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SUMMARY 

Prospective observational studies support a role of long-chain n-3 PUFA in the primary 

prevention of atherosclerotic cardiovascular disease, however, RCTs have often reported 

neutral findings. There has been also a long history of debate about potential harmful effects 

of high n-6 PUFA intake, although this notion is not supported by prospective observational 

studies or RCTs. Health effects of dietary PUFA may be influenced by delta-5 and delta-6 

desaturases, key enzymes in the metabolism of PUFA. The activity of these enzymes and its 

modulation by variants in encoding genes (FADS1-2-3 gene cluster) are linked to several 

cardiometabolic traits. This review will furthermore consider non-genetic determinants of 

desaturase activity, which have the potential to modify tissue PUFA availability. Finally, it 

will discuss the consequences of altered desaturase activity in the context of PUFA intake, i.e. 

gene-diet interactions, and their clinical and public health implications. 
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INTRODUCTION 

Fatty acids present in different lipid molecules are the major components of dietary fats. The 

physical and chemical characteristics and the nutritional and health effects of dietary fatty 

acids are influenced greatly by the kinds and proportions of the component fatty acids.1 The 

predominant fatty acids are either saturated fatty acids (SFA) or contain carbon-carbon double 

bonds: monounsaturated fatty acids (MUFA) with one and polyunsaturated fatty acids 

(PUFA) with two or more double bounds. While foods rich in SFA (e.g. fatty meat and dairy 

products, coconut and palm oil, confectionary and cakes) and MUFA (some vegetable oils, 

meats) contribute to the intake of these fatty acids, they can also be produced endogenously. 

In contrast, the PUFA linoleic acid (LA) and α-linolenic acid (ALA) are essential fatty acids 

and mainly derived from vegetable oils, nuts and seeds.2 Humans have a limited capacity to 

synthesize eicosapentaenoic acid (EPA), and to a lesser extent docosahexaenoic acid (DHA), 

from ALA.3 While EPA and DHA as long chain (LC) n-3 PUFA are therefore not strictly 

essential, they are consumed together as fish or fish oil capsules (either over the counter 

(OTC) dietary supplements or pharmaceutical grade preparations). Microalgae is a dietary 

source for vegetarians. Although the intake of PUFA has been a cornerstone of dietary 

recommendations, controversy remains about the optimal absolute and relative intakes of the 

main dietary n-3 and n-6 PUFA.2,3 

 

Prospective observational studies support the role of LC n-3 PUFA, EPA and DHA in the 

primary prevention of atherosclerotic cardiovascular disease (ASCVD), with the underlying 

mechanisms of action widely described.4,5 However, recent RCTs have often reported neutral 

findings,6,7 which has called into question the use of fish oil supplementation as a strategy to 

reduce the risk of heart disease or stroke.8 There has been also a long history of debate about 

potential harmful effects of high n-6 PUFA intake, specifically if their intakes far exceed 

those of n-3 PUFA.9 In light of the fact that n-6 PUFA account for the majority of PUFA in 

normal diets,10 it is important to shed light on the complex epidemiology and metabolism 

related to PUFA intake and to better understand the clinical and public health implications of 

both n-3 and n-6 PUFA intake for cardiometabolic diseases such as type 2 diabetes (T2DM) 

and ASCVD. 

 

This review will start with a summary of evidence relating intake of n-3 and n-6 PUFA to 

cardiometabolic diseases. It will then address how PUFA metabolism is linked to delta-5 and 

delta-6 desaturases and the evidence linking enzymes activities and their modulation by 



4 
 

genetic determinants, specifically genetic variants in the FADS1-2-3 gene cluster, to several 

cardiometabolic traits. Finally, it will discuss the consequences of altered desaturase activity 

in the context of PUFA intake. i.e. gene-diet interactions, and their clinical and public health 

implications. 

 

N-3 PUFA intake and its relation to ASCVD and T2DM 

Prospective cohort studies consistently support the role of EPA and DHA in the primary 

prevention of ASCVD, with underlying mechanisms including an impact on plasma 

triglycerides and lipoprotein size, inflammation and plaque stability, vascular function, and 

arrhythmias.4,5,11 Existing RCTs on clinical endpoints are largely secondary prevention (e.g. 

GISSI 12 and Alpha Omega 13) or mixed primary and secondary prevention trials (e.g. 

JELIS,14 REDUCE-IT 15 and the Risk and Prevention Study 16) (Table 1). Only VITAL was a 

primary prevention study recruiting healthy men and women with no history of CVD.7 Earlier 

secondary prevention trials reported a 20-30% reduction in cardiovascular deaths.12,14,17 

Similarly, advice to consume fatty fish lowered total mortality.18 However, subsequent RCTs 

have often observed no effect on ASCVD incidence or deaths.6,7,13,15,16,19 These have been 

summarized by several systematic reviews 17,20 which have questioned a role of 

supplementation with LC n-3 PUFA in secondary ASCVD prevention. This notion seems 

generally supported by recent RCTs. For instance, no benefit of EPA+DHA supplementation 

to prevent ASCVD was observed among patients with T2DM or prediabetes in the ASCEND 

study 6 or healthy individuals in the VITAL study.7 However, REDUCE‐ IT observed 

significantly lower risk of ASCVD and borderline significant reduction in mortality with high 

doses of EPA (4g per day) among patients with established ASCVD or risk factors (including 

high triglycerides).15 Up to 4g EPA/DHA is approved as an alternative to fibrates as a 

triglyceride reducing agent.21 The effect-size in REDUCE-IT (hazard ratio 0.75) is suggestive 

of benefits beyond triglyceride lowering.4,5 Due to the chemical form used (i.e. icosapent 

ethyl, a highly purified and stable EPA ethyl ester) these results cannot be directly 

extrapolated to OTC formulations. These RCTs have been included in two very recent meta-

analysis. One analysis, including 13 RCTs, concluded that LC n‐ 3 PUFA supplementation 

lowers risk for MI, coronary heart disease (CHD) death, total CHD, ASCVD death, and total 

ASCVD, with risk reductions linearly related to dose.22 According to the latest Cochrane 

meta-analysis, LC n-3 PUFA supplementation reduces CHD death and CHD events by 

approximately 10%, although no significant effect is evident for total ASCVD events or for 

stroke.23 
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Direct comparison between observational and trial evidence has several obstacles. 

Observational studies are generally prone to confounding, thus other factors associated with 

LC n-3 PUFA intake might explain observed benefits. Also, observational studies usually 

capture dietary sources of LC n-3 PUFA (fish intake) where the LC n-3 PUFA are 

predominantly in the triglyceride form with some phospholipid EPA and DHA also present, 

rather than supplementation with isolated PUFA. Additionally, when comparing the outcomes 

from individual RCTs it is important to consider the chemical form and dose of n-3 PUFAs, 

whether the formulation contains both EPA and DHA and the ratio, and whether the 

supplement used was OTC or a prescription grade preparation. Supplemental (OTC) or 

prescription EPA and DHA is available as a free fatty acid, triglyceride, phospholipid or ethyl 

ester forms. The bioavailability of fatty acids from ethyl esters is known to be substantially 

lower than from the other forms, particularly when consumed fasting or in a low-fat meal.24 

Although this is unlikely to have been an issue in REDUCE-IT given the high dose of EPA 

administered,15 in ORIGIN,19 the Risk and Prevention Study,16 ASCEND,6 and VITAL 7 

reduced EPA+DHA bioavailability may have contributed to the lack of efficacy observed 

(Table 1). Furthermore, more aggressive use of cardiovascular medications over the last two 

decades may lower the therapeutic opportunity since EPA and DHA having overlapping 

targets with the prescribed drugs. For example, both fibrates and EPA/DHA mediate 

triglyceride lowering via PPAR-alpha dependent mechanisms.25 However, subgroup analyses 

in ORIGIN, VITAL or REDUCE-IT and the positive impact of EPA intervention in statin 

users in the JELIS trial do not support a general stronger benefit of LC n-3 PUFA 

supplementation among non-users of cardiovascular medication.7,14,15,19 Still, recent RCTs 

may have the limitation of a high habitual EPA and DHA intake in the trial participants at 

baseline.17 For example, in VITAL, subgroup analysis indicated an effect of EPA+DHA on 

major cardiovascular events (HR 0·81) and myocardial infarction (MI) incidence (HR 0·64) 

in those with lower fish intake at baseline (<1·5 servings per week) but not in those with 

higher intakes (≥1·5 servings per week).7 While such a difference was not observed in the 

ORIGIN trial,19 a systematic evaluation of effect modification by baseline n-3 PUFA status 

across existing trials is so far lacking, as is an RCT which specifically tests the effect of 

supplementation among individuals with low habitual n-3 PUFA intake.  

 

Also noteworthy, individual RCTs point towards beneficial effects on specific cardiovascular 

endpoints as secondary outcome measures. For instance, EPA+DHA intervention reduced the 
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risk of vascular deaths among patients with prevalent CHD according to a meta-analysis of 

RCTs 26 and in patients with diabetes in the ASCEND study.6 Supplementation with LC n-3 

PUFA reduced risk of MI in VITAL.7 Furthermore, there is no direct comparison of EPA vs 

DHA in primary or secondary prevention trials. Such evidence is needed to inform policy, if 

individual EPA and DHA recommendations are to be developed. Although DHA has emerged 

as being more effective than EPA in reducing plasma triglycerides and improving vascular 

function,27 high dose EPA reduced incident ASCVD in the REDUCE-IT trial.15 The 

STRENGTH trial,28 with a study population comparable to REDUCE-IT,15 has recently been 

stopped due to its low likelihood of demonstrating a benefit.29 Relative to REDUCE-IT (4g 

EPA as ethyl ester), STRENGTH supplemented with slightly lower dose of and different form 

of LC n-3 PUFA (2·2g EPA and 0·8g DHA as free fatty acids). These recent findings suggest 

that the formulation of the LC n-3 PUFA tested may be very important.  

 

Similar to LC n-3 PUFA, prospective cohorts indicate an approximate 10-15% reduced risk of 

cardiovascular events associated with higher ALA intake.30,31 These observational data are 

supported by RCTs: a recent Cochrane review concluded that ‘increased ALA may slightly 

reduce risk of cardiovascular events and probably reduces risk of CHD mortality and 

arrhythmia’ with modest effect sizes.32 However, large-scale long-term trials on ALA 

supplementation are rather scarce (Table 1). In the only trial meeting this criteria - the Alpha 

Omega trial - providing an ALA-rich margarine to persons with previous MI did not 

significantly reduce major ASCVD events compared to a placebo margarine, although the 

effect size points towards benefits.13 Any impact of ALA might be due to both an indirect 

effect on EPA status and a direct effect on other cardiometabolic pathways or risk factors. 

 

Furthermore, there is little indication that EPA and DHA improve indices of glycaemia and 

insulin sensitivity or reduce incident T2DM risk.33 In a pooled analyses of cohort studies, sea 

food and fish derived LC n-3 PUFA had no clear association with T2DM risk.34 That LC n-3 

PUFA might be less important with regard to diabetes compared to ASCVD risk is supported 

by Mendelian randomization studies where triglyceride lowering reduced ASCVD risk but not 

diabetes risk.35,36 In contrast, ALA was modestly inversely linked to diabetes risk.34 An 

inverse association between ALA plasma levels and T2DM risk was also seen in the EPIC-

InterAct study.37 However, evidence from RCTs on ALA supplementation with T2DM as 

endpoint is largely missing so far.33 

 



7 
 

N-6 PUFA intake and its relation to ASCVD and T2DM 

Several older trials on the effect of cholesterol-lowering PUFA-rich diets replacing SFA from 

dairy and meat on risk of ASCVD and death have been conducted (Table 1).38-44 In these 

trials, mostly LA as n-6 PUFA was used or a mixture of n-6 (LA) and n-3 (ALA) from 

vegetable oils. PUFA was associated with a moderate reduction of total CHD and fatal deaths 

relative to SFA in one meta-analyses.45 The risk reduction (10% for each 5% energy from 

SFA substituted with PUFA) accorded well with the lowering of serum cholesterol and 

cholesterol/HDL ratio in these trials. Similarly, a recent Cochrane review supports a risk 

reduction for MI if n-6 PUFA replace SFA,46 although no clear benefit was observed for 

overall ASCVD. No evidence was found for dose-response, but there was a suggestion of 

greater ASCVD protection in participants with lower baseline n-6 PUFA intake across 

outcomes. The trial findings are fairly consistent with a pooled analysis of 11 prospective 

cohort studies which specifically evaluated a substitution of PUFA (mostly LA) for SFA 47 

and a meta-analysis of 13 cohort studies on LA versus SFA.48 Notably, in prospective cohort 

studies with n-6 PUFA biomarkers (circulating or tissue LA levels), higher LA levels were 

associated with lower risk of all ASCVD outcomes, including ASCVD mortality, even after 

taking n-3 PUFA levels into account.49 According to a recent meta-analysis of cohort studies, 

higher LA intake and tissue levels are related not only to lower ASCVD mortality, but also 

total and cancer mortality.50 However, secondary analyses of older trials suggest that high 

intake of LA in combination with ALA is more favorable than high n-6 PUFA alone, which 

may have unwanted effects at higher doses.51-53 These older trials are, however, difficult to 

interpret because of the short duration of some trials, small numbers of events, high drop-out 

rates and confounding by trans-fats that were commonly abundant in PUFA-rich margarines 

used (Table 1). Still, meta-analyses of trials show somewhat inconsistent results for n-6 

PUFA, depending on study inclusions.45,46,53-56 Taken together, evidence from RCTs and 

prospective cohort studies suggests that plant oils rich in LA seem to be moderately protective 

against CHD, especially MI. 

 

Regarding n-6 PUFA intake and T2DM risk, there are no available data from trials designed 

to investigate diabetes incidence as an outcome.33 However, when taking into account short-

term feeding trials and prospective cohort studies using n-6 biomarkers or food 

questionnaires, a previous review suggests inverse associations between n-6 PUFA (LA in 

particular) and incident T2DM.57 This has been confirmed in several more recent cohort 

studies, including the pan-European EPIC-InterAct study,37 and the pooled meta-analyses 
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from the FORCE consortium.58 In the latter which measured LA and arachidonic acid (AA) in 

circulating lipids in prospective cohorts, LA, but not AA, was inversely and linearly 

associated with incident T2DM, and this robust association was not modified by n-3 PUFA 

status.58 In support, a quite large number of small and mostly shorter-term randomized 

feeding trials indicate that PUFA, when isocalorically compared with SFA or carbohydrates, 

improve markers of insulin sensitivity and glycemic control.59 Still, more definitive RCTs of 

longer duration are lacking.33 

 

Role of n-6/n-3 ratio  

Concern that consuming a relatively high proportion of dietary n-6 fats compared with n-3 

fats has detrimental effects, particularly on inflammatory status, have generally not been 

supported by study evidence. Indeed, several feeding trials showed that increasing n-6 PUFA 

(e.g. LA) while keeping n-3 intake unchanged, thus resulting in several-fold higher n-6/n-3 

ratio, has no adverse effects on either multiple markers of inflammation or oxidative stress,60 

not even under energy excess conditions at very high LA intake.61 In line with these findings, 

a recent meta-analysis did not find evidence to suggest an important role of the n-6/n-3 ratio 

on glucose metabolism.33 While longer term RCTs on n-6 PUFA are insufficient to conclude 

on the relevance of the n:6/n-3 ratio,46 prospective cohort studies do not indicate any adverse 

role of a high n-6/n-3 ratio.62 The reasons for the lack of apparent importance of the n-6/n-3 

ratio to predict cardiometabolic disease or inflammation probably include the fact that this 

ratio is partly based on a number of incorrect and simplified assumptions,63 e.g. n-6 PUFA 

overall is proinflammatory, n-6 PUFA and LA in particular have adverse effects on CVD risk 

(while in fact both n-6 and n-3 PUFA are related to lower risk), and lowering intake of LA 

will lower AA levels (in contrast, supplementing LA does not increase AA plasma or adipose 

tissue levels 61,64). In addition, a clear problem arises when combining different n-6 (and n-3) 

PUFA despite distinct inflammatory and cardiovascular effects of individual PUFA as well as 

their different metabolites.63 It would be important to standardize the calculation of this ratio, 

as different studies have used somewhat different ratios (e.g. considering all n-3 PUFA or 

EPA and DHA only). Also, this ratio calculated from dietary intake data cannot be compared 

with a ratio calculated from plasma or tissue PUFA levels. 

 

PUFA metabolism 

PUFA fulfill various functions within the human body, besides being a source of energy. 

They are central structural components of the phospholipid layer of cell membranes, 
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influencing membrane fluidity and selective permeability. Furthermore, PUFA can directly 

influence several metabolic pathways, being ligands for transcription factors like sterol 

regulatory element binding protein 1 (SREBP-1), nuclear factor κB (NF-κB), hepatocyte 

nuclear factor 4α (HNF-4α), and peroxisome proliferator-activated receptors (PPARs), which 

play a central role in lipid metabolism. PUFA are furthermore substrates for the formation of 

various lipid-related metabolites, e.g. eicosenoids, leukotrienes, prostaglandins, 

thromboxanes, lipoxins, endocannabinoids, or resolvins, which themselves are highly 

bioactive. In this context, the sphingolipids ceramides are an additional interesting group of 

lipid molecules. Prospective studies have linked ceramides to cardiometabolic risk 65,66 and 

experimental data suggest causal links to insulin resistance, and potentially also ASCVD.67 

Interestingly, n-6 PUFA (LA) decrease several plasma ceramide species as compared with 

SFA.61  

 

Importantly, although the essential precursor PUFA LA and ALA are the main PUFA sources 

in the diet, other PUFA can be produced endogenously, although the bioconversion efficiency 

to DHA is limited.3 The bioconversion of LA and ALA to the longer chain PUFA (γ-linolenic 

acid [GLA], dihomo-γ-linolenic acid [DGLA], AA, EPA, DHA) is catalyzed by elongases and 

desaturases – with the delta-6 and delta-5-desaturases being the key enzymes in this process 

(Figure 1). Specifically, delta-6-desaturase is considered the rate limiting step of conversion 

of LA and ALA to downstream metabolites. Noteworthy also, both n-6 and n-3 PUFA 

compete for the same enzymes in this processes, although a preferential affinity to n-3 PUFA 

exists.68 PUFA are the main dietary component that regulate the activity of these desaturases. 

In a rodent model, both desaturases seem to be suppressed by dietary PUFA.69 A stable 

isotope study showed that increased LC n-3 PUFA intakes inhibits ALA bioconversion.3 

 

PUFA often exert their physiological effects through a host of oxidative bioactive products 

(Figure 1), collectively named ‘oxylipins‘, produced by the action of cycloxygenases 

(encoded by COXs), lipoxygenases (encoded by ALOXs), and some members of CYP450 

superfamily (CYP1-4 families). Oxylipins have long been known to have a pro-inflammatory 

effect as thromboxanes (TXs), prostaglandins (PGs) and leukotrienes (LTs). TXs, 2 series-

PGs and the 4 series-LTs are AA-derived while EPA metabolism produces 3 series-PGs and 5 

series-LTs. EPA products are generally less pro-inflammatory than their AA counterparts.70 

However, the inflammatory impact of AA or EPA derivates is nuanced both producing pro- or 
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anti-inflammatory products. For example, AA-derived PGI2 is traditionally known to inhibit 

platelet aggregation.71 

 

In addition to competing with AA, recent studies show that EPA and DHA play a direct anti-

inflammatory and resolving role through the production of signalling molecules, named 

Specialised Pro-resolving Mediators (SPM).72 The SPM Resolvins, Protectins and Maresins, 

together with AA-produced lipoxins, contribute to the active process of resolution of 

inflammation by inhibiting the influx of neutrophils into the site of inflammation and 

enhancing phagocytosis. Evidence to date is largely derived from rodent studies, with 

confirmation of the role of SPMs in human homeostasis and pathophysiology needed. 

 

Prostaglandins and thromboxanes are produced mainly by the action of COX enzymes on AA 

and EPA. COX-1 is involved in basic physiological functions while COX-2 products are 

mainly produced in response to inflammation and in malignant conditions such as colo-rectal 

cancer.73 COX-2 oxylipin products and COX inhibitors are important modulators of elements 

of the cardiometabolic phenotype, including blood pressure, platelet aggregation and 

atherogenesis.74 In this context, it would be interesting to better understand how the 

differences between nonsteroidal anti-inflammatory drugs (including aspirin), n-3 PUFA, and 

n-6 PUFA on prostaglandin metabolism may relate to their different effects on ASCVD risk 

(e.g. some adverse effects of selective COX-2 inhibitors vs. aspirin).75  

 

Lipoxygenases (encoded by ALOX5, ALOX5AP, ALOX12 and ALOX15) modulate the 

production of the pro-inflammatory LTs and the anti-inflammatory SPMs.76 In obese patients 

with T2DM, increased ALOX5, ALOX12 and ALOX15 expression in adipose tissue has been 

reported compared to obese-nondiabetic patients.77 The ALOX5 enzymatic pathway is 

activated in cardiovascular diseases and suggests an important role of LTs in atherosclerosis 

and in its ischemic complications such as MI and stroke.78 CYP1-4 families produce 

epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic (HETE) from AA, EPA and 

DHA, with EETs being further catalyzed to their respective regioisomers (DiHETE) through 

epoxide hydrolase (sEH). Pre-clinical and clinical studies show the potential role of these 

metabolites as vasodilators and subsequent regulators of blood pressure, with some 

preliminary evidence of their anti-arrhythmic and cardio-protective functions.79   

 

Relationship of desaturase activity to cardiometabolic health 
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The relevance of endogenous formation of more unsaturated FAs from dietary precursor FAs 

(LA and ALA) for cardiometabolic diseases has been investigated across different prospective 

cohorts. Because direct measurement of liver desaturase activity is not possible most reports 

have relied on estimates of activities based on product-to-precursor ratios of FAs measured in 

blood fractions. Several studies observed that a higher estimated delta-6 activity (ratio of 

GLA/LA) is related to an increased T2DM risk, while the contrary was the case for estimated 

delta-5 activity (AA/DGLA).37,58,80 A similar, although less clear picture emerges for 

ASCVD, where a pooled analysis of 30 cohort studies revealed inverse associations for both 

LA and AA. However, studies on ASCVD considering intermediate n-6 PUFA or specific FA 

ratios to reflect their bioconversion are scarce. DGLA was related to higher CHD risk,81 but 

less convincing stroke risk in the ARIC study,82 but GLA and/or DGLA were not clearly 

associated with ASCVD risk in other studies.83-85 Still, these studies suggest overall that 

higher delta-6 activity but lower delta-5 activity, which would both lead to the accumulation 

of intermediate FAs (GLA and DGLA) increase cardiometabolic risk, not a higher 

accumulation of AA.  

 

Genetic determinants of PUFA metabolism 

Genetic factors have been clearly linked to the fatty acid composition of biosamples, 

specifically blood fractions. Variations in FADS1 and FADS2, the genes encoding the delta-5-

and delta-6-desaturases, have been related to PUFA blood levels by candidate gene 

approaches.86 Furthermore, GWAS have identified this region to have the strongest genetic 

link to PUFA blood levels. For example, variant alleles at single nucleotide polymorphisms 

(SNPs) in the FADS1-2-3 gene cluster were associated with higher levels of ALA and lower 

levels of EPA and DPA in the CHARGE consortium.87 The strongest associated SNPs 

explained ~4%, 2% and 9% of the variance of ALA, EPA and DPA, respectively. Similarly, 

variants in the FADS1-2-3 gene cluster were strongly associated with n-6 PUFA levels (LA, 

GLA, DGLA, AA) in CHARGE, with the top SNP (rs174547) explaining ~10% variation in 

DGLA and >20% in AA.88 Similarly, GWAS considering FA ratios as estimates of delta-5- or 

delta-6 desaturase have identified the FADS1-2-3 gene cluster as prominent locus.89,90  

 

In addition to their relationship to tissue FA composition, variants in the FADS1-2-3 gene 

cluster are among the strongest genetic variants linked to TG levels 91,92 and are associated 

with other lipids, e.g. cholesterol.92 Furthermore, GWAS support that variants in this gene 

cluster are among the strongest signals related to specific lipids, particularly phospholipids 
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(phosphatidylcholines and phosphatidyletholamines).93,94 Several of these lipids were related 

to risk of diabetes and ASCVD in prospective studies.95,96  

 

Variants in the FADS1-2-3 gene cluster have not been identified to relate to diabetes and 

ASCVD risk on a genome-wide level,97,98 despite their association with multiple other 

cardiometabolic traits, including inflammatory markers,91 and fasting glucose.99 However, 

they have recently been used in Mendelian randomization analyses to support causal roles of 

desaturases, PUFA and specific phospholipids for cardiometabolic diseases.100-102 However, 

investigating genetic variation in the FADS1-2-3 gene cluster to disentangle the potentially 

different role of PUFA is hampered by strong linkage disequilibrium in this region.80 

Common variants in FADS1 are strongly correlated with variants in FADS2 and minor alleles 

of variants in FADS1 are not only related to higher DGLA (substrate of delta-5-desaturase) 

and lower AA concentrations (product), but also higher LA and lower GLA concentrations 

(substrate and product of delta-6-desaturase) in European populations.88 Importantly in this 

context, prospective studies using PUFA biomarkers support that both desaturases have 

opposing associations with cardiometabolic risk and confounding by linkage disequilibrium in 

genetic studies may mask true associations.103  

 

Also noteworthy, genetic variants in the FADS1-2-3 gene cluster show strong variability in 

allele frequency across different populations. For example, the C-allele of FADS1 rs174547, 

related to lower ability to convert plant based PUFA into longer-chain and more unsaturated 

FAs, is largely absent in African, relatively common in European and dominating in 

American populations (Figure 2).104 Similarly, the FADS2 variant rs174570, related to lower 

desaturase activity, is much more frequent in Greenlandic Inuit (allele frequency 99%) than in 

Chinese (34%) or European populations (16%).105 This highlights a potential human 

adaptation to varying dietary PUFA sources. Variants in the FADS1-2-3 gene cluster which 

increase LC-PUFA synthesis from plant-based PUFA might have been of advantage in 

geographic regions with limited access to marine sources for LC-PUFA. The other extreme 

can be found in native Inuit who traditionally consume extremely high levels of LC n-3 PUFA 

from fish and marine mammals and for whom the FADS1-2-3 gene cluster was found to be 

the strongest outlier region based on patterns of allele frequency differentiation compared to 

other populations.105 There is little evidence that the FADS1-2-3 gene cluster relates to 

systems and biologic processes related to food preferences, e.g. fish consumption.106 
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Genetic variations in ALOX, COX and CYP-450 genes affect oxylipin production.79,107 ALOX 

genotype was associated with cardiometabolic phenotypes in a number of experimental 

models and human investigations. In ALOX5 KO mice, a reduction in LTB4 and reverse 

cholesterol transport suggests a new mechanism through which lipoxygenase pathway likely 

influences atherogenesis.108 Large-scale GWAS reported associations between ALOX5 SNPs 

and HDL-cholesterol levels in humans.92,108 Variation in the tandem repeats of the ALOX5 

promoter and in ALOX5 activating protein (ALOXAP) was associated with incident MI in 

cohort studies.109,110 However, ALOX genotypes were not significantly associated with T2DM 

or coronary artery disease in recent GWAS.71,111 

 

Consequences of altered desaturase and lipoxygenase activity  

The strong association of variants in the FADS1-2-3 gene cluster with tissue PUFA 

concentrations suggests that response to dietary PUFA intake in terms of blood PUFA 

composition is modified by genetic architecture related to the activity of desaturases. 

However, this question has been investigated in few studies to date (Table 2).112-118 

Unfortunately, most studies were cross-sectional in nature or have investigated intake of LC 

n-3 PUFA intake,112,114,116,118 which are, however, not the substrate of desaturases. Only two 

trials investigated supplementation with plant-derived PUFA. Gillingham et al. investigated 

the effect of a ALA-rich flaxseed oil intervention in comparison to a Western diet and an oleic 

acid rich diet. Minor allele carriers of 4 different variants in the FADS1-2-3 gene cluster had 

substantially lower increase in EPA plasma concentrations after the ALA intervention 

compared to wild-type: EPA levels in individuals homozygote for the major FADS1 rs174561 

allele were 2·2% (ALA intervention) versus 0·6% (Western diet) and 0·7% (oleic acid diet) 

after the intervention, but 0·9% versus 0·3 and 0·4% in individuals being homozygote for the 

minor allele (P for interaction <0·001).115 In the FADSDIET trial, AA levels in plasma 

phospholipids decreased in participants with the rare CC genotype of FADS1 rs174550 in 

response to a LA-rich sunflower oil, while AA levels remained unchanged in individuals with 

the TT genotype.117 These findings are supported by animal studies. Knockout of FADS2 in 

mice fed a LA-rich diet is related to lower availability of AA 119 and incorporation of AA into 

phospholipids.120 Similarly, knockout of FADS2 depletes EPA and DHA in mice fed an ALA-

rich diet.121 FADS2 variants alter FADS2 gene expression and tissue AA concentration in 

pigs.122 Similarly, FADS1 knockdown results in reorganization of both n-6 and n-3 PUFA 

levels and their associated proinflammatory and proresolving lipid mediators.123  
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Similar to modifying effects on blood PUFA levels, modification of effects of dietary PUFA 

on blood lipid levels by variants in the FADS1-2-3 gene cluster can be hypothesized. Studies 

addressing this question have found mixed results, but are mostly observational and cross-

sectional in nature (Table 2).113,124,125 Only one trial, involving 208 participants, has 

specifically focused on the triglyceride response to dietary LC n-3 PUFA intervention, but did 

not observe an effect modification.126 However, as mentioned above, LC n-3 PUFA are not 

the main substrate of desaturases. Given the current lack of interventional studies which 

directly tested response to the intake of plant derived LA and ALA rather than LC n-3 PUFA, 

this hypothesis remains unconfirmed so far. Still, modifying effects of the FADS1-2-3 gene 

cluster have been described for other cardiometabolic risk factors. For example, the 

FADSDIET trial observed modification of a LA-rich diet response by FADS1 rs174550 in 

terms of inflammation (hsCRP).118 Influences of inhibited delta-5- and delta-6-desaturase 

activities on glycaemic traits and atherosclerosis have been described from knock-out animal 

studies.127 

 

Whether variants in the FADS1-2-3 gene cluster modify cardiometabolic effects of dietary 

PUFA in terms of risk for clinical endpoints has been investigated in two case control and 

several cohort studies (Table 2).49,58,128-130 In a Swedish cohort study, higher ALA intake 

appeared to be more beneficial with regard to ASCVD risk among carriers of FADS1 

rs174546 genotype related to lower desaturase activities.129 While FORCE, a consortium of 

several prospective cohort studies, did not find that the FADS1 rs174547 variant modulated 

the relationship between LA and AA biomarkers and T2DM risk,58 but effect modification 

was observed for ASCVD endpoints, specifically stroke.49 The latter finding implies that a 

protective effect of higher LA is restricted to individuals homozygous for the common 

rs174547 allele, thus a higher genetically determined ability to convert LA to AA and 

subsequent products. Still, the FADS1 variant considered has already strong influence on LA 

tissue concentrations and interpretation of this PUFA biomarker as a proxy of dietary intake is 

problematic. Clearly, prospective studies investigating associations between intake of plant-

derived LA and ALA and subsequent risk of diabetes and ASCVD and its modification by 

variants in the FADS1-2-3 gene cluster would be informative to substantiate the findings of 

FORCE.  

 

With regard to potential modification of dietary PUFA effects by ALOX5, evidence from 

studies is more limited. AA intake was related to enhanced influence of the variant 
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rs59439148, related to the number of tandem repeats of the Sp1 binding site in the ALOX5 

promoter (the rare allele having 1-2 fewer tandem repeats), on arterial thickness in a cross-

sectional study 131 and with the incidence of MI in a cohort study.109 However, in the Danish 

Diet, Cancer and Health study, the same tandem repeat variant in ALOX5 did not interact with 

adipose tissue AA and EPA in relation to risk of MI.132 In an intervention, individuals 

homozygote for the rare variant (deletion of tandem repeats) showed less increase in 

erythrocyte EPA and DHA levels in response to a fish oil supplementation compared to 

subjects with the common allele.133 Similarly, concentrations of EPA derived metabolites 

showed a more marked increase after the fish oil supplementation in individuals homozygote 

for the common allele compared to carriers of the rare allele.134 Still, results of this small-

scale trial have not been replicated so far.  

 

Implications 

Intake of n-6 PUFA varies largely across different global regions, ranging from 2·5% to 8·5% 

of daily energy according to the Global Burden of Disease Study (GBDS).10 In Western 

Europe and the USA, mean intake is estimated to be 5·2 and 6·7% of daily energy. Even more 

pronounced differences in intake levels of n-3 PUFA are evident, where, for example, with 

LC n-3 PUFA from seafood ranging within Western Europe between ~100 mg/d (Ireland) to 

~1200 mg (Denmark and Iceland), with a mean USA consumption of ~140mg/d. The intake 

of plant n-3 PUFA (ALA) ranges 10-fold across global regions from ~300-3200 mg/day, 

which standardized to a 2000 kcal per day represents <1 to 14% of daily energy intake.   

 

Reference values for adults according to EFSA are 4% of energy from LA and 0·5% from 

ALA.135 These values are based on the lowest estimated mean intakes of various populations 

across Europe, where overt deficiency symptoms are not present – they do not reflect optimal 

intake levels for the prevention of cardiometabolic diseases. Interestingly, reference values for 

n-3 and n-6 PUFA vary between EFSA and several European countries.2 Ranges of intake for 

LA as an energy source that is associated with reduced risk of chronic disease while providing 

intakes of essential nutrients, has been specified by the US Institute of Medicine (5-10%) 136 

and the FAO/WHO (2·5–9·0%).137 This implies that LA intakes exceeding these ranges are 

considered sub-optimal and potentially harmful, which is in contrast to EFSA 

recommendations where no upper limit for n-6 PUFA was set.135 With regard to 

recommendations for LC n-3 PUFA intake, adequate intake levels have been more 

comparably set at 250-500mg/d EPA+DHA by most organizations.135-138 
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Guidelines and position statements of the American Heart Association 17 and the European 

Society of Cardiology 139 regarding the role of PUFA in the prevention of ASCVD highlight 

the importance of substituting energy from SFA by PUFA, but are less optimistic for LC n-3 

PUFA. Specifically, the intake of fish oil supplements with dosages of EPA and DHA 

substantially higher than the adequate intake level is not routinely recommended at a 

population level. The American Heart Association, however, evaluates fish oil 

supplementation to be a reasonable (but not recommended) treatment for secondary 

prevention among patients with pre-existing CHD.17 Beneficial effects of fish oils observed in 

subgroups of low-fish consumers in some trials 7 also indicates cardio-protection in those with 

low EPA+DHA status, an area which needs closer attention in further research. Both societies 

recommend a usual intake of 1-2 portions of fish per week, mainly based on their role as 

dietary sources of LC n-3 PUFA.139,140 The inconsistent literature on fish intake (beneficial, 

but largely based on observational studies) and individual fish oil supplementation trials 

demonstrates the complexity of comparing food bioactives in isolation to their complex food 

sources. Still, given the observed ASCVD risk reduction when evidence from recent trials is 

included in meta-analysis 22 implies that the more conservative recommendations regarding 

EPA and DHA supplementation may need to be revised. 

 

The strong role of PUFA metabolism, specifically of desaturases, highlights that fatty acid 

intakes and availability along with genetic variants which influence PUFA metabolism, might 

be considered in the future when setting ALA, EPA and DHA recommendations (Figure 3). 

In regions with limited access to seafood, intake of the plant-derived ALA might need to be 

considerably higher, specifically if genetic variants in the FADS1-2-3 gene cluster are present 

which limit bioconversion of ALA to LC n-3 PUFA. Alternatively, supplementation with 

fish-oil would be an option in such a setting. Similarly, if plenty of plant oils rich in LA and 

ALA are consumed and the genetic make-up supports bioconversion to longer-chain, more 

unsaturated PUFA, there could be a lower need for intake of LC n-3 PUFA from seafood or 

supplements.  

 

 

  



17 
 

Contributors 

All authors contributed to literature search, data interpretation, writing, and critical revision.  

 

Conflicts of interest 

MBS reports grants from European Commission and German Federal Ministry of Education 

and Research, outside the submitted work. RNMS reports grants from EU JPI-BBSRC (UK 

Government), during the conduct of the study. AMM reports grants from EU JPI- BBSRC 

(UK Government), outside the submitted work. UR declares to have no conflicts of interest. 

 

Acknowledgements 

This work was aided in part by funding by the European Commission and national funding 

partners of the Joint Programming Initiative “A healthy diet for a healthy life” within the 

ERA-HDHL Cofounded joint call “Biomarkers for Nutrition and Health”. 

 

 

Search strategy and selection criteria 

PubMed database was searched for systematic review articles written in English from January 

1990 up to August 2019, to identify reports about associations of PUFA intake and 

cardiometabolic outcomes. The search terms used were “PUFA”, “Polyunsaturated fatty 

acids”, “linoleic acid”, alpha-linolenic acid”, “eicosapentaenoic acid”, “docosahexaenoic 

acids”, “n-3 fatty acids”, “n-6 fatty acids” together with terms for cardiovascular outcomes 

and T2DM. The reference lists of the identified papers were used to identify individual papers 

of interest. Furthermore, we search PubMed database for studies on interaction of FADS gene 

variants and PUFA intake using search terms “FADS1”, “FADS2”, “fatty acid desaturase”, 

“D5D”, “Delta-5-Desaturase”, “D6D”, “Delta-6-Desaturase”, “FADS polymorphisms”, 

“FADS gene variants” in combination with “PUFA”, “Polyunsaturated fatty acids”, “linoleic 

acid”, alpha-linolenic acid”, “eicosapentaenoic acid”, “docosahexaenoic acids”, “n-3 fatty 

acids”, “n-6 fatty acids”. The final reference list was selected on the basis of relevance to the 

subject of this review. 
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Figure 1 Key enzymes involved in the metabolism of PUFA 

Conversion of linoleic acid and α-linolenic acid to longer-chain n-6 and n-3 polyunsaturated 

fatty acids is catalized by the action of delta-6 desaturase, delta-5 desaturase, and elongases. 

Arachidonic acid (AA), eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) often 

exert their physiological effects through ‘oxylipins’ produced by the action of cycloxygenases 

(COXs), lipoxygenases (ALOXs), and some members of CYP450 superfamily. 

2-PGs: 2 series prostaglandins, 3-PGs: 3 series prostaglandins 4-LTs: 4 series leukotrienes, 5-

LTs: 5 series leukotrienes, ALOXs: Arachidonate Lipoxygenases, ALOX5AP: 5-

Lipoxygenase Activating Protein, COX-2: cylcloxygenase-2, CYP-450: cytochrome-P450,  

DHEQs: dihydroxyeicosatetraenoic acids, DHET: dihydroxyeicosatrienoic acid, DiHDPA: 

dihydroxydocosapentaenoic acid, EDP: epoxydocosapentaenoic acid, EEQ: 

epoxyeicosatetraenoic acid, EETs: epoxyeicosatrienoic acid, HDHA: 

hydroxydocosahexaenoic acid, HEPE: hydroxyeicosapentaenoic acid, HETE: hydroxy-

eicosatetraenoic acid, HpDHA: hydroperoxide intermediate of DHA, sEH: serum epoxide 

hydrolase enzyme, TX: thromboxanes 
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Figure 2. Allele frequencies (percent) for FADS1 rs174547 across populations 

Genetic variation in FADS1 is in strong linkeage disequilibrium with variation in FADS2. 

FADS1 rs174547, one of the lead SNPs related to circulating PUFA levels identified in large-

scale GWAS,88 shows strong differences across different populations worldwide. Data from 

1000 Genomes Project Phase 3.104   
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Figure 3. Conceptual framework for hypothesized cardiometabolic benefits of n-6 and n-

3 PUFA intake depending on genetic variation in PUFA metabolism 

Genetic variation in the FADS1-2-3 gene cluster relates to the activity of d-5 and d-6-

desaturases, key enzymes in the formation of longer-chain FA from precursor n-3 α-linolenic 

acid (ALA) and n-6 linoleic acid (LA). Mutations related to lower desaturase activity are 

frequent in Native Inuit (e.g. rs174570: 99% 105), relatively common in European populations 

(16%) and largely absent in African populations (1%).104 Higher d5-desaturase activity and 

thus higher ability to metabolize LA and intermediate n-6 PUFA (GLA and DGLA) to AA is 

related to lower cardiometabolic risk.49 In the presence of high intake of LC n-3 PUFA from 

fish and seafood, a lower genetically determined desaturase activity may compensate for a 

decreased intake of plant-based PUFAs. However, there is uncertainty whether higher ALA 

intake is more beneficial in the context of higher ability to convert ALA to LC n-3 PUFA.128 

 

 



Table 1: Key RCTs examining the impact of PUFA supplementation on incident cardiovascular disease   

 

Study/ 

Publication 

year 

Population Intervention Durat

ion 

Outcome Effect size  

HR or RR (95% 

CI) 

Comment 

GISSI 12 Post-MI < 3m 850-882 

mg/d 

EPA+DHA 

3·5y P: Death, MI stroke 

S: ASCVD death  

0·85 (0·74-0·9) 

0·70 (0·56-0·87) 

4 medications prescribed, statins use 

5% 

JELIS 14 Hypercholesterole

mic men (40-75y) 

and ostmenopausal 

women 

1800mg 

EPA 

(ethyl 

esters) 
 

4·6y P: sudden cardiac death, 

fatal and non-fatal MI, 

unstable angina, 

angioplasty, stenting, 

CABG  

0·81 (0·69-0·95) All on statins, 64% on 

antihypertensive medication, 14% 

on antiplatelets, 12% on 

hypoglycemic agents 

Alpha 

Omega 13 

Post-MI 1: 400 mg/d 

EPA+DHA 

(trigylceride

s)   

2: 2 g/d 

ALA 

3·7y P: fatal and nonfatal 

ASCVD, PCI+CABG 

EPA+DHA vs. 

ALA/placebo: 

1·01 (0·87-1·17) 

 

ALA vs. 

EPA+DHA/place

bo: 

0·91 (0·78-1·05) 

Median EPA+DHA intake at 

baseline: 120-130 mg/d, no 

subgroup difference by baseline 

intake; 

Suggestive effect of ALA in women 

(HR: 0·73 (0·51–1·03)) 

ORIGIN 19 High ASCVD risk 

and 

prediabetes/diabete

s 

900 mg/d 

EPA+DHA 

(ethyl 

esters) 

6·2 y P: ASCVD death 

S: nonfatal MI, stroke 

or ASCVD death 

0·98 (0·87-1·10) 

1·01 (0·93-1·10 

High prevalence of cardiovascular 

medication, statin use ~54%; 

Median EPA+DHA intake at 

baseline: 210 mg/d 

Risk and 

Prevention 

Study 16 

ASCVD risk 

factors ≥4 or 

vascular disease, 

previous MI 

precluded 

850 mg/d 

EPA+DHA 

(ethyl 

esters) 

5·0y P: Time to death from 

ASCVD or hospital 

admission for ASCVD 

S: ASCVD death 

0·98 (0·88-1·08) 

 

1·03 (0·82-1·30) 

9 medications prescribed, statin use 

41% 

At 1y, event rate lower than 

anticipated, 

the primary end point was revised 

 

Tables



ASCEND 6 Type 2 diabetes, no 

evidence of 

ASCVD 

840 mg/d 

EPA+DHA 

(ethyl 

esters) 

7·4y P: ASCVD death, MI, 

stroke, transient 

ischemic attack 

S: nonfatal MI 

S: nonfatal ischemic 

stroke 

S: vascular death 

1·00 (0·91-1·09) 

 

0·93 (0·76-1·14) 

1·01 (0·84-1·22) 

0·81 (0·67-0·99) 

High prevalence of cardiovascular 

medication, statin use ~75% 

VITAL 7 Healthy, men 

(≥50y), women 

(≥55y) 

840 mg/d 

EPA+DHA 

(ethyl 

esters) 

5·3y P: ASCVD death, MI 

and stroke 

S: ASCVD death 

S: Total MI 

0·92 (0·80-1·06) 

0·96 (0·76-1·21) 

0·72 (0·59-0·90) 

 

HR of ASCVD death, MI and stroke 

of 0·81 (0·67-0·98) and total MI of 

0·60 (0·45-0·81) with fish intake of 

<1·5 servings per week. No effect in 

those with higher fish intakes of 

≥1·5 servings per week (HR 1·08 

and 0·94) 

REDUCE-IT 
15 

ASCVD or T2DM 

≥ 1 ASCVD risk 

factor, high TG  

4 g/d Ethyl-

EPA 

(icosapent 

ethyl) 

4·9y P: ASCVD death, MI, 

stroke,  

coronary 

revascularization or 

unstable angina 

0·75 (0·68-0·83) HR of 0·74 (0·65–0·83) in 

composite ASCVD death, MI and 

stroke secondary end point 

 

STRENGTH 
28,29 

high ASCVD risk 

or previous 

ASCVD or DM, 

high TG and low 

HDL-c 

4g oil 

providing 

2·2 EPA + 

0·8g DHA 

(carboxylic 

acids) 

- P: cardiovascular death, 

nonfatal MI, nonfatal 

stroke, 

emergent/elective 

coronary 

revascularization, or 

hospitalization for 

unstable angina 

stopped Intervention judged unlikely to 

demonstrate a benefit by the 

independent data monitoring 

committee  

       

LA veterans 
38 

Men with or 

without CHD  

Corn and 

soybean oil 

≤8y MI, sudden death + 

cerebral infarction 

0·74 (0·53-1·03) 

 

Confirmation of compliance by 

adipose tissue fatty acid analyses. 

Secondary outcome for total 



ASCVD showed ~ 30% reduced 

risk, RR of 0.68 (0.52–0.91). 

MRC Soy 39  Post MI, men Soybean oil 

~80g  

5y MI, sudden death and 

all-cause mortality 

0·86 (0·61-1·22) Confirmation of compliance by 

weighted food-records and adipose 

tissue fatty acid analyses. ≥43 g 

soybean oil unheated (often drunk 

with fruit juice)  

Oslo diet-

heart study 40 

Post MI, men Soybean oil, 

Cod liver oil 

5y MI + Sudden cardiac 

death 

0·75 (0·57-0·99) Multifactorial intervention with 

modification of dietary composition 

other than fat 

Finnish 

mental 

hospital 

study 41 

 

Men with MI Soybean oil 6y MI (ECG change) + 

CHD mortality  

0·55 (0·34-0·88) Institutionalized population; 

assignment by hospital, not 

individually randomized; 

confirmation of compliance with a 

large increase of LA in adipose 

tissue.  

Finnish 

mental 

hospital 

study 42 

Women with MI Soybean oil 6y MI (ECG change) + 

CHD mortality 

0·64 (0·41-1·00) Institutionalized population; 

assignment by hospital, not 

individually randomized 

Minnesota 

Coronary 

Survey  
43 

Men and women Corn oil ≤4·5y ASCVD events, 

ASCVD and total 

mortality 

1·08 (0·84-1·37) Institutionalized population; mean 

follow-up only 1 year; drop-out rate 

~75%; very high dose of corn oil (13 

vs 3 energy % from LA) 

Sydney Diet 

Heart Study 
44 

Post MI or with 

CHD, men  

Safflower 

oil 

2-7y MI + cardiac death 1·86 (0·63-5·44) Relatively short study duration 

(median follow-up 39 months),  with 

potential confounding by trans-fatty 

acids; very high dose of n-6 PUFA, 

without any increase of n-3 

The table does not provide an exhaustive description of all PUFA interventions conducted to date, but rather gives illustrative examples of earlier and more recent trials, and those 

which are discussed in the text  

ASCVD- atherosclerotic cardiovascular disease, CABG- coronary artery bypass graft, CHD- coronary heart disease, CI- confidence interval, DHA- docosahexanoic acid, EPA- 

eicosapentanoic acid, HR- hazard ratio, MI- myocardial infarction, P-primary end-point, PCI- percutaneous coronary intervention, S- secondary end-point, TG- triglycerides 



Table 2. Studies investigating interactions between PUFA intake or status and variants in the FADS1-2-3 gene cluster and FA levels or 

cardiometabolic outcomes 

       

Author/ 

Publication year 

Design, 

Population 

Intervention/Exposure Genetic 

variants 

Outcome Interaction 

 

Fatty acid composition of blood fractions or breast milk 

Molto´-

Puigmartı´ et al. 

2010 112 

Cross-sectional Fatty fish intake rs174575 Plasma and milk 

FA 

Higher EPA or DHA content in human 

milk with higher fatty fish intake only in 

major allele carriers; 

No difference in plasma phospholipid EPA 

or DHA by genotype 

Dumont et al. 

2011 113 

Cross-sectional Dietary LA and ALA rs174546 Serum 

phospholipid FAs 

No interaction  

 

Al-Hilal et al. 

2013 114 

RCT, 

healthy subjects  

EPA+DHA (0·45, 0·9, 

and 1·8 g/day), 

rs174537, 

rs174561, 

rs3834458 

Plasma and RBC 

FA 

Increase in D5D activity (AA:DGLA) 

among T-allele carries of rs174537 with 

higher supplementation 

Gillingham et 

al. 2013 115 

RCT, 

hyperlipidemic 

subjects  

ALA rich diet (20·6 g 

ALA/d) 

rs174545, 

rs174583, 

rs174561, 

rs174537 

Plasma FA Substantially smaller absolute EPA in 

minor allele carriers after ALA 

intervention 

Smith et al. 

2015 118 

Cross-sectional 

(consortium) 

Dietary LA and ALA rs174538, 

rs174548 

Plasma or RBC LC 

n-3 PUFA 

Interaction between ALA intake and 

FADS1 variants on DPA and DHA 

Takkunen e al. 

2016 116 

Cross-sectional LC n-3 PUFA from fish  Plasma and RBC 

FA 

Stronger association between LC n-3 

PUFA intake and EPA in minor allele 

carriers  

Juan et al. 2018 
141 

Cross-sectional Dietary LA, ALA, 

EPA, DHA 

rs174546 Plasma FA Stronger positive associations between 

EPA and DHA intake and EPA 

concentrations with intake with minor T 

allele; no interactions for other dietary 

PUFA 



Lankinen et al. 

2019 117 

Single group 

trial 

LA rich sunflower oil 

(17-28 g LA/d) 

rs174550 Plasma 

phospholipid and 

cholesterol ester 

FA 

Decrease in AA in homozygote for minor 

allele, no effect in homozygote for major 

allele 

 

Blood lipids 

Lu et al. 2010 
124 

Cross-sectional Dietary n-6 and n-3 

PUFA 

rs174546, 

rs482548,  

rs174570 

Total, HDL-, and 

non- 

HDL-cholesterol 

No interactions for total dietary n-3 intake 

and all outcomes; 

No interactions for dietary n-6 and most 

outcomes (only significant interaction for 

HDL-cholesterol and rs174546) 

Dumont et al. 

2011 113 

Cross-sectional Dietary LA and ALA rs174546 Serum TG, 

cholesterol, and 

lipoproteins 

Lower total and non-HDL cholesterol in 

minor allele carriers with high ALA intake 

only 

Cormier et al. 

2012 126 

Single group 

trial 

1·9 g EPA and 1·1 g 

DHA per day 

Selected SNPs 

of the FADS1-

2-3 gene 

cluster 

Plasma TG No interaction observed 

Standl et al. 

2012 125 

Cross-sectional Dietary n-3 PUFA FADS1-2-3 

gene cluster 

Total cholesterol, 

HDL-cholesterol, 

LDL-cholesterol, 

TG 

No interaction observed 

Dumont et al. 

2018 142 

Cross-sectional Dietary LA and ALA rs174547 HDL-cholesterol Lower HDL-cholesterol with minor allele 

only with high LA intake; no interaction 

with ALA 

 

ASCVD or T2DM risk 

Baylin et al. 

2007 128 

Case-control Adipose tissue ALA common 

FADS1 

deletion [T/-] 

Non-fatal MI 

 

No interaction observed 



Hellstrand et al. 

2014 129 

Cohort Dietary LA and ALA rs174546 ASCVD Inverse association of ALA:LA ratio or 

ALA with ASCVD/stroke only in minor 

allele carriers 

Liu et al. 2015 
143 

Case-control Dietary EPA and DHA rs174547 Coronary artery 

disease 

Common T-allele associated with higher 

risk only among individuals with lower 

dietary EPA/DHA intake  

Wu et al. 2017 
58 

12 Cohorts LA and AA biomarker rs174547 Type 2 diabetes No interaction 

Marklund et al. 

2019 49 

13 Cohorts LA and AA biomarker rs174547 ASCVD Inverse association of LA with total 

ASCVD and stroke in homozygote 

common allele carriers, not in minor allele 

carriers; no interactions for ASCVD 

mortality or total CHD or for AA 
ALA- alpha-linolenic acid, ASCVD- atherosclerotic cardiovascular disease, CHD- coronary heart disease, CI- confidence interval, DGLA- dihomo-gamma linolenic acid, DHA- 

docosahexanoic acid, EPA- eicosapentanoic acid, HR- hazard ratio, LA- linoleic acid, MI- myocardial infarction, P-primary end-point, s-secondary end-point, TG- triglycerides 
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