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Abstract

A recent paper proposed an extended trivariate generalized linear mixed model (TGLMM) for
synthesis of diagnostic test accuracy studies in the presence of non-evaluable index test results.
Inspired by the aforementioned model we propose an extended trivariate vine copula mixed model
that includes the TGLMM as special case, but can also operate on the original scale of sensitivity,
specificity, and disease prevalence. The performance of the proposed vine copula mixed model
is examined by extensive simulation studies in comparison with the TGLMM. Simulation studies
showed that the TGLMM leads to biased meta-analytic estimates of sensitivity, specificity, and
prevalence when the univariate random effects are misspecified. The vine copula mixed model
gives nearly unbiased estimates of test accuracy indices and disease prevalence. Our general
methodology is illustrated by meta-analysing coronary CT angiography studies.
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1 Introduction

Synthesis of diagnostic test accuracy studies is the most common medical application of multivariate
meta-analysis [1-3]. The purpose of a meta-analysis of diagnostic test accuracy studies is to combine
information over different studies, and provide an integrated analysis that will have more statistical
power to detect an accurate diagnostic test than an analysis based on a single study.

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the
presence or absence of a disease and the result of a diagnostic test. The accuracy of the diagnostic test

1s commonly measured by a pair of indices such as sensitivity and specificity. Sensitivity is defined
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as the probability of testing positive given a person being diseased and specificity is defined as the
probability of testing negative given a person being non-diseased [3]. The diagnostic test accuracy
studies typically report the number of true positives (diseased subjects correctly diagnosed), false pos-
itives (non-diseased subjects incorrectly diagnosed as diseased), true negatives (non-diseased subjects
correctly diagnosed as non-diseased) and false negatives (diseased subjects incorrectly diagnosed as
non-diseased). However, diagnostic test outcomes can be non-evaluable [4]. This is the case for coro-
nary computed tomography (CT) angiography studies which have non-evaluable results of index test
in various ways such as when transferring a segment/vessel to a patient based evaluation [5].

In meta-analysis of diagnostic test accuracy studies, the existence of non-evaluable subjects is an
important issue that could potentially lead to biased estimates of index test accuracy [5, 6]. Schuetz et
al. [5] studied different ad-hoc approaches dealing with diagnostic test non-evaluable subjects, such
as non-evaluable subjects are excluded from the study, non-evaluable positives (non-evaluable dis-
eased subjects) are taken as true positives and non-evaluable negatives (non-evaluable non-diseased
subjects) are taken as false positives, non-evaluable positives are taken as false negatives and non-
evaluable negatives are taken as true negatives, and non-evaluable positives as false negatives and
non-evaluable negatives as false positives. In all of these approaches, Schuetz et al. [5] used the
bivariate generalized linear mixed model (BGLMM) [7], which assumes independent binomial dis-
tributions for the true positives and true negatives, conditional on the latent pair of transformed (via
a link function) sensitivity and specificity in each study. They concluded that excluding the index
test non-evaluable subjects leads to overestimation of the meta-analytic estimates of sensitivity and
specificity and recommended the intent-to-diagnose approach by treating non-evaluable positives as
false negatives and non-evaluable negatives as false positives.

Ma et al. [6] proposed a trivariate generalized linear mixed model (TGLMM) approach by treat-
ing the non-evaluable subjects as missing data under a missing at random (MAR) assumption. The
TGLMM was originaly proposed by Chu et al. [8] to account for potential correlations among sen-
sitivity, specificity and disease prevalence as many empirical studies have shown the assumption of
independence between the sensitivity/specificity with disease prevalence for a dichotomous disease
status is likely to be violated [9—11]. Ma et al. [6] with extensive simulation studies have shown that
(a) the intent-to-diagnose approach [5] under-estimates both meta-analytic estimates of sensitivity

and specificity, (b) excluding the index test non-evaluable subjects does not lead to biased estimates



of sensitivity and specificity, but leads to biased estimates of prevalence, and (c) the TGLMM gives
nearly unbiased estimates of the meta-analytic estimates of sensitivity, specificity and prevalence.

In this paper, inspired by Ma et al. [6], we extend the vine copula mixed model for trivariate meta-
analysis of diagnostic test accuracy studies accounting for disease prevalence [12] to additionally
account for non-evaluable subjects. The advantages of this methodology are that (a) the extended
TGLMM is included as a special case, (b) sensitivity, specificity, and prevalence can be modelled in
the original scale, and (c) tail dependencies and asymmetries can be provided.

The remainder of the paper proceeds as follows. Section 2 introduces the proposed model for
diagnostic test accuracy studies in the presence of non-evaluable subjects and discusses its relationship
with the extended TGLMM. Section 3 contains small-sample efficiency calculations to investigate
the effect of misspecifying the random effects distribution on parameter estimates and standard errors
and compares the method with the TGLMM approach. Section 4 re-evaluates the meta-analysis of
coronary CT angiography studies [5, 6] using the proposed vine copula mixed model approach. We

conclude with some discussion in Section 5, followed by a brief section with software details.
2 The vine copula mixed model in the presence of non-evaluable subjects

In this section, we extend the trivariate vine copula mixed model [12] to handle non-evaluable results

and discuss its relationship with the extended TGLMM.
2.1 Notation

We first introduce the notation used in this paper. Let ¢ be an index for the individual studies, j an
index for the test outcome (0O:negative; 1:positive; 2: non-evaluable) and & an index for the disease
outcome (0: non-diseased; 1: diseased). The count data y;;,, ¢ = 1,...,N, j = 0,1,2, k = 0,1,
corresponding to a combination of index test j and disease outcome £ in study ¢, form a 3 x 2 table
(Table 1). This table has an additional row that represents the counts of non-evaluable outcomes,

hence, extends the “classic” 2 x 2 table (Table 2).
2.2 The within-study model

For each study ¢, the within-study model assumes that the number of true negatives Y;qo, false neg-
atives Yjo1, false positives Y, true positives Y;1;, non-evaluable negatives Y;5, and non-evaluable

positives Y;o; are multinomially distributed given X = x, where X = (X1, X, X3, X4, X5) denotes



Table 1: Data (including the non-evaluable outcomes) from an individual study in a 3 x 2 table.

Disease (by gold standard)
Test — + Total
- Yioo Yio1 Yio+
+ Yi1o Yi11 Yit+
Non-evaluable Yi20 Yio1 Yioy
Total Yiro Yir1 Yiet

Table 2: Data (excluding the non-evaluable outcomes) from an individual study in a 2 X 2 table.

Disease (by gold standard)
Test — + Total
- Yioo Yio1 Yio+
+ Yi10 Yi11 Yil+
Total Yi+0 Yit1 Yit+

the transformed (via a link function /(+)) latent vector of sensitivity, specificity, disease prevalence,

probability of non-evaluable positives and probability of non-evaluable negatives, viz.
(KOU?KOI; Yii0, Yi11, Yioo, Yior, )|(X1 =x1, Xo = 19, X3 = 3, Xy = x4, X5 = 555) ~ Mg (yf++, w)>i

where

w = (woo,wohwlo,wn,wm,wm) (D
= g’l(xg)(l — l’l(xg)) (1 — Z’l(xg)))/, (1 — l’l(xl))lfl(xg)(l — l’1($4))j,
\(1 — 1N @2)) (1= 1 Mxs)) (L — 1 (a5 2,5 M)l (2s) (1 — 1_1(1‘4))/,
(1= 17 (3)) 1 (x5), g—l(xg)vz—l(m)l)

is derived by Ma et al. [6] under an MAR assumption.

The multinomial probability mass function (pmf)

[I1="
|

Yi00'Yio1 Wiro! i1 YizoYior ! 520 k=0

decomposes into a product of independent binomial pmfs given the random effects, viz.

9(Yin1; Yirr, (1)) 9 (Wioo; Yiro U (22)) 9 (Ui Ui, U1 (@3)) 9 (yinns vir, U (24)) 9 (vinos Y7o, U (5)))
where

g(y;n,ﬁ):<n>7ry(1—7r)”y, y=0,1,....,n, 0<m<1,
Y

My (n, p) is shorthand notation for the multinomial distribution; 7" is the number of cells, n is the number of

observations, and p = (p1, ...,pr) with p; + ... + pp = 1 is the T-dimensional vector of success probabilities.
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is the binomial pmf. Hence, the within-study model actually assumes that

Yiu|X1 =21 ~ Binomial(y;41,1 7 (21));
Yioo| Xo = x2 ~ Binomial(yi+0,l’1(:c2)); (2)

Y| Xs =23 ~ Binomial(ya%l*l(x?»))v
and

}/;21|X4 = Tq Binomial(yg‘ﬂ, l_1<$4));

Yioo| Xs =25 ~ Binomial(y;ﬁro, l_l(ifs))'
2.3 The between-studies model

Under the MAR assumption, (X7, X, X3) are independent of the missing probabilities (X, X5),
hence the joint likelihood factors into two components, one involving only the transformed sensitivity
x1, specificity x5 and disease prevalence 3, and the other involving only the transformed proba-
bilities of non-evaluable positives z, and non-evaluable negatives x5. Hence, the methodology of
Nikoloulopoulos [12] can be applied to the first likelihood component to infer about the sensitivity,
specificity and disease prevalence.

Nikoloulopoulos [12] proposed a vine copula mixed model as an extension of the TGLMM by
rather using a vine copula representation for the random effects distribution of the latent sensitivity,
specificity and disease prevalence. The trivariate vine copula can cover flexible dependence structures
through the specification of 2 bivariate marginal copulas and one bivariate conditional copula that
condition on 1 variable [13]. A vine requires a decision on the indexing of variables. For a 3-

dimensional vine copula there are 3 distinct permutations [14]:
{12,13,23|1}, {12,23,13|2}, and {13,23,12|3}.

To be concrete in the exposition of the theory, we use the permutation {12, 13,23|1}; the theory
though also apply to the other two permutations.
To this end, the stochastic representation of the between-studies (random effects) model takes the

form
(F(X1; Z(W1)751), F(XQ; l(7T2),52), F(Xs; l(ﬂ3)753)> ~ C(+6), (3)

where C(-; 6) is a vine copula with dependence parameter vector 8 = (612, 013, 0231) and F'(;[(7), §)

is the cdf of the univariate distribution of the random effect. The copula parameters 612, 013, 023 are
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parameters of the random effects model, and they are separated from the univariate parameters. The
univariate parameters 7y, 7o, and 73 are those of actual interest denoting the meta-analytic parameters
of sensitivity, specificity, and disease prevalence, respectively, while the univariate parameters d;, 0o
and 03 are of secondary interest denoting the variability between-studies for sensitivity, specificity,
and disease prevalence, respectively.

The vine copula density is decomposed in a product of univariate and bivariate copula densities,

viz.

fi23(w1, 09,03, 0) = f1($1;l(7T1) 5)f (552, )f3($3,l ) 2<F1(951;l(7T1)751)7
F2(352;l(72),52);912) C13(F1($17 (71),0 ) ( l(7T3),53);913> X
C23|1(F2|1(132|171, (m1), (72), 01, 2),F3|1(553|5171, )75(73),51753>;923|1>

= fl(xl; (m )51)f2($27 52)f3(903,l 53)0123<F1(961,l(71),51),

FQ(.IQ; l(ﬂ'g),éQ),Fg([ﬁg;l(ﬂg),(Sg); 0)7

where f;(+;1(m;),d;) and Fj(;1(7;), d;) are the density and cdf, respectively, of the random variable
X, ¢jyjo (v, 5 05.5,) and Cj,j, (+, -5 0;,4,) are the bivariate copula density and cdf, respectively, for the
pair of transformed variables F};, (X, ) and F},(X},), and ca3)1 (-, -; f23)1) is the bivariate copula density

for the pair of transformed variables F (X|X1) and F); (X3]X;) where

Fjl\jz (le ‘xb) ac]l]Q ( J1 (mh) FjQ (sz)) /th (sz)

as derived in [15].

In line with our previous contributions in copula mixed models [12, 16—19] we use

e bivariate parametric copulas with different tail dependence behaviour, namely the BVN with
intermediate tail dependence, Frank with tail independence, and Clayton with positive lower
tail dependence. For the latter we also use its rotated versions to provide negative upper-lower
tail dependence (Clayton rotated by 90°), positive upper tail dependence (Clayton rotated by

180°) and negative lower-upper tail dependence (Clayton rotated by 270°);

e the choices of F(+;{(m),d) and [ that are given in Table 3.



Table 3: The choices of the I (-; I(m), (5) and [ in the extended trivariate vine copula mixed model.

F(1(m),0) l 7r 4]
N(u,o0) logit, probit, cloglog ) o
Beta(m, ) identity T ¥

2.4 Likelihood and computational details for maximum likelihood estimation

For N studies the models in (2) and (3) together specify a trivariate vine copula mixed model with

joint likelihood

N 1,1l pl
L(my,ma, 3,01, 02,05,0) = H/ / / g(yill;yi+lalil(xl))g(yiotﬁyi+07l71(x2>) X
170 Jo Jo

g (y;-l; yf++7 ! ($3)) €123 (U1 y U2, Ug; 9) duydusdus, 4)

where z; = F~! (u;;1(m;),6;), j = 1,2,3.

Estimation of the model parameters (7, mo, 73, 01, 09, 03, @) can be approached by the standard
maximum likelihood (ML) method, by maximizing the logarithm of the joint likelihood in (5). The
estimated parameters can be obtained by using a quasi-Newton [20] method applied to the logarithm
of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm
of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the
second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates
can be also obtained via the gradients and the Hessian computed numerically during the maximization
process.

For the vine copula mixed model numerical evaluation of the joint pmf can be achieved with the

following steps:

1. Calculate Gauss-Legendre [21] quadrature points {u, : ¢ = 1,...,n,} and weights {w, : ¢ =

1,...,n,} in terms of standard uniform.
2. Convert from independent uniform random variables {u, : ¢ = 1,...,n.}, {ug : ¢ =
1,...,ng}, and {ug : g3 = 1,...,n4} to dependent uniform random variables vg, , Vg,|q,,» and

VUgogs|q that have a vine distribution C'(-; ) [12]:
1: Set vy, = ug,
-1 .
2: Vgalgr = C(12 (UQQ|U'Q17012)

3t = CQ_i’jl(ulI3|u¢J2; 023|1)



. _ -1 .
4 Ugogslgr = 013 (tl,uq17013>,

where C'(v|u; 0) and C~!(v|u; 6) are the conditional copula cdf and its inverse.

3. Numerically evaluate the joint pmf

/(;1 /01 /019 (yi11§yi+1al_l <F_1(U1§l(7T1),(51)>) g (yioo;yHo,l‘l <F_l(u2;l(7r2)752>>)

g <y;‘+1; Yigss ! (F_l(US; I(m3), 53))) c123(u1, uz, us; @)duydusdus

in a triple sum:

Z Z Z (yzn,yzﬂ, 1<F_1(Uq1;l(771),51)>) g (yiOO;yi+07l_1 <F_1(Uq2\q1; l(7T2)752)>)

q1=1gq2=1q3=1

g (yfﬂ; Ui (F,l (Vapaslars L(73), 03) )) ,

With Gauss-Legendre quadrature, the same nodes and weights are used for different functions;

this helps in yielding smooth numerical derivatives for numerical optimization via quasi-Newton.
2.5 Relationship with the TGLMM

In this subsection, we show what happens when all the bivariate copulas are bivariate normal (BVN)
and the univariate distribution of the random effects is the IV (u, o) distribution. One can easily deduce
that the within-study model in (2) is the same as in the TGLMM.

Furthermore, when the three bivariate copulas are BVN copulas with copula (correlation) pa-

rameters pi2, P13, Po3|1, the resulting distribution is the trivariate normal (TVN) with mean vector
T U% P120102  pP130103
p = (I(m),l(m2),1(m5))  and variance covariance matrix X = | p1207102 o2 02309073 ,
P130103 230203 U§

where pa3 = pagji/1 — p2ay/1 — p23p12p13. Therefore, the between-studies model in (3) assumes

that X = (X7, X5, X3) is TVN distributed, i.e., X ~ TVN(u, E).

With some calculus it can be shown that the joint likelihood in (5) becomes
N o o (o]
L(my, w2, m3,01,02,03,0) = H/ / / g(ym;yi+1,lil(%))ﬂ(%oosywoj571(5172)) X
g(yf+1§ ?/;F++, l_1($3>)¢123(9€17 T, w3; b, 2)dr1dradrs,

where ¢193(+; i, ) is the TVN density with mean vector p and variance covariance matrix 3. Hence,

this model is the same as the extended TGLMM in [6].



3 Small-sample efficiency—misspecification of the random effects distribution

An extensive simulation study is conducted (a) to gauge the small-sample efficiency of the ML
method, and (b) to investigate in detail the misspecification of the parametric margin or family of
copulas of the random effects distribution. We also include comparisons with the TGLMM [6], that
is a vine copula mixed model composed of BVN copulas and normal margins as shown in Subsection
2.5, as the current state of the art of the various meta-analytic approaches to handle non-evaluable
results. We don’t include either the intent-to-diagnose approach or the BGLMM that excludes the
non-evaluable subjects in our simulation study as Ma et al. [6] has already established that these
methods produce biased estimates in the presence of index test non-evaluable subjects.

In this simulation study we follow the configurations in Ma et al. [6]. We conduct simulation

studies under three missing scenarios:

e the probabilities for non-evaluable diseased and non-diseased subjects are the same, i.e., [~ (z4)

l_1($5) = 01,

e the probability for non-evaluable diseased subjects is smaller than the probability for non-

evaluable non-diseased subjects, i.e., [ 71 (zy) = 0.1 < 7 (z5) = 0.2;

e the probability for non-evaluable non-diseased subjects is smaller than the probability for non-

evaluable diseased subjects, i.e., [} (z4) = 0.2 > [71(z5) = 0.1.

All three scenarios satisfy the MAR assumption, and the first scenario also satisfies the missing com-
pletely at random assumption [22].

True sensitivity 7m; and specificity m, are 0.7 and 0.9, disease prevalence 73 is 0.25 and the vari-
ability parameters are 0y = 09 = 03 = 1l or 3 = 7 = 73 = 0.1 for normal or beta margin,
respectively. A moderate negative Kendall’s tau association of 735 = —0.5 is assumed between X
and X5, a moderate positive Kendall’s tau association of 733 = 0.5 is assumed between X; and X3,
and a moderate negative Kendall’s tau association of 7p3;; = —0.5 is assumed between X, and X3
given X;. Under each setting, 10,000 meta-analysis data sets are simulated with N = 30 studies in
each data set. The simulation process is as below:

Fort=1,...,N:

1. Simulate (u1,us, u3) from a C-vine C(-; 712, T3, To31) [23]. We convert from 7’s to the BVN,



Frank and (rotated) Clayton copula parameters 6’s via the relations

2

T = — arcsin(6), Q)
™

1—4971 4972 [) Stedt , 6<0
T = 1 _o 0 ¢ ) (6)

1—407" +4072 [ F=dt , 6>0

and

B 6/(0+2) , byO0°or180° )

T =0/(0+2) , by90° or270° °

in [24], [25], and [26], respectively.
2. Convert to beta or normal realizations via z; = [ (Fj’1 (uj, (), §j)> forj =1,2,3.

3. Simulate the study size n from a shifted gamma distribution [27], i.e., n ~ sGamma(a =

1.2, 8 = 0.01,1ag = 30) and round off to the nearest integer.

4. Generate (Yioo, Yio1, Yi10, Yi11, Yizo, Yiz1) from Mg (n, zo); see (1) for the elements of the proba-

bility vector zo.

From the simulation results it is revealed that the maximum likelihood estimates (MLEs) are not
affected by different missingness scenarios. Hence we provide here the simulation results for one
missingness scenario. The results for the other two missingness scenarios are provided in the tables
of the Supplementary Material. Tables 4 and 5 contain the resultant biases, standard deviations (SDs),
average theoretical variances vV , and root mean square errors (RMSEs), scaled by 100, for the MLEs
under different copula choices and margins under different copula and marginal choices from the vine
copula mixed model with normal (the SDs and V'V’s for the MLEs of ~;’s instead of ¢;’s are provided
for beta margins) and beta (the SDs and V'V’s for the MLEs of o;’s instead of 7;’s are provided for
normal margins) margins, respectively. The theoretical variances of the MLEs are obtained via the
gradients and the Hessian that were computed numerically during the maximization process. The true
(simulated) copula distributions are the Clayton copulas rotated by 90° for both the Ci5(-;712) and
Ch3(+; T231) copulas and the Clayton copula for the C'3(-; 713) copula.

Conclusions from the values in the tables are the following:

e ML with the true vine copula mixed model is highly efficient according to the simulated biases,

SDs and RMSE:s.

e The MLEs of 7;, 7 = 1,2, 3 are not robust to margin misspecification, e.g., in Table 4 (Table

5) where the true univariate margins are normal (beta) the scaled biases for the MLEs of m; for
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Table 4: Small sample of sizes N = 30 simulations (10* replications, n, = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances ( vV ), scaled by 100, for the MLE's under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C15(+;T12)
and C13(+; T93)1) copulas and the Clayton copula for the Cy3(+; T13) copula. The missing probability of diseased group is
smaller than non-diseased group, i.e., |~ (z4) = 0.1 < [7(x5) = 0.2. The SDs and V'V'’s for the MLEs of v; s instead
of o’s are provided for beta margins.

margin copula 1 YD) 3 01 09 03 T12 T13 T23|1

Bias  Tnormal BVN 0.19 -0.12 0.11 -7.96 -2.36 -190 -4.87 -3.33 16.76
Frank 0.22 -0.16 -0.27 -7.44 -147 -231 -6.24 -1.14 15.21

§ Cln{0°,90°} 0.32 -0.04 088 -696 1.92 -397 -3.73 -6.85 20.71
Ciln{0°,270°} 1.27 -0.22 0.01 -9.14 -1.80 1.15 494 -17.02 16.67

beta BVN -2.07 -3.57 4.04 - - - =393 -4.68 18.46

Frank -1.76 -3.56 3.55 - - - =590 -1.81 17.34

Cln{0°,90°} -1.82 -3.71 4.48 - - - -2.78 -9.76 19.03

Cin{0°,270°} -1.14 -3.72 4.15 - - - 5.39 -17.35 19.60

SD " normal BVN 437 1.86 3.55 17.84 16.56 14.73 15.38 13.20 23.98
Frank 4.61 193 3.60 18.59 17.28 14.81 16.66 14.04 25.02

§ Cin{0°,90°} 453 191 3.79 19.66 18.88 15.64 1428 17.85 24.96
Cln{0°,270°} 4.28 2.00 3.71 18.96 1848 17.35 27.31 17.87 22.77

beta BVN 395 227 337 397 3.03 335 1508 13.19 23.61

Frank 413 234 338 4.14 3.07 334 1645 14.03 25.55

Cin{0°,90°} 4.10 243 3.67 435 3.69 3.53 1452 17.58 26.02
Cin{0°,270°} 3.91 241 358 421 3.19 4.13 2697 18.78 22.80

VvV Tnormal BVN 395 1.77 336 16.76 15.84 13.52 12.73 11.05 18.65
Frank 390 1.74 3.20 17.04 16.13 13.19 12.38 10.96 17.46

5 Cln{0°,90°} 3.73 1.69 2.83 16.04 14.72 10.77 11.20 8.37 13.52
Ciln{0°,270°} 3.42 1.65 3.02 1586 14.61 13.07 11.66 7.72 10.44

beta BVN 354 200 3.04 378 254 3.02 12779 11.22 18.70

Frank 351 194 289 387 254 288 1268 11.04 17.78

Cln{0°,90°} 3.41 183 248 3.58 246 230 11.57 879 13.99
CIln{0°,270°} 3.13 1.83 2.70 3.53 231 2.82 1226 8.12 10.35

RMSE 'normal BVN 437 1.86 3.55 19.54 16.72 14.85 16.13 13.61 29.26
Frank 462 193 3.61 20.02 17.34 1499 17.79 14.09 29.28

§ Cln{0°,90°} 4.54 191 3.89 20.86 18.98 16.14 14.76 19.11 32.43
Ciln{0°,270°} 446 2.01 3.71 21.05 18.56 17.39 27.75 24.67 28.22

beta BVN 446 424 526 @ - - - 15.58 14.00 29.97

Frank 449 426 490 - - - 17.48 14.15 30.88

Cln{0°,90°} 449 4.44 5.79 - - - 1478 20.11 32.24

Ciln{0°,270°} 4.07 4.43 5.48 - - - 2750 25.57 30.06

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, wS}: The C13(+; 713) and

{C12(+;112), Ca3)1(+; Ta31) } pair copulas are Clayton rotated by w; and wo degrees, respectively.

the various vine copula mixed models with beta (normal) margins range from —2.07 (2.10) to

—1.14 (2.96).

e The SDs of 7, j = 1,2, 3 are not robust to margin misspecification, e.g., in Table 4 where the
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true univariate margins are normal the scaled SDs for the MLEs of 7; for the various extended
vine copula mixed models with normal margins range from 4.28 to 4.61, while for the various

extended vine copula mixed models with beta margins range from 3.91 to 4.13.

The MLEs of 7;, j = 1,2,3 are rather robust to bivariate copula misspecification, but their
biases increase when the assumed bivariate copula has tail dependence of opposite direction
from the true bivariate copula. For example, in Table 4 (Table 5) the scaled biases for the MLEs
of 7, for the various vine copula mixed models with normal (beta) margins range from 0.19
(0.64) to 0.32 (0.71), but the scaled bias rises to 1.27 (1.34) when the Clayton copula rotated by

270° is assumed for both the C'5(+; 712) and Cy3(+; Ta31) copulas.

The SDs of 7, 7 = 1,2, 3 are robust to bivariate copula misspecification, e.g., in Table 4 (Table
5) the scaled SDs for the MLEs of 7; for the various vine copula mixed models with normal

(beta) margins ranges from 4.28 (3.21) to 4.61 (3.38).

The MLEs of o orv;, j = 1,2, 3 are rather robust to bivariate copula misspecification, but their
biases increase when the assumed bivariate copula has tail dependence of opposite direction
from the true bivariate copula. For example, in Table 4 (Table 5) the scaled biases for the
MLE:s of o7 () for the various vine copula mixed models with normal (beta) margins range
from —7.96 ( —1.54 ) to —6.96 (—1.50), but the scaled bias drops to —9.14 (—1.91) when the

Clayton copula rotated by 270° is called for both the C'(-; 712) and Cy3(+; T231) copulas.

The SDs of o; or ; are robust to bivariate copula misspecification, e.g. in Table 4 the scaled
SDs of o, range from 17.84 to 18.96 and in Table 5 the scaled SDs of ~; range from 3.16 to
3.35.

The ML estimates of 7’s are robust to margin misspecification, as the copula remains invariant
under any series of strictly increasing transformations of the components of the random vector,
e.g., in Table 5 the scaled bias of 715 is —4.13 for the true extended vine copula mixed model
and —4.18 for an extended vine copula mixed model with the true bivariate copulas but normal

margins.

The SDs of 7’s are robust to margin misspecification (for the same reason as above), e.g., in

Table 5 the scaled SD of 715 is 15.01 for the true extended vine copula mixed model and 14.82
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for an extended vine copula mixed model with the true bivariate copulas but normal margins.

Table 5: Small sample of sizes N = 30 simulations (10* replications, n, = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances ( VvV ), scaled by 100, for the MLEs under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C12(-;T12)
and C13(+; T931) copulas and the Clayton copula for the C3(-; T13) copula. The missing probability of diseased group is

smaller than non-diseased group, i.e., 1= (z4) = 0.1 < [=*(x5) = 0.2. The SDs and N'V'’s for the MLEs of o;’s instead

of ;s are provided for normal margins.

margin  copula

S

Uy

UE;

4!

V2

V3

T12

713

T23)1

Bias f normal BVN
Frank
CIn{0°,90°}
CIn{0°,270°}
beta BVN
Frank
§ CIn{0°,90°}
CIn{0°,270°}

2.25
2.10
2.16
2.96
0.64
0.71
0.71
1.34

3.59
3.53
3.68
3.51
-0.02
-0.11
-0.01
-0.22

-2.79
-2.92
-2.54
-2.80
0.10
-0.13
0.19
0.20

-6.31
-71.57
-4.18
0.28
-6.72
-8.26
-4.13
-0.65

-2.51
-0.71
-2.36
-12.14
-3.62
-1.04
-5.44
-12.45

14.22
11.71
15.41
10.29
17.75
16.53
14.81
14.28

SD f normal BVN
Frank
CIn{0°,90°}
CIn{0°,270°}
beta BVN
Frank
§ CIn{0°,90°}
CIn{0°,270°}

3.50
3.68
3.66
3.44
3.25
3.38
3.38
3.21

1.60
1.66
1.65
1.71
1.86
1.96
1.94
2.01

2.77
2.80
291
2.85
2.60
2.61
2.74
2.70

17.23
18.74
14.82
28.32
17.38
19.16
15.01
29.16

15.58
16.76
20.92
20.78
15.53
16.66
20.93
22.00

30.77
31.27
28.61
29.717
31.40
32.36
29.30
29.70

VvV Tnormal BVN
Frank
CIn{0°,90°}
CIn{0°,270°}
beta BVN
Frank
§ CIn{0°,90°}
Cln{0°,270°}

3.25
3.21
3.14
2.89
3.05
3.04
3.00
2.78

1.43
1.43
1.35
1.37
1.80
1.79
1.63
1.71

2.63
2.53
2.34
2.51
2.48
2.40
2.16
240

14.34
13.08
11.83
11.18
14.61
13.96
12.54
12.37

13.37
13.11
10.51
10.26
13.44
13.34
11.10
10.98

24.48
21.31
16.45
13.86
24.71
22.40
17.33
14.92

RMSE ' normal BVN
Frank
CIn{0°,90°}
CIn{0°,270°}
beta BVN
Frank
§ CIn{0°,90°}
CIn{0°,270°}

4.16
4.24
4.25
4.53
3.31
3.46
3.45
3.48

3.93
3.90
4.03
3.90
1.86
1.96
1.94
2.03

3.93
4.05
3.87
4.00
2.60
2.62
2.75
2.71

3.50
3.56
3.69
3.79

3.00
3.13
3.26
3.27

249
2.49
2.65
2.82

18.35
20.21
15.39
28.32
18.63
20.87
15.56
29.17

15.78
16.77
21.05
24.07
15.94
16.69
21.62
25.27

33.90
33.39
32.50
31.50
36.07
36.33
32.83
32.95

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, wS}: The C3(+; 713) and

{C12(-;712), Cas)1(+; T23)1) } pair copulas are Clayton rotated by w; and w, degrees, respectively.

These results are in line with our previous studies [12, 16—-19]. The estimation of the univariate

meta-analytic parameters is a univariate inference, and hence it is the univariate marginal distribution
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that matters and not the type of the copula. The extended TGLMM [6] is restricted to normal margins,
hence as shown in Table 5 and Supplementary Tables 3 and 4, leads to biased estimates of the meta-
analytic parameters of sensitivity, specificity and prevalence when the true univariate distribution of
the latent sensitivity, specificity, and disease prevalence is beta. This is due to the fact that the vine
copula mixed models with beta margins operate on the original scale of sensitivity, specificity and

disease prevalence, which is not the case for the TGLMM that solely operates on a transformed scale.
4 Re-evaluation of the meta-analysis of coronary CT angiography studies

We illustrate the use of the vine copula mixed model for the meta-analysis of diagnostic accuracy
studies in the presence of non-evaluable subjects by re-analysing the data on 26 studies from a sys-
tematic review for diagnostic accuracy studies of coronary CT angiography [3, 6].

We fit the vine copula mixed model for all different permutations, choices of parametric families
of copulas and margins. To make it easier to compare strengths of dependence, we convert from 7 to
the BVN, Frank and (rotated) Clayton copula parameter 6 via the relations in (5), (6), and (7). Since
the number of parameters is the same between the models, we use the maximized log-likelihood that
corresponds to the estimates as a rough diagnostic measure for goodness of fit between the models.

In Table 6 we present the results from the first permutation, as a different indexing didn’t lead to
any significant differences due to the small sample size. This is consistent with our previous study
on trivariate vine copula mixed models [12]. The log-likelihoods showed that a vine copula mixed
model with the Clayton copula for the Ci5(+; 712) copula and the Clayton copula rotated by 90° for
both the Ci3(;713) and Cag)1(+; Te31) copulas and beta margins provides the best fit (Table 6). It
is also revealed that a vine copula mixed model with the sensitivity, specificity, and prevalence on
the original scale provides better fit than the TGLMM, which models the sensitivity, specificity and
prevalence on a transformed scale.

Though typically the focus of meta-analysis has been to derive the summary-effect estimates,
there is increasing interest in drawing predictive inference. A summary receiver operating charac-
teristic (SROC) curve has been deduced for the bivariate copula mixed model [16] through a median
regression curve of X; on X,. However, as there is no priori reason to regress X; on X5 instead of the
other way around, Nikoloulopoulos [16] has also provided a median regression curve of X5 on X;.

In addition to using just median regression curves, quantile regression curves with a focus on high
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Table 6: Maximised log-likelihoods, ML estimates and standard errors (SE) of the trivariate vine copula mixed models
for diagnostic accuracy studies of coronary CT angiography.

Normal margins

BVN T ClIn{0°,90°} ClIn{0°,270°} Frank
Est. SE Est. SE Est. SE Est. SE
™ 0.982  0.006 0.982  0.006 0.982  0.006 0.980  0.005
o 0.890  0.021 0.892  0.021 0.891  0.021 0.885  0.022
3 0.481  0.040 0.482  0.039 0.484  0.039 0.478  0.039
oy 0.687  0.343 0.670  0.347 0.684  0.328 0.478  0.291
o9 0.866  0.200 0.863  0.198 0.843  0.189 0.878  0.190
o3 0.790  0.115 0.781  0.094 0.808  0.104 0.753  0.118
Ti2 0.539  0.374 0391 0375 0.439  0.364 0.815  0.203
T13 -0.110  0.227 0.018  0.346 -0.058  0.108 -0.026  0.260
s 0231 0312 -0.320  0.281 -0.040  0.128 0911  0.132
log L —194.9 —194.3 —195.4 —194.4
Beta margins
BVN ClIn{0°,90°} ® ClIn{0°,270°} Frank
Est. SE Est. SE Est. SE Est. SE
™ 0.978  0.006 0.977  0.006 0.978  0.005 0.977  0.005
o 0.864  0.022 0.865  0.022 0.865  0.021 0.856  0.023
3 0.484  0.034 0.483  0.032 0.487  0.032 0.480  0.034
o 0.010  0.011 0.009  0.011 0.009  0.011 0.005  0.006
Yo 0.076  0.031 0.075  0.031 0.073  0.029 0.081  0.031
v3 0.118  0.027 0.115  0.022 0.123  0.025 0.110  0.028
12 0519  0.367 0.407  0.456 0.465  0.490 0.797  0.205
13 -0.105  0.225 0.033 0272 -0.057  0.107 -0.016  0.252
s 0241 0.282 0345  0.234 -0.040  0.124 0911  0.104
log L —194.5 —193.9 —195.2 —194.0

§: Best fit; T: The resulting model is the same as the TGLMM; Cln{w$, w$}: The Cy2(+; 712) and {Cy3(; 713),
Ca3)1(+; T23)1) } pair copulas are Clayton rotated by w; and wo degrees, respectively.

(¢ = 0.99) and low quantiles (¢ = 0.01), which are strongly associated with the upper and lower tail
dependence imposed from each parametric family of copulas, have also been proposed [16]. These
can been seen as confidence regions of the median regression SROC curve. Finally, a contour plot
of the the random effects distribution at the ML estimate has been proposed to preserve the nature
of a bivariate response instead of a univariate response along with a covariate [16]. The contour plot
can be seen as the predictive region of the estimated pair of sensitivity and specificity. The prediction
region of the copula mixed model does not depend on the assumption of bivariate normality of the
random effects as in the TGLMM and therefore has a non-elliptical shape.

Figure 1 demonstrates the SROC curves and summary operating points (a pair of average sensi-

tivity and specificity) with a confidence and a predictive region from the best fitted and BVN copula
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Figure 1: Contour plots (predictive region) and quantile regression curves from the best fitted and BVN copula with
normal (upper panel graph) and beta (lower panel graph) margins. For normal margins, the axes are in logit scale since
we also plot the estimated contour plot of the random effects distribution as predictive region; this has been estimated for

the logit pair of (Sensitivity, Specificity).
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§: Best fit; : The resulting model is the same as the TGLMM; B: summary point; o: study estimate; Red and green lines
represent the quantile regression curves x1 := Z1 (22, ¢q) and x2 := Za(x1, q), respectively; for ¢ = 0.5 solid lines and
for ¢ € {0.01,0.99} dotted lines (confidence region).

with normal (upper panel graph) and beta (lower panel graph) margins. From the graph it is apparent
that better prediction is achieved when a Clayton copula with beta margins is assumed for the random

effects distribution of the latent sensitivity and specificity.
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5 Discussion

We have exemplified the vine copula mixed model for trivariate meta-analysis of diagnostic test ac-
curacy studies [12] in the presence of non-evaluable subjects. It includes the extended TGLMM [6]
as a special case and it can be seen to provide an improvement over the latter on the basis of the log-
likelihood principle. Hence, superior statistical inference for the meta-analytic parameters of interest
can be achieved when there is a belief in an MAR assumption.

This improvement relies on the fact that the random effects distribution is expressed via vine
copulas. The TVN distribution of the transformed latent proportions in the TGLMM has restricted
properties, 1.e., a linear correlation structure and normal margins. Copulas break the model building
process into two separate steps, the choice of arbitrary marginal distributions, and the choice of an
arbitrary copula function (dependence structure). Hence, we can use beta instead of normal margins
to model the latent proportions in the original scale. The choice of the copula couldn’t be other than
the class of vine copulas. Vine copulas allow for flexible tail dependence, different from assuming
simple linear correlation structures, tail independence and normality [13], which makes them well
suited for meta-analysis of diagnostic tests as the traditional assumption of multivariate normality is
invalid.

It has been reported in the literature that in the TGLMM estimation problems relating to the
correlation parameters exist, such as non-convergence and a singular covariance matrix, particularly
if the sample size is small [8]. Nevertheless, we rather propose a numerically stable ML estimation
technique based on Gauss-Legendre quadrature; the crucial step is to convert from independent to
dependent quadrature points. The application example and simulations use a sufficient number of
individual studies, i.e., N = 30. For meta-analyses with fewer studies one can simplify the model
using a truncated at level 1 vine copula. We refer the interested reader to our previous study on
trivariate vine copula mixed models [12] for simulations and various application examples that involve
a small number of studies and call this notion of a truncated at level 1 vine copula. The improvement
over the reduction of the dependence parameters is small (one dependence parameter less), but for
estimation purposes this is extremely useful for a small number of studies.

In an era of evidence-based medicine, decision makers need high-quality procedures such as the
SROC curves to support decisions about whether or not to use a diagnostic test in a specific clinical

situation. Different SROC curves essentially show the effect of different model (random effect distri-
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bution) assumptions, since SROC is an inference that depends on the joint distribution. For the vine
copula mixed model, the model parameters (including dependence parameters), the choice of the pair
copulas, and the choice of the margin affect the shape of the SROC curve [16], while the SROC curve
from the TGLMM is severely restricted to the elliptical (linear) shape.

A recurrent theme underlying our methodology for analysis in the presence of missing data is the
need to make assumptions that cannot be verified based on the observed data. Throughout this paper
we adopted the assumption of MAR. Nevertheless, it is natural to be concerned about robustness or
sensitivity of inferences to departures from the MAR assumption. Future research will focus to handle

the case when the non-evaluable subjects will be treated as non-missing categories.
Software

R functions to derive estimates and simulate from the vine copula mixed model for trivariate meta-
analysis of diagnostic studies in the presence of non-evaluable subjects are part of the R package
CopulaREMADA [28]. The data and code used in Section 4 are given as code examples in the

package.
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Table 1: Small sample of sizes N = 30 simulations (10* replications, ng = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances ( vV ), scaled by 100, for the MLEs under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C12(-;T12)
and C13(+; Ta3)1) copulas and the Clayton copula for the C13(-; 713) copula. The missing probabilities for diseased and

non-diseased subjects are the same, i.e., |"*(x4) = [=(x5) = 0.1. The SDs and V'V'’s for the MLEs of ~;’s instead of
o;’s are provided for beta margins.

margin Copula ™1 9 3 01 09 03 T12 713 7'23|1

Bias  "normal BVN 0.16 -0.12 0.10 -7.85 -2.23 -1.73 -4.67 -3.19 17.21
Frank 0.20 -0.16 -0.27 -7.31 -1.24 -2.13 -595 -0.96 15.46

§ Ciln{0°,90°} 0.30 -0.05 090 -6.62 2.00 -394 -3.64 -693 20.98
Ciln{0°,270°} 1.25 -0.24 0.04 -9.21 -1.58 1.69 531 -16.72 17.55

beta BVN -2.09 -3.59 4.05 - - - -4.02 -453 19.03

Frank -1.80 -3.56 3.55 - - - =586 -1.62 1751

CIln{0°,90°} -1.82 -3.76 4.52 - - - -2.67 -10.09 19.11

Cln{0°,270°} -1.15 -3.75 4.22 - - - 5.06 -16.89 20.57

SD " normal BVN 434 1.85 3.54 17.82 1643 1491 15.14 13.23 23.63
Frank 4.61 193 3.59 18.57 17.18 1498 16.33 14.19 24.25

§ Cln{0°,90°} 451 191 3.79 19.69 18.66 15.77 13.85 17.67 24.59
Ciln{0°,270°} 4.29 2.00 3.72 18.96 18.44 17.75 26.62 17.98 22.34

beta BVN 393 227 336 397 3.00 338 14.80 13.22 23.57

Frank 412 233 336 4.17 3.07 336 16.02 14.04 24.82

Cln{0°,90°} 4.09 245 3.63 440 3.72 3.55 1394 17.42 25.30
Ciln{0°,270°} 3.90 2.41 3.61 4.23 3.18 4.24 2648 1894 2244

VvV Tnormal BVN 396 1.75 336 16.77 1549 13.55 1237 11.02 18.24
Frank 3.88 1.72 3.18 17.00 15.72 13.16 12.01 10.82 17.07

5 Cln{0°,90°} 3.74 1.67 2.82 16.10 14.39 10.77 1093 8.33 13.22
Ciln{0°,270°} 3.39 1.62 298 1577 14.11 13.03 11.19 7.60 10.05

beta BVN 354 198 3.04 377 249 3.02 1246 11.15 17.99

Frank 352 192 289 388 248 288 1242 1092 17.50

Cln{0°,90°} 3.40 1.81 247 3.59 241 230 1121 8.74 13.76
Ciln{0°,270°} 3.13 1.80 2.70 3.51 2.24 2.84 11.68 8.08 10.21

RMSE T normal BVN 434 1.85 3.54 1947 16.58 15.01 15.84 13.60 29.23
Frank 462 193 3.60 19.96 17.23 15.13 17.38 14.22 28.76

5 Cln{0°,90°} 4.52 191 390 20.78 18.77 16.26 14.32 18.98 32.32
Ciln{0°,270°} 4.47 2.01 3.72 21.08 18.50 17.83 27.15 24.55 28.41

beta BVN 445 424 526 @ - - - 1534 1397 30.29

Frank 449 426 4.89 - - - 17.06 14.14 30.37

Cln{0°,90°} 448 449 580 - - - 1419 20.13 31.71

CIn{0°,270°} 4.06 4.46 5.5 - - - 2696 25.37 30.44

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, w$}: The C13(+; 713) and
{C12(-;712), Ca3)1(+; T23)1) } pair copulas are Clayton rotated by w; and w, degrees, respectively.



Table 2: Small sample of sizes N = 30 simulations (10* replications, ng = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances ( vV ), scaled by 100, for the MLEs under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C12(-;T12)
and C13(-; Ta31) copulas and the Clayton copula for the C3(-; T13) copula. The missing probability of diseased group is
larger than non-diseased group, i.e., |1 (x4) = 0.2 > 71 (x5) = 0.1. The SDs and V'V'’s for the MLEs of ;s instead of
o;’s are provided for beta margins.

margin Copula ™1 9 3 01 09 03 T12 T13 7'23|1

Bias  "normal BVN 0.23 -0.12 0.10 -8.23 -237 -192 -497 -3.36 17.51
Frank 0.27 -0.16 -0.25 -7.81 -1.46 -2.34 -6.30 -1.07 15.89

§ Ciln{0°,90°} 0.38 -0.05 0.88 -7.15 197 -390 -3.75 -6.58 20.99
Cin{0°,270°} 1.33 -0.25 0.08 -9.77 -1.73 139 4.01 -16.30 17.06

beta BVN -1.95 -3.60 4.07 - - - -4.30 -4.84 19.04

Frank -1.66 -3.58 3.60 - - - -6.18 -1.87 18.03

CIln{0°,90°} -1.68 -3.75 4.50 - - - =271 -9.87 18.86

Cin{0°,270°} -1.01 -3.78 4.24 - - - 390 -16.65 19.97

SD T normal BVN 440 1.85 3.56 18.37 1630 1491 1549 13.48 23.90
Frank 4.64 192 359 19.06 16.96 14.99 16.81 14.49 25.15

§ Cln{0°,90°} 4.61 192 3.81 20.28 18.54 15.72 14.08 18.15 24.63
Ciln{0°,270°} 4.30 2.00 3.74 19.55 18.17 17.63 27.34 18.38 22.75

beta BVN 397 227 336 4.07 299 338 1525 1349 23.76

Frank 413 233 337 425 3.04 336 16.69 1445 25.94

Cln{0°,90°} 4.16 245 3.64 444 370 3.54 1429 1792 25.75
Ciln{0°,270°} 3.92 243 3.61 434 3.17 4.18 27.32 19.34 22.54

VvV Tnormal BVN 4.03 1.75 3.37 17.28 15.51 13.54 12.79 11.31 18.65
Frank 394 1.72 3.19 1747 15.70 13.15 1229 11.09 17.52

5 Cln{0°,90°} 3.80 1.67 2.83 16.57 14.39 10.81 11.09 844 13.48
Cin{0°,270°} 3.46 1.63 3.00 1630 14.13 1299 11.20 7.76 10.23

beta BVN 358 198 3.05 3.88 249 3.01 1292 11.44 18.54

Frank 356 192 289 399 247 287 1274 11.23 17.82

Cln{0°,90°} 345 181 247 3.66 239 229 1144 8.84 1393
Cln{0°,270°} 3.18 1.80 2.71 3.62 2.23 2.84 11.77 823 10.27

RMSE T normal BVN 440 1.86 3.56 20.13 1647 15.04 16.27 13.90 29.63
Frank 465 193 3.60 20.60 17.02 15.17 17.95 14.53 29.75

§ Cln{0°,90°} 4.62 192 392 21.51 18.65 16.20 14.57 19.31 32.36
Cln{0°,270°} 4.50 2.01 3.74 21.86 18.25 17.68 27.63 24.57 28.44

beta BVN 443 425 528 - - - 15.84 14.33 30.45

Frank 445 427 493 - - - 17.80 14.58 31.59

Cln{0°,90°} 4.49 4.48 5.79 - - - 1454 2046 3192

CIn{0°,270°} 4.05 4.49 5.7 - - - 2759 2552 30.11

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, w$}: The C13(+; 713) and
{C12(-;712), Ca3)1(+; T23)1) } pair copulas are Clayton rotated by w; and w, degrees, respectively.



Table 3: Small sample of sizes N = 30 simulations (10* replications, ng = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances ( VvV ), scaled by 100, for the MLEs under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C12(-;T12)
and C13(+; Ta3)1) copulas and the Clayton copula for the C13(+; T13) copula. The missing probabilities for diseased and
non-diseased subjects are the same, i.e., 1 (x4) = " (x5) = 0.1. The SDs and 'V ’s for the MLEs of o;’s instead of
;s are provided for normal margins.

margin  copula T o T3 gi! Y2 3 T12 T13 T23)1

Bias " normal BVN 230 3.59 -2.78 - - - -5.71 -2.61 14.54
Frank 2.17 3.51 -2.89 - - - -6.96 -0.70 12.33

CIln{0°,90°} 2.22 3.67 -2.52 - - - -4.04 -2.62 15.72

Cln{0°,270°} 2.98 3.51 -2.79 - - - 1.31 -12.10 10.89

beta BVN 0.65 -0.02 0.10 -1.50 -042 -0.57 -648 -3.65 18.12

Frank 0.73 -0.12 -0.12 -1.52 -0.23 -0.69 -7.85 -0.99 17.17

§ CIln{0°,90°} 0.72 -0.02 0.21 -1.54 -0.09 -1.04 -3.92 -590 15.13
CIn{0°,270°} 1.35 -0.24 0.21 -1.95 -0.26 -0.13 -0.33 -12.28 15.11

SD " normal BVN 3.50 1.59 277 16.26 20.91 13.08 17.04 15.65 30.27
Frank 3.67 1.65 281 16.71 22.07 13.12 18.44 1695 31.64

CIln{0°,90°} 3.68 1.64 291 1745 21.86 13.91 14.80 20.88 28.19
CIn{0°,270°} 3.44 1.71 2.86 17.13 23.36 15.00 28.26 20.83 29.38

beta BVN 328 1.87 261 316 291 242 17.13 15.64 31.02

Frank 340 197 262 325 3.08 239 18.87 1691 32.42

5 CIln{0°,90°} 3.41 195 274 332 3.19 246 1497 2090 28.71
Cln{0°,270°} 3.21 2.02 2.70 3.27 320 2.85 2891 22.01 29.34

V'V Tnormal BVN 325 142 2.63 1495 20.02 11.74 14.03 13.32 23.34
Frank 320 1.42 253 1490 20.51 11.56 12.72 13.04 20.91

CIln{0°,90°} 3.13 1.34 2.34 1448 18.15 10.00 11.35 10.33 15.90
CIn{0°,270°} 2.87 1.35 2.48 14.04 18.83 11.58 10.43 10.07 13.53

beta BVN 305 1.78 248 3.01 277 230 1445 1343 24.36
Frank 3.03 1.77 239 3.01 286 223 13.67 13.25 22.08

§ CIln{0°,90°} 298 1.60 2.15 287 252 187 12.01 10.94 16.58
CIn{0°,270°} 2.77 1.68 239 278 263 229 11.70 10.87 1447

RMSE fnormal BVN 419 393 392 - - - 1797 15.87 33.58
Frank 427 3.88 4.03 - - - 1971 1696 33.96
CIln{0°,90°} 4.30 4.02 3.85 - - - 1535 21.05 32.28
CIn{0°,270°} 4.55 3.90 3.99 - - - 2829 24.09 31.33

beta BVN 334 1.87 261 350 294 248 18.32 16.07 35.93
Frank 348 197 262 359 3.09 249 2044 1694 36.69

5 CIln{0°,90°} 3.48 195 275 3.66 3.19 267 1547 21.72 3245

Cln{0°,270°} 3.48 2.03 2.71 3.81 321 285 2891 2521 3345

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, w$}: The C13(+; 713) and
{C12(-;712), Ca3)1(+; T23)1) } pair copulas are Clayton rotated by w; and w, degrees, respectively.



Table 4: Small sample of sizes N = 30 simulations (10* replications, ng = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances ( VvV ), scaled by 100, for the MLEs under different copula choices
and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90° for both the C12(-;T12)
and C13(-; Ta31) copulas and the Clayton copula for the C3(-; T13) copula. The missing probability of diseased group is
larger than non-diseased group, i.e., |~'(x4) = 0.2 > [71(x5) = 0.1. The SDs and V'V'’s for the MLEs of o;’s instead
of ;s are provided for normal margins.

margin  copula T o T3 gi! Y2 3 T12 T13 T23)1

Bias  fnormal BVN 231 3.61 -279 - - - -6.23 -2.45 14.65
Frank 220 3.54 -290 - - - =742 -0.79 12.08

CIln{0°,90°} 2.22 3.70 -2.55 - - - -4.31 -2.08 15.57

Cln{0°,270°} 2.99 3.54 -2.79 - - - 0.35 -11.53 10.19

beta BVN 0.72 -0.01 0.10 -1.54 -040 -0.62 -6.84 -3.68 17.82

Frank 0.81 -0.11 -0.11 -1.54 -0.22 -0.73 -8.34 -1.09 16.99

§ CIn{0°,90°} 0.79 0.00 0.20 -1.60 -0.08 -1.05 -3.90 -5.64 15.04
CIn{0°,270°} 1.41 -0.23 0.23 -1.99 -0.23 -0.23 -0.77 -11.75 14.12

SD " normal BVN 3.55 1.58 278 16.73 2095 13.20 17.76 16.29 31.53
Frank 370 1.65 2.80 17.14 22.15 13.31 19.18 17.27 31.96

Cln{0°,90°} 3.74 1.64 292 17.87 22.03 14.09 15.23 21.30 28.90
Cln{0°,270°} 3.48 1.70 2.86 17.51 23.51 14.93 28.85 21.60 29.88

beta BVN 331 1.86 261 324 291 243 18.09 1645 32.47

Frank 343 197 262 333 3.08 240 1993 1741 33.82

5 CIn{0°,90°} 345 195 275 338 320 247 1543 21.32 29.24
CIn{0°,270°} 3.24 2.02 272 335 325 280 29.75 2291 29.87

V'V Tnormal BVN 331 1.41 2.62 1549 20.03 11.73 14.52 13.76 24.73
Frank 326 141 253 1541 20.53 11.56 12.93 13.30 21.08

CIln{0°,90°} 3.21 1.34 2.35 15.03 18.28 10.06 11.59 10.53 16.16
CIn{0°,270°} 291 1.34 247 14.57 18.87 11.53 10.40 10.23 13.70

beta BVN 3.11 1.78 248 3.11 277 229 15.05 1390 25.80
Frank 3.09 1.77 239 3.11 286 222 14.04 13.54 2291

§ Cln{0°,90°} 3.04 1.61 2.16 296 254 188 1229 11.23 17.11
CIn{0°,270°} 2.83 1.68 239 288 266 227 1191 11.19 1498

RMSE fnormal BVN 423 394 393 - - - 18.83 1648 34.76
Frank 430 390 4.03 - - - 2056 17.29 34.17
Cln{0°,90°} 4.35 4.05 3.88 - - - 15.83 21.40 32.83
CIn{0°,270°} 4.58 3.92 3.99 - - - 28.85 2448 31.57

beta BVN 338 1.86 262 359 294 250 19.34 16.85 37.04
Frank 352 197 263 3.67 3.09 251 21.60 17.45 37.85

5 CIln{0°,90°} 3.54 195 276 3.75 320 268 1591 22.05 32.88

CIn{0°,270°} 3.53 2.03 2.73 390 3.26 281 29.76 25.74 33.04

§: True model; T: The resulting model is the same as the TGLMM; Cln{w$, w$}: The C13(+; 713) and
{C12(-;712), Ca3)1(+; T23)1) } pair copulas are Clayton rotated by w; and w, degrees, respectively.
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