real data are comparable or greater than the differences between real weekday and 
weekend data. The results show that while homophily is similar between synthetic and real 
networks, the differences are in fact statistically significant.  

5. Discussion 
5.1. Activity sequences and their impact on energy demand 

The results show that the (real) weekday activity sequence network is smaller, less dense, 
more central and has lesser homophily than the (real) weekend network. Weekdays are 
when most people work and there is a greater level of synchronisation in people’s activity 
sequences. Most people do not work on weekends and can pursue other, more varied, 
activities and can afford to spend more time doing these. 

Energy demand profiles for weekdays and weekends are known to be significantly different 
from each other, and previous research on time use survey data has shown that this 
difference is reflected in the nature of activities performed on these days e.g. what activities 
occur, and their timing and synchronisation [2].  



We add insight to this literature by revealing differences between the two types of day in 
terms of the characteristics of the aggregated sequences of activities that underpin them. 
We do not claim these differences cause differences in energy demand between weekday 
and weekend. However if we accept the proposition that the sequencing of aggregated 
activities has an effect on the resulting patterns of aggregated energy demand, then we 
have demonstrated a technique and metrics that can quantify differences between groups 
of aggregated activity sequences, and we have shown that there are considerable 
differences in such metrics between types of day that are known to have considerable 
differences in energy demand (weekday vs weekend). Knowledge about the association 
between these metrics and energy demand profiles can be used in future research to create 
and test hypotheses about the relationship between activity sequences and energy demand 
e.g. are activity sequence networks that are less central more flexible to change (a question 
which is relevant to flexible demand studies)? 

5.2. Energy demand model validation 
The results show that the synthetic (aggregated active occupancy) data produced by an 
established modelling algorithm (first-order Markov chain) manages to reproduce the 
relative differences between weekdays and weekends but performs less well in absolute 
terms. With the exception of the homophily measure, the differences between real and 
synthetic data are comparable or greater than the differences between weekdays and 
weekends. From a sequence network analysis perspective, the algorithm fails to capture 
important characteristics that are present in the real data.  

The homophily is similar between synthetic data and real data. Homophily is a measure that 
is related to the duration of states, and the algorithm has previously been validated in terms 
of state durations [8], so these results confirm this characteristic of the data is relatively 
well-represented. The differences between homophily for synthetic and real data are 
nonetheless statistically significant, indicating that algorithm does not capture these 
characteristics perfectly.  

The algorithm produces synthetic active occupancy sequence networks that are smaller, less 
dense, and more uniform and synchronised than real active occupancy sequence networks. 
It has been recognised that the first-order Markov chain algorithm ‘under-represents the 
beginning and end of the range of state durations and over-represents the middle.’ [8] This is 
because the algorithm is based on transition probabilities that are calculated on means of 
the input data and that the distribution of states in the output data are determined by the 
random outcome of the Markov process. While this has been shown to have limited impact 
on state probabilities, and a relatively minor impact on state durations [8], our results show 
that it has a more considerable impact on the validity of the synthetic data when analysed 
from a sequence network analysis perspective. 



Whether this error in the validity of the synthetic data matters for the purposes of the class 
of model that uses this data as an input for simulating energy demand is unknown and out 
of scope of this paper. Our results do suggest however that developers of such models 
should be aware that there are additional limitations of this type of algorithm, and this in 
turn may encourage them to improve or change their methods if current approaches fail to 
capture the complexity of the real data. Finally, this work demonstrates the use of a new 
technique and metrics which model developers can use in future for the testing and 
validation of such models. 

6. Conclusion 
Residential energy demand can be viewed as a by-product of people performing activities. 
To inform efforts to reduce energy demand or make it more flexible, the study of activities 
and their relationship with energy demand is an active area of research. This work applies a 
network analysis technique to the study of data and a modelling technique that are widely 
used in the field of activity and energy demand research. 

Activity diaries taken from the UK Time Use Survey data are converted into activity 
sequence network graphs. The differences between weekday and weekend networks are 
compared using common network metrics: size, density, centrality and homophily. The 
results show that the weekday activity sequence network is smaller, less dense, more 
central and has lesser homophily than the weekend network. The results are intuitive. 
Weekdays are when most people work and there is a greater level of synchronisation in 
people’s activity sequences. Most people do not work on weekends and can pursue other, 
more varied, activities and can afford to spend more time doing these. 

We add insight to the literature on comparative analysis of aggregated activity data for 
periods of known difference in energy demand by revealing differences between two types 
of day with different demand profiles in terms of the characteristics of the aggregated 
sequences of activities that underpin them. 

The same network analysis technique is applied to test the validation of a model of 
residential active occupancy in buildings. The model uses a first-order Markov chain 
technique to generate synthetic data which has previously been validated in terms of state 
probabilities and state durations by comparing the synthetic data with real data. 

The results show that the synthetic data produced by the model manages to reproduce 
relative differences between the network metrics for weekdays and weekends but performs 
less well in absolute terms. With the exception of the homophily measure, the differences 
between real and synthetic data are statistically significant and comparable or greater than 
the differences observed between real weekday and weekend data. From a sequence 
network analysis perspective, the first-order Markov chain technique fails to capture 
important characteristics that are present in the real data. The analysis technique presented 
here can be used to improve the testing and validation of such models in future.  
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