
AGATHA: An Integrated 
Expert System to Test 
and Diagnose Complex 
Personal Computer Boards
Daryl Allred, Yossi Lichtenstein, Chris Preist, Mike Bennett, 
and Ajay Gupta

PA-RISC is Hewlett-Packard’s (HP) reduced instruction set computer
(RISC) architecture that is used in its high-performance computer sys-
tems (Mahon et al. 1986). Implementations of this architecture have
produced some of the most complex processor boards that HP makes
(Robinson et al. 1987; Gassman et al. 1987): They can contain as many
as 8 very large scale integrated (VLSI) chips—most of them custom,
from central processing units to bus controllers to floating-point pro-
cessors—several high-speed random-access memory arrays, one or
more high-speed buses with over 100 lines, and many other compo-
nents. In large part because of this complexity, the testing of PA-RISC

processor boards became a bottleneck, resulting in an undesirable
backlog of undiagnosed boards, growing at a rate of 10 percent each
month.

From: IAAI-91 Proceedings. Copyright © 1991, AAAI (www.aaai.org). All rights reserved. 



Testing PA-RISC Processor Boards: The Process
Part of a typical production flow for a PA-RISC processor board is dia-
grammed in figure 1, emphasizing the board test. After the board is
fabricated, it is run through an in-circuit, or bed of nails test. This pro-
cess consists of individually testing the components and connections
on the board and catches misloaded or missing parts and most of the
open circuits and shorts between circuits.

Next, the board is tested on a PRISM tester, a Hewlett-Packard propri-
etary test system that integrates scan-based testing with functional test-
ing (Schuchard and Weiss 1987; Weiss 1987). Functional testing involves
testing the behavior of various subsystems on the board, verifying that
they behave properly in a system environment. Scan-based testing takes
advantage of HP’s proprietary scan methodology, which is implement-
ed on its VLSI chips to poke around their internal registers and test in-
dividual blocks of the chips or buses between them. All these tests can
be run at various voltages and frequencies on the PRISM tester.

At any point in the production line or even in the field, a faulty
board can be returned for diagnosis and repair. Diagnosis is normally
done at a PRISM test station, where the technician has access to a battery
of diagnostic tests that can help in localizing the problem.

The Problems with Testing
Because of the board’s complexity, technicians found it difficult to di-
agnose failed boards. Consequently, manufacturing began to en-
counter several problems that became severe:

First, the PRISM test station became a bottleneck in the production pro-
cess. The difficulties in diagnosing failing boards, along with long test
times, began to interfere with the flow of boards on the production line.

Second, an unacceptable backlog of undiagnosed boards accumulat-
ed, growing at a rate of 10 percent each month. This backlog resulted
from the time and difficulty in diagnosing certain failure modes.

Third, the thorough diagnosis of boards was a time consuming and
tedious process. Thus, the technicians would take shortcuts to save
time. However, these shortcuts sometimes led to an incorrect part
being replaced, resulting in further repair cycles being needed.

Fourth, it was difficult to effectively train new technicians to diagnose
PRISM failures. The learning curve was large. Furthermore, new manufac-
turing sites were being opened worldwide, exacerbating the problem.

The difficulties of diagnosing faulty processor boards in manufactur-
ing were attributable to the following conditions:

First, because the processor board is complex, it has many subsys-

88 ALLRED, ET AL.



tems with different functions. PRISM addresses these various subsystems
with different tests, yielding a diversity of test output. A few tests try to
suggest a failing component or subsystem; others just report a failure
mode or code that only indirectly identifies a fault. Still others dump a
lot of internal processor-state information that can only be interpreted
in light of the processor architecture and the test strategy. The techni-
cian has to become familiar with the output of these diverse tests to ef-
fectively diagnose boards.

Second, it is difficult for the technician to remember lots of special-
case failure modes. Some of these failure modes are identified by
unique patterns in the data, often across several test results. Because
these special cases are less frequent than the normal failure modes,
they are easily forgotten.

Third, some diagnostics produce reams of data. It is difficult and
time consuming for the technician to deal with such diagnostics, and
important information can be overlooked in the large volume of data.

Fourth, some test results are low level—hex numbers and bit pat-
terns—that must manually be manipulated, indexed into tables, and
cross-referenced to map to a component. This work is tedious and
error prone.

Fifth, there is some uncertainty in some of the test results. For exam-
ple, a test might suggest replacing a certain chip, but in fact, this chip
is the actual fault only part of the time. Additionally, some faults exhib-
it intermittent behavior, such that a discriminating test might not al-
ways detect it.

AGATHA 89

Fab
In-Circuit
Test

PRISM
Functional 
Test

System
Integration

Field

Diagnosis

Repair

Figure 1. PA-RISC Board-Test Process.



Problem Assessment
The nature of the problem just described suggested to us that automa-
tion of the board diagnostic process by expert system technology would
be of great benefit. The expertise was available but in short supply, and
it was time consuming to pass the information to new individuals and
sites. The diagnostic process was understandable, although laborious
to carry out, because of the large amounts of data and possible failure
modes that needed to be addressed. The problem was significant, with
a large potential benefit to be gained from removing the bottleneck in
the production process.

However, two issues seemed to go beyond the standard solutions for
such problems:

First, the functional diversity of the board and, as a result, the diversi-
ty of the testing and diagnosing techniques demanded several different
inference strategies and knowledge bases. It appeared to be impractical
to expect a single expert system to diagnose all the different tests.

Second, the difficulties that technicians and operators suffered in in-
teracting with the tester suggested that the expert system should re-
place the current front end of PRISM and become not only a diagnostic
inference machine but also a high-level human interface.

The different tests were analyzed along several dimensions to start
designing and implementing a diagnostic expert system. These dimen-
sions were the following:

First was the quality of output. Some tests produce internal informa-
tion that can be used in diagnosis. Others output only pass-fail data.

Second was the amount of data, from a single line to hundreds of
lines of hexadecimal data.

Third was the degree of interaction necessary with the user. Some
tests require no interaction, whereas others require complex manual
tests to perform diagnosis.

Fourth was the sophistication and depth of the knowledge used by
the expert, from simple heuristic matching to a deep understanding of
causality within a subsystem.

System Design
To solve these design issues, we decided to implement a suite of mini
expert systems, called slices. Each slice diagnoses the results of a single
test. The inference process for each slice was tailored to how the test
measured according to the previous four dimensions. Where large
amounts of data and causal rules are available to a slice, it uses a gener-
ation-elimination process with many data abstraction predicates and no

90 ALLRED, ET AL.



user interaction. Other slices need to interact with the user to gather
more data before recommending further tests, so they use a table
lookup process.

All slices cooperate with each other and communicate through a di-
agnose manager, a further slice that is responsible for coordinating the
overall diagnostic process and interfacing with the tester. The entire
system, named AGATHA, is fully integrated with the PRISM tester; further-
more, with a user interface, it forms the new front end of the tester.

The Slice Architecture
The overall architecture of AGATHA (figure 2) consists of 9 different
slices, with 27 associated knowledge bases and databases. The 9 slices
need only 6 different inference engines between them; sharing of in-
ference machinery is allowed between slices with similar inference
strategies. The diagnose manager slice is responsible for passing con-
trol among the other slices, depending on previous test results and di-
agnostic hypotheses. It is also responsible for feeding results from the
slices to the user and information from the user to the relevant slice.

To show the different inference methods involved in the slices, we
focus on three slices: the diagnose manager, the cache bus, and the di-
agnostic interface port (DIP). We chose the latter two because they are
different from each other in terms of the dimensions described in
Problem Assessment. The cache bus slice illustrates a slice with large
amounts of data but little user interaction. It analyzes the data using
causal rules derived from the expert. The DIP slice, however, has sparse
data and uses heuristics and close interaction with the user in perform-
ing further tests to yield the final diagnosis.

The Diagnose Manager. The diagnose manager has overall responsibili-
ty for coordinating the test runs, invoking slices to interpret them, re-
porting suspected faulty components, and servicing requests to repair
them. It delegates these tasks to three separate submanagers: The slice
manager invokes the proper slice for a failed test; coordinates the dis-
play of suspects; and directs other requests by the slice, such as to run a
test, to the diagnose manager. The repair manager services requests to
perform repairs, usually after the slices finish analyzing the test data.
After repair, it reruns the original test to confirm the problem on the
board was fixed. The test manager services all requests for tests to be run
on the tester, providing a common interface to PRISM.

The most interesting of these submanagers is the test manager. For
each test request, it must perform the following five tasks: (1) select a
test point at which to run the test (the test point is the power supply volt-
age and clock frequency to be supplied to the board under test by the

AGATHA 91



PRISM tester), (2) run the test, (3) determine the failure mode of the
test (for example, is this test intermittent?), (4) retry the test if neces-
sary, and (5) recommend to the diagnose manager what to do next.

First, the test manager selects a test point at which to run the test. It
can select one of a set of predefined test points or an entirely new one
in an attempt to get a test to fail more reliably. The test manager then
runs the test at the computed test point, parses the test output, and
makes a summary decision about whether it passed or failed. No at-
tempt is made to otherwise interpret the test results at this point.

Next, based on the pass-fail results of the test, a new failure mode is
computed. The test manager supports the following failure modes:

First is hard: Failing tests fail at all test points with little or no varia-
tion in their output (that is, they don’t differ dramatically from test
point to test point).

Second is dependent-repeatable: Dependencies on voltage or frequency
were determined (that is, it only fails at certain voltages or frequen-
cies), and it’s repeatable.

Third is dependent-nonrepeatable: Dependencies on voltage or frequen-
cy were determined, but it’s not repeatable (it only fails sometimes at
these voltages or frequencies).

92 ALLRED, ET AL.

.

.

.

Main
Control

Diagnose
Manager

CB Slice

DIP Slice

C Interface

PRISM HP-UX X Windows User

Knowledge 
Base

Data Base

Figure 2. AGATHA Architecture.

.

.

.



Fourth is intermittent: It’s not failing hard, but no dependency can be
determined (for example, random failures).

The failure mode is a symbolic representation of uncertainty in the
test results, accounting for possible intermittent test failures. Heuristic
knowledge about tests, along with data about test results, is used to
infer the failure mode; for example:

IF this board is a field return AND
the board test passed

THEN the failure condition is intermittent
BECAUSE this board has failed before (in the field)

but won’t fail now

With a new failure mode computed, the test manager next deter-
mines whether the test should be rerun using heuristic rules. A test
might need to be run because of suspected uncertainties in the test re-
sults. An example of a heuristic follows:

IF the test passed AND
the failure mode is either dependent-nonrepeatable or intermittent

THEN the test should be rerun up to 3 times until it fails

Finally, the test manager is ready to recommend to the diagnose man-
ager what to do next. If the test failed, the associated slice is deter-
mined, and it is recommended for invocation. If the test passed, then
the previous slice is reinvoked with this new information; as a result, the
slice can recommend further tests. Thus, the test manager uses heuris-
tic knowledge embedded in procedural control to run tests and manage
uncertainty in their results, removing this burden from the slices.

The Cache Bus Slice. The cache bus subsystem on the assembled cir-
cuit board consists of several large VLSI chips that communicate
through a bus of about 150 lines. Each chip is connected to a subset of
these lines and is able to transmit onto the bus by driving values onto
the lines. These lines can, in turn, be read by the other chips.

Failures that can occur in this system include shorts between lines,
opens on lines, and chips failing to properly transmit or receive. A fault
can be intermittent; that is, sometimes a test will miss it, but at other
times, it will show up. Also, multiple faults can occur. For example, sev-
eral shorts can be caused by solder being splashed across the board.

The PRISM tester tests the cache bus by getting each chip to drive a se-
ries of binary values onto the bus and getting all chips to read each
value back. This process is done automatically and produces a large
amount of data. Discrepancies between the expected values and the
observed values in these data are used by the cache bus slice to diag-
nose the fault.

The cache bus slice is responsible for diagnosing failures in the

AGATHA 93



cache bus test. The design of this slice (figure 3) allows it to handle
both intermittent faults and the majority of multiple faults. Rather
than dealing with the bus system as a whole, it divides it into semi-inde-
pendent subsystems, namely, each line.

The data from the test is divided into batches, one associated with
each line that is exhibiting bad behavior. Each batch contains only
those data that were received incorrectly off its associated line. These
data are then used to deduce the fault on this particular line. Hence,
rather than assuming that the cache bus as a whole has only a single
fault, the system can treat each line independently and assume that
there is at most one fault for each line. The single fault assumption is
replaced with the single fault to a line assumption.

A template generates a list of hypotheses for each line. Where a mul-
tiple fault on a single line is to be considered, this information is ex-
plicitly entered in the template. Elimination rules are then used to re-

94 ALLRED, ET AL.

PRISM data

Observation Abstraction
and Batching

Hypothesis Generation

Hypothesis Elimination

Hypothesis Linking

Hypothesis Ordering

Ordered List of
Hypothesis

Repeat for
Each Batch

Figure 3. Cache Bus Slice Architecture.



move as many of these faults as possible. The knowledge in these rules
is derived from the causal rules of the expert by taking its contraposi-
tive—if a hypothesis makes a prediction, and this prediction is found to
be false, the hypothesis can be eliminated. Elimination rules take the
following form:

IF a ‘1’ is observed on the line when a ‘0’ was expected
ELIMINATE short to ground and short to another cache bus line
BECAUSE these faults can only pull a line to ‘0’

After elimination, each line has a small number of hypotheses associ-
ated with it. However, a line is only semi-independent. Many hypothe-
ses, such as “short between lines” and “bad VLSI,” manifest their behav-
ior on several lines. Hence, linking rules are used. These rules take
hypotheses associated with different lines and combine them, where
appropriate, into single hypotheses that explain the bad behavior of
several lines. They have the following form:

LINK: Short to cache bus on line 1
WITH: Short to cache bus on line 2
IF: Line 1 and line 2 are adjacent somewhere on the board
TO GIVE HYPOTHESIS: Short between line 1 and line 2

Finally, the remaining hypotheses are ordered, using heuristic knowl-
edge, according to their likelihood. This list is returned to the diag-
nose manager for presentation to the user.

Thus, the cache bus slice combines causal-based rules with heuristic
knowledge. The causal rules are used to deduce which hypotheses are
possible and which are impossible. The heuristic knowledge is then
used to determine the relative likelihood of the hypotheses that re-
main. Full details of the cache bus slice are available in Preist, Allred,
and Gupta (1991).

The Diagnostic Interface Port Slice. Before scan-based tests can be per-
formed on a VLSI chip, the DIP on the chip, which is the serial scan port,
must be tested to verify that the tester is able to properly communicate
with the chip and that other electronic subsystems are working reason-
ably well (that is, the power, clocking, and reset subsystems). The DIP test
tests the DIP port on all VLSI chips, and the DIP slice diagnoses any failures.

Unlike the cache bus slice, the DIP slice works with simple pass-fail
and test-point information from the DIP test and interacts with the user
to give the final diagnosis. Because of the sparsity of data, it is unable,
alone, to deal with intermittent and multiple faults, relying instead on
the user to explore these possibilities.

The DIP slice performs its diagnosis in two stages: First, it proposes
which subsystems it considers are the main and secondary suspects. Sec-
ond, it aids the user in performing further manual tests on a particular

AGATHA 95



subsystem to determine if it is indeed faulty and, if so, exactly where.
The first stage, generating suspects, uses a heuristic mapping from

the symptoms to the possible causes. The symptoms are the pass-fail
data of the DIP test. The possible causes, divided into main and sec-
ondary suspects, are the candidate subsystems and connections, at least
one (possibly more) of which is faulty. There are 20 such mapping
rules; the following is an example:

IF all chips failed the DIP-test
AND the System-Test passed
THEN suspect the MDA as a main suspect
AND the Reset, Clock, Power, and System-bus-connector 

as secondary suspects.

The main-secondary distinction is a simple form of probability han-
dling. More complex schemes were rejected because the expert
couldn’t substantiate a finer separation of fault likelihood.

The second stage of reasoning—guiding the user in manual tests—is
an iterative process. The user chooses to concentrate on a particular
subsystem and tries to find out which of its components (if any) are
faulty. The decision of which subsystem to focus on is left to the user.

Each subsystem is composed of a set of components and a list of tests
to test them, both automatic and manual. A table (figure 4) then rep-
resents the knowledge that tests would give about the components, as
follows: If a test fails, at least one of the components with an F entry in
the table will be faulty; if a test passes, all the components with a P
entry in the table will be functional (not faulty).

With this knowledge, together with an approximate cost of perform-
ing each test, the DIP slice presents the user with an ordered list of tests
that are worth carrying out. The user then chooses which test to per-
form, receives instructions on how to do it, performs the test, and en-
ters the result (pass or fail) into the system. This process continues
until the DIP slice is able to diagnose a component as faulty, or the user
chooses to explore another subsystem.

Hence, the user, working with AGATHA, is able to explore the differ-
ent candidates and diagnose exactly which of them is indeed failing.
The user is always in control but can rely on an ordered set of tests, ar-
ranged to isolate the fault as fast as possible.

Tester Integration
As previously indicated, to solve crucial testing issues, Agatha would
not only act as an automated diagnostic system but would also provide
a user interface and become the new front end to PRISM.

The challenge here was to integrate AGATHA into an old PRISM system

96 ALLRED, ET AL.



whose code had not been touched for a long time. We opted to layer
AGATHA on top of PRISM, as diagramed in figure 5. Communication is
through the HP-UX interprocess communication facilities. With this lay-
ering, the PRISM code remains virtually untouched except for minor
modifications of the stream files or scripts.

AGATHA 97

Components:

Tests:

F/P Table:

1 Tester
2 System-bus (signals PON/NPFW)
3 Reset-buffer
4 SIU
5 Cache-Bus (signals NRS0 and NRS1)
6 VLSI chips (other than SIU)

1 Probe NRS0/1 on Cache Bus
2 Scope NRS0/1 on Cache Bus
3 Ohm out NRS0/1 on Cache Bus
4 Probe PON/NPFW on System Bus
5 Scope PON/NPFW on System Bus
6 Ohm out PON/NPFW on System Bus
7 Probe and scope PON/NPFW on both sides of buffer
8 Inspect System Bus connector
9 Test rest path through tester subsystem

1 2 3 4 5 6 Tests
Tester Sysbus Buffer SIU Cache Bus VLSI to perform

F F F F F 1
F/P F/P 2

F/P 3
F F F 4
F/P F/P F/P 5

F/P 6
F/P 7

F/P 8
F/P 9

Figure 4. Diagnostic Interface Port Slice Knowledge for the Reset Subsystem.



The layering of AGATHA on top of PRISM had several advantages:
First, the PRISM code remained unmodified, minimizing its mainte-

nance requirements.
Second, a new, friendlier front end was now provided for PRISM.
Third, AGATHA now detects some failures that PRISM could not detect

before. For example, some messages are printed by system tests that
PRISM never recognized, possibly passing faulty boards. AGATHA now de-
tects these failures and reports them accordingly, improving the relia-
bility of the testing process.

Fourth, some tests that required a long, tedious sequence of com-
mands to execute are now automated by AGATHA. This process saves
time and is more thorough because the technician would otherwise shy
away from running the test to completion or even running it at all.

How AGATHA Is Used
In manufacturing, operators test the boards on the PRISM testers, sepa-
rately binning the good and bad boards. Later, technicians put the
failed boards back on the tester and diagnose them. This procedure was
modeled in AGATHA, supporting three levels of users. These users are, in
order of increasing capability, (1) the operator (the user can only test
boards and bin them), (2) the technician (the user can also diagnose
boards, including running manual tests, as well as access other utilities,
such as review or print results), (3) the maintainer (the user can also
edit the knowledge bases and databases and drop down into Prolog).

This approach made a simpler interface for the operator to learn,
greatly reducing the learning curve. At the same time, additional flexi-

98 ALLRED, ET AL.

User

Agatha

PRISM
Stream Files

Config Files

IPC

Figure 5. AGATHA-PRISM Interface.



bility was available for technicians, making their task simpler. This flexi-
bility proved to be a significant contribution of AGATHA—a major
benefit to our users.

With this model, AGATHA could run several additional diagnostic tests
while in operator mode, which would save time for the technician who
would otherwise have to run them later. Thus, a mode is provided,
called automatic test, where AGATHA automatically runs all tests it believes
necessary, provided no intervention is required from the user. This ap-
proach provides a significant time savings to the technician and effec-
tively reduces the skill level required for this task. This feature can be
turned off during times of heavy workload, where higher throughput is
needed from the operators.

One major decision was whether to provide a diagnostic system or a
diagnostic adviser. Specifically, would it dictate to the user what to re-
pair or only advise? During knowledge acquisition, we found that
which component to repair would vary depending on certain circum-
stances, including variations in the production process that could
cause one failure mode to start appearing more frequently. Hence,
AGATHA only advises the user on repairs, presenting an ordered list of
candidates to the technician, who chooses the most suitable. The tech-
nician would usually pick the first item from the list, unless s/he was
aware of extenuating circumstances that might suggest another.

Development
AGATHA was a joint development effort between the Knowledge-Based
Programming Department (KBPD) of HP Labs, Bristol, England, and the
Integrated Circuit Business Division (ICBD) in Fort Collins, Colorado.
The development process was broken down into the following phases:

The alpha phase produced a prototype version that was deployed
first in ICBD. It consisted of only three slices. The goal was to gain ex-
perience with it and get user feedback.

The beta phase reviewed this feedback, producing major refine-
ments to the slices and a new diagnose manager. More slices were
added. This phase produced the first production version of AGATHA,
which was installed at a user’s site.

The refinement phase continued to add slices and make refinements
to the knowledge. More users were added, leading to the manufactur-
ing release of AGATHA.

The maintenance phase followed, where minor enhancements and
refinements are ongoing.

AGATHA 99



Implementation Language
Prolog was chosen as the principal implementation language for
AGATHA. (In the figure 2 diagram, everything above the C interface box
was written in Prolog, including the knowledge bases and databases.)
The main reason for choosing a language, rather than an AI shell or
tool kit, was the need to be able to code different inference strategies
for the different slices. These strategies do not always fit into the classi-
cal forward-backward chaining regimes provided by shells and, thus,
would have been awkward and inelegant to code in this way. The disad-
vantage with this decision is that we lose the support that the shell pro-
vides, namely, a good user interface and ready-written inference strate-
gies. These elements had to be coded and maintained, imposing some
additional burden on the project, yet could completely be tailored to
the task, not restricted by what a shell or tool kit provides.

Verification
Prior to AGATHA, all tests run on PRISM were directly sent to the printer.
We had lots of printouts to use in the design of AGATHA but no ma-
chine-readable tests to verify the implementation. Therefore, scaffold-
ing was built to capture the test results on disk to be used for
verification. With this scaffolding, a large suite of verification cases was
gathered from the following sources: (1) poisoned boards (faults were
caused on an otherwise good board, including shorts, opens, and miss-
ing parts), (2) bad VLSI (bad VLSI—acquired from field returns, and so
on—were inserted into a socketed board), and (3) actual cases (later
on, the verification cases were augmented with actual cases that AGATHA

encountered while in use on the production line).
These verification cases helped to verify the knowledge and func-

tions of AGATHA and refine it while in use. They helped assure the deliv-
ery of a reliable, confident system to our users.

Maintainability
Maintainability was a foremost consideration throughout the design
and implementation of AGATHA for two reasons: First, it was decided
from the outset that the original designers of significant parts of the
system, HP Labs, would not be responsible for their maintenance. In-
stead, it would be the work of ICBD. Second, the system had to be able
to deal with new board types, which were structurally different from
the original board but were tested using the same tester.

This approach led to the clear separation in each slice of the knowl-
edge specific to a certain board type and the knowledge specific to the

100 ALLRED, ET AL.



tester. Hence, the tester rules had to deal with an abstract board and
call the structural knowledge base to gather information specific to a
certain board type.

Where the knowledge consisted of simple relations (such as which
faults resulted in the failure of which further tests), it was directly rep-
resented as relational tables. Rules then access these tables as neces-
sary. This approach reduces the number of rules needed and allows
easy and rapid maintenance.

This policy has paid off. The system is now entirely maintained by
ICBD. It has successfully updated the system to support three differ-
ent board families, with a fourth nearly completed. (Some families
have multiple board types distinguished by varying cache random-ac-
cess memory sizes, and so on, all of which AGATHA has to know
about.) This update process was partly automated. C routines access
design data files that are used by the PRISM tester and extract struc-
tural information that is relevant to AGATHA, constructing files of Pro-
log clauses. The update process takes only a short amount of time to
deal with a new board family.

Other than supporting new tests and board families, most of the
maintenance since the production release of AGATHA has been in
adding new features and enhancements rather than refining the slices
or their knowledge. In addition, most of these enhancements were out-
side the slice architecture proper.

Deployment
AGATHA has been in routine use since January 1990. It was successfully
deployed at 3 sites within HP—2 are manufacturing facilities; the third
is a field repair center. One manufacturing site, for example, uses it 24
hours a day: Operators test boards on the production line, often letting
AGATHA diagnose them to the extent that manual testing isn’t required.
Technicians then examine failure reports and let AGATHA work on
boards that might need further diagnosis.

The field repair center receives failed boards from the field and diag-
noses them on AGATHA. Although the center doesn’t see the volume of
boards that the production sites do, AGATHA is perhaps even more critical
to its operation for this reason: It preserves diagnosis and repair knowl-
edge that it might otherwise lose with low volumes. Furthermore, it has a
great need for some of the features of AGATHA that support uncertainty.
Because a board returned from the field is suspected to be faulty, one
can’t simply return it if the board test passes when run just once; it must
be thoroughly exercised and checked out. AGATHA addresses such inter-
mittences by running a test many times to try to get it to fail.

AGATHA 101



Results
AGATHA has been favorably received by its users and has proved to have
many benefits for them. It has addressed many of the production prob-
lems that were being experienced prior to AGATHA:

First, the PRISM test station is much less a bottleneck in production.
Although the long, raw test times (which AGATHA has no control over)
are at times cause for congestion in production, the savings in diagnos-
tic time have greatly alleviated this problem.

Second, AGATHA, in combination with other efforts on the produc-
tion line, has helped to virtually eliminate the backlog of undiagnosed
boards.

Third, AGATHA saves time by automatically running tests, especially
when run by an operator. AGATHA also automates some tests that used
to be painstaking, manual tests, saving additional time. Time savings is
one of the principal benefits hailed by all AGATHA users.

Fourth, costs are saved when AGATHA automatically runs tests. By ef-
fectively lowering the skill level required, the test runs can be done by
operators rather than technicians.

Fifth, AGATHA makes a more thorough diagnosis, eliminating many
common human errors. It also improves test reliability by detecting
failures not formerly caught by PRISM.

Sixth, AGATHA has provided an easier-to use-interface to the PRISM

tester. In a recent survey, users gave a top score to AGATHA’s friendly
user interface. Coupled with automation, this interface has significant-
ly reduced technician and operator training time and greatly improved
user satisfaction.

It’s difficult to quantify the full impact of AGATHA within HP, but we
list some benefits here:

First, during AGATHA’s development, test time was reduced by 80 per-
cent on one board, yielding tremendous cost savings. Although there
were several factors at work here, AGATHA was a principal contributor in
this effort.

Second, the field repair center indicates AGATHA reduced scrap rate,
average repair time, training costs, and material costs. These savings
add up over the life of a product and could especially be valuable to-
ward the end of its life when expert knowledge on an aging board
could otherwise be scarce.

Third, one production site related a one-fourth reduction in techni-
cian training time, with the ramp-up time for a new technician dramat-
ically improved. It also reported a 40-percent reduction in diagnostic
time and a significant increase in user satisfaction with the friendlier
interface.

102 ALLRED, ET AL.



In addition to the gratifying manufacturing results, the joint develop-
ment effort between HP Labs and ICBD proved to be of mutual benefit:
ICBD gained expertise in the design, development, and deployment of
expert system technology. HP Labs gained knowledge of realistic prob-
lems in electronic circuit diagnosis. This knowledge has been used to
drive a longer-term research program in model-based diagnosis.

Acknowledgments
We want to recognize the valuable contribution of many others: Rick
Butler was the domain expert who consulted on the project. Caroline
Knight of HP Labs invested a lot of time in training ICBD in knowl-
edge-acquisition techniques. Jason Brown was a summer student who
helped code part of AGATHA. In addition, we want to express our grati-
tude to the many operators and technicians who gave invaluable time
and assistance on, and feedback to, the AGATHA project.

References

Gassman, G. R.; Schrempp, M. W.; Goundan, A.; Chin, R.; Odinea, R.
D.; and Jones, M. 1987. VLSI-Based High-Performance HP Precision
Architecture Computers. HP Journal 38(9): 38–48.

Mahon, M. J.; Lee, R. B.; Miller, T. C.; Huck, J. C.; and Bryg, W. R.
1986. Hewlett-Packard Precision Architecture: The Processor. HP Jour-
nal 37(8): 4–21.

Preist, C.; Allred, D.; and Gupta, A. 1991. An Expert System to Perform
Functional Diagnosis of a Bus Subsystem, Technical Paper HPL-91-16,
HP Labs, Bristol, England.

Robinson, C. S.; Johnson, L.; Horning, R. J.; Mason, R. W.; Ludwig, M.
A.; Felsenthal, H. R.; Meyer, T. O.; and Spencer, T. V. 1987. A Midrange
VLSI Hewlett-Packard Precision Architecture Computer. HP Journal
38(9): 26–34.

Schuchard, R. A., and Weiss, D. 1987. Scan Path Testing of a Multichip
Computer. In 1987 IEEE International Solid State Circuits Conference Digest,
230–231. Gables, Fla.: Lewis Winner.

Weiss, D. 1987. VLSI Test Methodology. HP Journal 38(9): 24–25

AGATHA 103


