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Abstract

A recent paper proposed an extended trivariate generalized linear mixed model (TGLMM) for

synthesis of diagnostic test accuracy studies in the presence of non-evaluable index test results.

Inspired by the aforementioned model we propose an extended trivariate vine copula mixed model

that includes the TGLMM as special case, but can also operate on the original scale of sensitivity,

specificity, and disease prevalence. The performance of the proposed vine copula mixed model

is examined by extensive simulation studies in comparison with the TGLMM. Simulation studies

showed that the TGLMM leads to biased meta-analytic estimates of sensitivity, specificity, and

prevalence when the univariate random effects are misspecified. The vine copula mixed model

gives nearly unbiased estimates of test accuracy indices and disease prevalence. Our general

methodology is illustrated by meta-analysing coronary CT angiography studies.

Key Words: Diagnostic tests; multivariate meta-analysis; prevalence, sensitivity, specificity, sum-

mary receiver operating characteristic curves.

1 Introduction

Synthesis of diagnostic test accuracy studies is the most common medical application of multivariate

meta-analysis [1–3]. The purpose of a meta-analysis of diagnostic test accuracy studies is to combine

information over different studies, and provide an integrated analysis that will have more statistical

power to detect an accurate diagnostic test than an analysis based on a single study.

Diagnostic test accuracy studies observe the result of a gold standard procedure that defines the

presence or absence of a disease and the result of a diagnostic test. The accuracy of the diagnostic test

is commonly measured by a pair of indices such as sensitivity and specificity. Sensitivity is defined
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as the probability of testing positive given a person being diseased and specificity is defined as the

probability of testing negative given a person being non-diseased [3]. The diagnostic test accuracy

studies typically report the number of true positives (diseased subjects correctly diagnosed), false pos-

itives (non-diseased subjects incorrectly diagnosed as diseased), true negatives (non-diseased subjects

correctly diagnosed as non-diseased) and false negatives (diseased subjects incorrectly diagnosed as

non-diseased). However, diagnostic test outcomes can be non-evaluable [4]. This is the case for coro-

nary computed tomography (CT) angiography studies which have non-evaluable results of index test

in various ways such as when transferring a segment/vessel to a patient based evaluation [5].

In meta-analysis of diagnostic test accuracy studies, the existence of non-evaluable subjects is an

important issue that could potentially lead to biased estimates of index test accuracy [5, 6]. Schuetz et

al. [5] studied different ad-hoc approaches dealing with diagnostic test non-evaluable subjects, such

as non-evaluable subjects are excluded from the study, non-evaluable positives (non-evaluable dis-

eased subjects) are taken as true positives and non-evaluable negatives (non-evaluable non-diseased

subjects) are taken as false positives, non-evaluable positives are taken as false negatives and non-

evaluable negatives are taken as true negatives, and non-evaluable positives as false negatives and

non-evaluable negatives as false positives. In all of these approaches, Schuetz et al. [5] used the

bivariate generalized linear mixed model (BGLMM) [7], which assumes independent binomial dis-

tributions for the true positives and true negatives, conditional on the latent pair of transformed (via

a link function) sensitivity and specificity in each study. They concluded that excluding the index

test non-evaluable subjects leads to overestimation of the meta-analytic estimates of sensitivity and

specificity and recommended the intent-to-diagnose approach by treating non-evaluable positives as

false negatives and non-evaluable negatives as false positives.

Ma et al. [6] proposed a trivariate generalized linear mixed model (TGLMM) approach by treat-

ing the non-evaluable subjects as missing data under a missing at random (MAR) assumption. The

TGLMM was originaly proposed by Chu et al. [8] to account for potential correlations among sen-

sitivity, specificity and disease prevalence as many empirical studies have shown the assumption of

independence between the sensitivity/specificity with disease prevalence for a dichotomous disease

status is likely to be violated [9–11]. Ma et al. [6] with extensive simulation studies have shown that

(a) the intent-to-diagnose approach [5] under-estimates both meta-analytic estimates of sensitivity

and specificity, (b) excluding the index test non-evaluable subjects does not lead to biased estimates
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of sensitivity and specificity, but leads to biased estimates of prevalence, and (c) the TGLMM gives

nearly unbiased estimates of the meta-analytic estimates of sensitivity, specificity and prevalence.

In this paper, inspired by Ma et al. [6], we extend the vine copula mixed model for trivariate meta-

analysis of diagnostic test accuracy studies accounting for disease prevalence [12] to additionally

account for non-evaluable subjects. The advantages of this methodology are that (a) the extended

TGLMM is included as a special case, (b) sensitivity, specificity, and prevalence can be modelled in

the original scale, and (c) tail dependencies and asymmetries can be provided.

The remainder of the paper proceeds as follows. Section 2 introduces the proposed model for

diagnostic test accuracy studies in the presence of non-evaluable subjects and discusses its relationship

with the extended TGLMM. Section 3 contains small-sample efficiency calculations to investigate

the effect of misspecifying the random effects distribution on parameter estimates and standard errors

and compares the method with the TGLMM approach. Section 4 re-evaluates the meta-analysis of

coronary CT angiography studies [5, 6] using the proposed vine copula mixed model approach. We

conclude with some discussion in Section 5, followed by a brief section with software details.

2 The vine copula mixed model in the presence of non-evaluable subjects

In this section, we extend the trivariate vine copula mixed model [12] to handle non-evaluable results

and discuss its relationship with the extended TGLMM.

2.1 Notation

We first introduce the notation used in this paper. Let i be an index for the individual studies, j an

index for the test outcome (0:negative; 1:positive; 2: non-evaluable) and k an index for the disease

outcome (0: non-diseased; 1: diseased). The count data yijk, i = 1, ..., N, j = 0, 1, 2, k = 0, 1,

corresponding to a combination of index test j and disease outcome k in study i, form a 3 × 2 table

(Table 1). This table has an additional row that represents the counts of non-evaluable outcomes,

hence, extends the “classic” 2× 2 table (Table 2).

2.2 The within-study model

For each study i, the within-study model assumes that the number of true negatives Yi00, false neg-

atives Yi01, false positives Yi10, true positives Yi11, non-evaluable negatives Yi20, and non-evaluable

positives Yi21 are multinomially distributed given X = x, where X = (X1, X2, X3, X4, X5) denotes
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Table 1: Data (including the non-evaluable outcomes) from an individual study in a 3× 2 table.

Disease (by gold standard)
Test − + Total
− yi00 yi01 yi0+
+ yi10 yi11 yi1+
Non-evaluable yi20 yi21 yi2+
Total y∗i+0 y∗i+1 y∗i++

Table 2: Data (excluding the non-evaluable outcomes) from an individual study in a 2× 2 table.

Disease (by gold standard)
Test − + Total
− yi00 yi01 yi0+
+ yi10 yi11 yi1+
Total yi+0 yi+1 yi++

the transformed (via a link function l(·)) latent vector of sensitivity, specificity, disease prevalence,

probability of non-evaluable positives and probability of non-evaluable negatives, viz.

(Yi00, Yi01, Yi10, Yi11, Yi20, Yi21, )|(X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5) ∼M6

(
y∗i++,$

)
, ‡

where

$ = ($00, $01, $10, $11, $20, $21) (1)

=
(
l−1(x2)

(
1− l−1(x3)

)(
1− l−1(x5)

)︸ ︷︷ ︸
$00

,
(
1− l−1(x1)

)
l−1(x3)

(
1− l−1(x4)

)︸ ︷︷ ︸
$01

,

(
1− l−1(x2)

)(
1− l−1(x3)

)(
1− l−1(x5)

)︸ ︷︷ ︸
$10

, l−1(x1)l
−1(x3)

(
1− l−1(x4)

)︸ ︷︷ ︸
$11

,

(
1− l−1(x3)

)
l−1(x5)︸ ︷︷ ︸

$20

, l−1(x3)l
−1(x4)︸ ︷︷ ︸

$21

)
is derived by Ma et al. [6] under an MAR assumption.

The multinomial probability mass function (pmf)

y∗i++!

yi00!yi01!yi10!yi11!yi20!yi21!

2∏
j=0

1∏
k=0

$
yijk
jk

decomposes into a product of independent binomial pmfs given the random effects, viz.

g
(
yi11; yi+1, l

−1(x1)
)
g
(
yi00; yi+0, l

−1(x2)
)
g
(
y∗i+1; y

∗
i++, l

−1(x3)
)
g
(
yi21; y

∗
i+1, l

−1(x4)
)
g
(
yi20; y

∗
i+0, l

−1(x5)
)
,

where

g
(
y;n, π

)
=

(
n

y

)
πy(1− π)n−y, y = 0, 1, . . . , n, 0 < π < 1,

‡MT

(
n,p

)
is shorthand notation for the multinomial distribution; T is the number of cells, n is the number of

observations, and p = (p1, . . . , pT ) with p1 + . . .+ pT = 1 is the T -dimensional vector of success probabilities.
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is the binomial pmf. Hence, the within-study model actually assumes that

Yi11|X1 = x1 ∼ Binomial
(
yi+1, l

−1(x1)
)
;

Yi00|X2 = x2 ∼ Binomial
(
yi+0, l

−1(x2)
)
; (2)

Y ∗i+1|X3 = x3 ∼ Binomial
(
y∗i++, l

−1(x3)
)
,

and

Yi21|X4 = x4 ∼ Binomial
(
y∗i+1, l

−1(x4)
)
;

Yi20|X5 = x5 ∼ Binomial
(
y∗i+0, l

−1(x5)
)
.

2.3 The between-studies model

Under the MAR assumption, (X1, X2, X3) are independent of the missing probabilities (X4, X5),

hence the joint likelihood factors into two components, one involving only the transformed sensitivity

x1, specificity x2 and disease prevalence x3, and the other involving only the transformed proba-

bilities of non-evaluable positives x4 and non-evaluable negatives x5. Hence, the methodology of

Nikoloulopoulos [12] can be applied to the first likelihood component to infer about the sensitivity,

specificity and disease prevalence.

Nikoloulopoulos [12] proposed a vine copula mixed model as an extension of the TGLMM by

rather using a vine copula representation for the random effects distribution of the latent sensitivity,

specificity and disease prevalence. The trivariate vine copula can cover flexible dependence structures

through the specification of 2 bivariate marginal copulas and one bivariate conditional copula that

condition on 1 variable [13]. A vine requires a decision on the indexing of variables. For a 3-

dimensional vine copula there are 3 distinct permutations [14]:

{12, 13, 23|1}, {12, 23, 13|2}, and {13, 23, 12|3}.

To be concrete in the exposition of the theory, we use the permutation {12, 13, 23|1}; the theory

though also apply to the other two permutations.

To this end, the stochastic representation of the between-studies (random effects) model takes the

form (
F
(
X1; l(π1), δ1

)
, F
(
X2; l(π2), δ2

)
, F
(
X3; l(π3), δ3

))
∼ C(·;θ), (3)

where C(·;θ) is a vine copula with dependence parameter vector θ = (θ12, θ13, θ23|1) and F (·; l(π), δ)

is the cdf of the univariate distribution of the random effect. The copula parameters θ12, θ13, θ23|1 are
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parameters of the random effects model, and they are separated from the univariate parameters. The

univariate parameters π1, π2, and π3 are those of actual interest denoting the meta-analytic parameters

of sensitivity, specificity, and disease prevalence, respectively, while the univariate parameters δ1, δ2

and δ3 are of secondary interest denoting the variability between-studies for sensitivity, specificity,

and disease prevalence, respectively.

The vine copula density is decomposed in a product of univariate and bivariate copula densities,

viz.

f123(x1, x2, x3;θ) = f1
(
x1; l(π1), δ1

)
f2
(
x2; l(π2), δ2

)
f3
(
x3; l(π3), δ3

)
c12

(
F1

(
x1; l(π1), δ1

)
,

F2

(
x2; l(π2), δ2

)
; θ12

)
c13

(
F1

(
x1; l(π1), δ1

)
, F3

(
x3; l(π3), δ3

)
; θ13

)
×

c23|1

(
F2|1
(
x2|x1; l(π1), l(π2), δ1, δ2

)
, F3|1

(
x3|x1; l(π1), l(π3), δ1, δ3

)
; θ23|1

)
= f1

(
x1; l(π1), δ1

)
f2
(
x2; l(π2), δ2

)
f3
(
x3; l(π3), δ3

)
c123

(
F1

(
x1; l(π1), δ1

)
,

F2

(
x2; l(π2), δ2

)
, F3

(
x3; l(π3), δ3

)
;θ
)
,

where fj
(
·; l(πj), δj

)
and Fj

(
·; l(πj), δj

)
are the density and cdf, respectively, of the random variable

Xj , cj1j2(·, ·; θj1j2) and Cj1j2(·, ·; θj1j2) are the bivariate copula density and cdf, respectively, for the

pair of transformed variables Fj1(Xj1) and Fj2(Xj2), and c23|1(·, ·; θ23|1) is the bivariate copula density

for the pair of transformed variables F2|1(X2|X1) and F3|1(X3|X1) where

Fj1|j2(xj1|xj2) = ∂Cj1j2
(
Fj1(xj1), Fj2(xj2)

)
/∂Fj2(xj2)

as derived in [15].

In line with our previous contributions in copula mixed models [12, 16–19] we use

• bivariate parametric copulas with different tail dependence behaviour, namely the BVN with

intermediate tail dependence, Frank with tail independence, and Clayton with positive lower

tail dependence. For the latter we also use its rotated versions to provide negative upper-lower

tail dependence (Clayton rotated by 90◦), positive upper tail dependence (Clayton rotated by

180◦) and negative lower-upper tail dependence (Clayton rotated by 270◦);

• the choices of F
(
·; l(π), δ

)
and l that are given in Table 3.
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Table 3: The choices of the F
(
·; l(π), δ

)
and l in the extended trivariate vine copula mixed model.

F
(
·; l(π), δ

)
l π δ

N(µ, σ) logit, probit, cloglog l−1(µ) σ
Beta(π, γ) identity π γ

2.4 Likelihood and computational details for maximum likelihood estimation

For N studies the models in (2) and (3) together specify a trivariate vine copula mixed model with

joint likelihood

L(π1, π2, π3, δ1, δ2, δ3,θ) =
N∏
i=1

∫ 1

0

∫ 1

0

∫ 1

0

g
(
yi11; yi+1, l

−1(x1)
)
g
(
yi00; yi+0, l

−1(x2)
)
×

g
(
y∗i+1; y

∗
i++, l

−1(x3)
)
c123
(
u1, u2, u3;θ

)
du1du2du3, (4)

where xj = F−1
(
uj; l(πj), δj

)
, j = 1, 2, 3.

Estimation of the model parameters (π1, π2, π3, δ1, δ2, δ3,θ) can be approached by the standard

maximum likelihood (ML) method, by maximizing the logarithm of the joint likelihood in (5). The

estimated parameters can be obtained by using a quasi-Newton [20] method applied to the logarithm

of the joint likelihood. This numerical method requires only the objective function, i.e., the logarithm

of the joint likelihood, while the gradients are computed numerically and the Hessian matrix of the

second order derivatives is updated in each iteration. The standard errors (SE) of the ML estimates

can be also obtained via the gradients and the Hessian computed numerically during the maximization

process.

For the vine copula mixed model numerical evaluation of the joint pmf can be achieved with the

following steps:

1. Calculate Gauss-Legendre [21] quadrature points {uq : q = 1, . . . , nq} and weights {wq : q =

1, . . . , nq} in terms of standard uniform.

2. Convert from independent uniform random variables {uq1 : q1 = 1, . . . , nq}, {uq2 : q2 =

1, . . . , nq}, and {uq3 : q3 = 1, . . . , nq} to dependent uniform random variables vq1 , vq2|q1 , and

vq2q3|q1 that have a vine distribution C(·;θ) [12]:

1: Set vq1 = uq1

2: vq2|q1 = C−112 (uq2 |uq1 ; θ12)

3: t1 = C−123|1(uq3|uq2 ; θ23|1)
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4: vq2q3|q1 = C−113

(
t1|uq1 ; θ13

)
,

where C(v|u; θ) and C−1(v|u; θ) are the conditional copula cdf and its inverse.

3. Numerically evaluate the joint pmf∫ 1

0

∫ 1

0

∫ 1

0

g
(
yi11; yi+1, l

−1
(
F−1

(
u1; l(π1), δ1

)))
g
(
yi00; yi+0, l

−1
(
F−1

(
u2; l(π2), δ2

)))
g
(
y∗i+1; y

∗
i++, l

−1
(
F−1

(
u3; l(π3), δ3

)))
c123(u1, u2, u3;θ)du1du2du3

in a triple sum:

nq∑
q1=1

nq∑
q2=1

nq∑
q3=1

g
(
yi11; yi+1, l

−1
(
F−1

(
vq1 ; l(π1), δ1

)))
g
(
yi00; yi+0, l

−1
(
F−1

(
vq2|q1 ; l(π2), δ2

)))
g
(
y∗i+1; y

∗
i++, l

−1
(
F−1

(
vq2q3|q1 ; l(π3), δ3

)))
.

With Gauss-Legendre quadrature, the same nodes and weights are used for different functions;

this helps in yielding smooth numerical derivatives for numerical optimization via quasi-Newton.

2.5 Relationship with the TGLMM

In this subsection, we show what happens when all the bivariate copulas are bivariate normal (BVN)

and the univariate distribution of the random effects is theN(µ, σ) distribution. One can easily deduce

that the within-study model in (2) is the same as in the TGLMM.

Furthermore, when the three bivariate copulas are BVN copulas with copula (correlation) pa-

rameters ρ12, ρ13, ρ23|1, the resulting distribution is the trivariate normal (TVN) with mean vector

µ =
(
l(π1), l(π2), l(π3)

)> and variance covariance matrix Σ =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 ,

where ρ23 = ρ23|1
√

1− ρ212
√

1− ρ213ρ12ρ13. Therefore, the between-studies model in (3) assumes

that X = (X1, X2, X3) is TVN distributed, i.e., X ∼ TVN
(
µ,Σ

)
.

With some calculus it can be shown that the joint likelihood in (5) becomes

L(π1, π2, π3, σ1, σ2, σ3,θ) =
N∏
i=1

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

g
(
yi11; yi+1, l

−1(x1)
)
g
(
yi00; yi+0, l

−1(x2)
)
×

g
(
y∗i+1; y

∗
i++, l

−1(x3)
)
φ123(x1, x2, x3;µ,Σ)dx1dx2dx3,

where φ123(·;µ,Σ) is the TVN density with mean vectorµ and variance covariance matrix Σ. Hence,

this model is the same as the extended TGLMM in [6].
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3 Small-sample efficiency–misspecification of the random effects distribution

An extensive simulation study is conducted (a) to gauge the small-sample efficiency of the ML

method, and (b) to investigate in detail the misspecification of the parametric margin or family of

copulas of the random effects distribution. We also include comparisons with the TGLMM [6], that

is a vine copula mixed model composed of BVN copulas and normal margins as shown in Subsection

2.5, as the current state of the art of the various meta-analytic approaches to handle non-evaluable

results. We don’t include either the intent-to-diagnose approach or the BGLMM that excludes the

non-evaluable subjects in our simulation study as Ma et al. [6] has already established that these

methods produce biased estimates in the presence of index test non-evaluable subjects.

In this simulation study we follow the configurations in Ma et al. [6]. We conduct simulation

studies under three missing scenarios:

• the probabilities for non-evaluable diseased and non-diseased subjects are the same, i.e., l−1(x4) =

l−1(x5) = 0.1;

• the probability for non-evaluable diseased subjects is smaller than the probability for non-

evaluable non-diseased subjects, i.e., l−1(x4) = 0.1 < l−1(x5) = 0.2;

• the probability for non-evaluable non-diseased subjects is smaller than the probability for non-

evaluable diseased subjects, i.e., l−1(x4) = 0.2 > l−1(x5) = 0.1.

All three scenarios satisfy the MAR assumption, and the first scenario also satisfies the missing com-

pletely at random assumption [22].

True sensitivity π1 and specificity π2 are 0.7 and 0.9, disease prevalence π3 is 0.25 and the vari-

ability parameters are σ1 = σ2 = σ3 = 1 or γ1 = γ2 = γ3 = 0.1 for normal or beta margin,

respectively. A moderate negative Kendall’s tau association of τ12 = −0.5 is assumed between X1

and X2, a moderate positive Kendall’s tau association of τ13 = 0.5 is assumed between X1 and X3,

and a moderate negative Kendall’s tau association of τ23|1 = −0.5 is assumed between X2 and X3

given X1. Under each setting, 10,000 meta-analysis data sets are simulated with N = 30 studies in

each data set. The simulation process is as below:

For i = 1, . . . , N :

1. Simulate (u1, u2, u3) from a C-vine C(·; τ12, τ13, τ23|1) [23]. We convert from τ ’s to the BVN,
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Frank and (rotated) Clayton copula parameters θ’s via the relations

τ =
2

π
arcsin(θ), (5)

τ =

{
1− 4θ−1 − 4θ−2

∫ 0

θ
t

et−1dt , θ < 0

1− 4θ−1 + 4θ−2
∫ θ
0

t
et−1dt , θ > 0

, (6)

and

τ =

{
θ/(θ + 2) , by 0◦ or 180◦

−θ/(θ + 2) , by 90◦ or 270◦ , (7)

in [24], [25], and [26], respectively.

2. Convert to beta or normal realizations via xj = l−1
(
F−1j

(
uj, l(πj), δj

))
for j = 1, 2, 3.

3. Simulate the study size n from a shifted gamma distribution [27], i.e., n ∼ sGamma(α =

1.2, β = 0.01, lag = 30) and round off to the nearest integer.

4. Generate (yi00, yi01, yi10, yi11, yi20, yi21) fromM6(n,$); see (1) for the elements of the proba-

bility vector$.

From the simulation results it is revealed that the maximum likelihood estimates (MLEs) are not

affected by different missingness scenarios. Hence we provide here the simulation results for one

missingness scenario. The results for the other two missingness scenarios are provided in the tables

of the Supplementary Material. Tables 4 and 5 contain the resultant biases, standard deviations (SDs),

average theoretical variances
√
V̄ , and root mean square errors (RMSEs), scaled by 100, for the MLEs

under different copula choices and margins under different copula and marginal choices from the vine

copula mixed model with normal (the SDs and
√
V̄ ’s for the MLEs of γj’s instead of σj’s are provided

for beta margins) and beta (the SDs and
√
V̄ ’s for the MLEs of σj’s instead of γj’s are provided for

normal margins) margins, respectively. The theoretical variances of the MLEs are obtained via the

gradients and the Hessian that were computed numerically during the maximization process. The true

(simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12) and

C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula.

Conclusions from the values in the tables are the following:

• ML with the true vine copula mixed model is highly efficient according to the simulated biases,

SDs and RMSEs.

• The MLEs of πj, j = 1, 2, 3 are not robust to margin misspecification, e.g., in Table 4 (Table

5) where the true univariate margins are normal (beta) the scaled biases for the MLEs of π1 for
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Table 4: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probability of diseased group is
smaller than non-diseased group, i.e., l−1(x4) = 0.1 < l−1(x5) = 0.2. The SDs and

√
V̄ ’s for the MLEs of γj’s instead

of σj’s are provided for beta margins.

margin copula π1 π2 π3 σ1 σ2 σ3 τ12 τ13 τ23|1

Bias † normal BVN 0.19 -0.12 0.11 -7.96 -2.36 -1.90 -4.87 -3.33 16.76
Frank 0.22 -0.16 -0.27 -7.44 -1.47 -2.31 -6.24 -1.14 15.21

§ Cln{0◦, 90◦} 0.32 -0.04 0.88 -6.96 1.92 -3.97 -3.73 -6.85 20.71
Cln{0◦, 270◦} 1.27 -0.22 0.01 -9.14 -1.80 1.15 4.94 -17.02 16.67

beta BVN -2.07 -3.57 4.04 - - - -3.93 -4.68 18.46
Frank -1.76 -3.56 3.55 - - - -5.90 -1.81 17.34
Cln{0◦, 90◦} -1.82 -3.71 4.48 - - - -2.78 -9.76 19.03
Cln{0◦, 270◦} -1.14 -3.72 4.15 - - - 5.39 -17.35 19.60

SD † normal BVN 4.37 1.86 3.55 17.84 16.56 14.73 15.38 13.20 23.98
Frank 4.61 1.93 3.60 18.59 17.28 14.81 16.66 14.04 25.02

§ Cln{0◦, 90◦} 4.53 1.91 3.79 19.66 18.88 15.64 14.28 17.85 24.96
Cln{0◦, 270◦} 4.28 2.00 3.71 18.96 18.48 17.35 27.31 17.87 22.77

beta BVN 3.95 2.27 3.37 3.97 3.03 3.35 15.08 13.19 23.61
Frank 4.13 2.34 3.38 4.14 3.07 3.34 16.45 14.03 25.55
Cln{0◦, 90◦} 4.10 2.43 3.67 4.35 3.69 3.53 14.52 17.58 26.02
Cln{0◦, 270◦} 3.91 2.41 3.58 4.21 3.19 4.13 26.97 18.78 22.80√

V̄ † normal BVN 3.95 1.77 3.36 16.76 15.84 13.52 12.73 11.05 18.65
Frank 3.90 1.74 3.20 17.04 16.13 13.19 12.38 10.96 17.46

§ Cln{0◦, 90◦} 3.73 1.69 2.83 16.04 14.72 10.77 11.20 8.37 13.52
Cln{0◦, 270◦} 3.42 1.65 3.02 15.86 14.61 13.07 11.66 7.72 10.44

beta BVN 3.54 2.00 3.04 3.78 2.54 3.02 12.79 11.22 18.70
Frank 3.51 1.94 2.89 3.87 2.54 2.88 12.68 11.04 17.78
Cln{0◦, 90◦} 3.41 1.83 2.48 3.58 2.46 2.30 11.57 8.79 13.99
Cln{0◦, 270◦} 3.13 1.83 2.70 3.53 2.31 2.82 12.26 8.12 10.35

RMSE † normal BVN 4.37 1.86 3.55 19.54 16.72 14.85 16.13 13.61 29.26
Frank 4.62 1.93 3.61 20.02 17.34 14.99 17.79 14.09 29.28

§ Cln{0◦, 90◦} 4.54 1.91 3.89 20.86 18.98 16.14 14.76 19.11 32.43
Cln{0◦, 270◦} 4.46 2.01 3.71 21.05 18.56 17.39 27.75 24.67 28.22

beta BVN 4.46 4.24 5.26 - - - 15.58 14.00 29.97
Frank 4.49 4.26 4.90 - - - 17.48 14.15 30.88
Cln{0◦, 90◦} 4.49 4.44 5.79 - - - 14.78 20.11 32.24
Cln{0◦, 270◦} 4.07 4.43 5.48 - - - 27.50 25.57 30.06

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.

the various vine copula mixed models with beta (normal) margins range from −2.07 (2.10) to

−1.14 (2.96).

• The SDs of πj, j = 1, 2, 3 are not robust to margin misspecification, e.g., in Table 4 where the
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true univariate margins are normal the scaled SDs for the MLEs of π1 for the various extended

vine copula mixed models with normal margins range from 4.28 to 4.61, while for the various

extended vine copula mixed models with beta margins range from 3.91 to 4.13.

• The MLEs of πj, j = 1, 2, 3 are rather robust to bivariate copula misspecification, but their

biases increase when the assumed bivariate copula has tail dependence of opposite direction

from the true bivariate copula. For example, in Table 4 (Table 5) the scaled biases for the MLEs

of π1 for the various vine copula mixed models with normal (beta) margins range from 0.19

(0.64) to 0.32 (0.71), but the scaled bias rises to 1.27 (1.34) when the Clayton copula rotated by

270◦ is assumed for both the C12(·; τ12) and C13(·; τ23|1) copulas.

• The SDs of πj, j = 1, 2, 3 are robust to bivariate copula misspecification, e.g., in Table 4 (Table

5) the scaled SDs for the MLEs of π1 for the various vine copula mixed models with normal

(beta) margins ranges from 4.28 (3.21) to 4.61 (3.38).

• The MLEs of σj or γj, j = 1, 2, 3 are rather robust to bivariate copula misspecification, but their

biases increase when the assumed bivariate copula has tail dependence of opposite direction

from the true bivariate copula. For example, in Table 4 (Table 5) the scaled biases for the

MLEs of σ1 (γ1) for the various vine copula mixed models with normal (beta) margins range

from −7.96 ( −1.54 ) to −6.96 (−1.50), but the scaled bias drops to −9.14 (−1.91) when the

Clayton copula rotated by 270◦ is called for both the C12(·; τ12) and C13(·; τ23|1) copulas.

• The SDs of σj or γj are robust to bivariate copula misspecification, e.g. in Table 4 the scaled

SDs of σ1 range from 17.84 to 18.96 and in Table 5 the scaled SDs of γ1 range from 3.16 to

3.35.

• The ML estimates of τ ’s are robust to margin misspecification, as the copula remains invariant

under any series of strictly increasing transformations of the components of the random vector,

e.g., in Table 5 the scaled bias of τ̂12 is −4.13 for the true extended vine copula mixed model

and −4.18 for an extended vine copula mixed model with the true bivariate copulas but normal

margins.

• The SDs of τ ’s are robust to margin misspecification (for the same reason as above), e.g., in

Table 5 the scaled SD of τ̂12 is 15.01 for the true extended vine copula mixed model and 14.82
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for an extended vine copula mixed model with the true bivariate copulas but normal margins.

Table 5: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probability of diseased group is
smaller than non-diseased group, i.e., l−1(x4) = 0.1 < l−1(x5) = 0.2. The SDs and

√
V̄ ’s for the MLEs of σj’s instead

of γj’s are provided for normal margins.

margin copula π1 π2 π3 γ1 γ2 γ3 τ12 τ13 τ23|1

Bias † normal BVN 2.25 3.59 -2.79 - - - -6.31 -2.51 14.22
Frank 2.10 3.53 -2.92 - - - -7.57 -0.71 11.71
Cln{0◦, 90◦} 2.16 3.68 -2.54 - - - -4.18 -2.36 15.41
Cln{0◦, 270◦} 2.96 3.51 -2.80 - - - 0.28 -12.14 10.29

beta BVN 0.64 -0.02 0.10 -1.51 -0.37 -0.57 -6.72 -3.62 17.75
Frank 0.71 -0.11 -0.13 -1.50 -0.19 -0.68 -8.26 -1.04 16.53

§ Cln{0◦, 90◦} 0.71 -0.01 0.19 -1.54 -0.03 -1.03 -4.13 -5.44 14.81
Cln{0◦, 270◦} 1.34 -0.22 0.20 -1.91 -0.23 -0.17 -0.65 -12.45 14.28

SD † normal BVN 3.50 1.60 2.77 16.20 21.16 13.06 17.23 15.58 30.77
Frank 3.68 1.66 2.80 16.59 22.27 13.15 18.74 16.76 31.27
Cln{0◦, 90◦} 3.66 1.65 2.91 17.36 22.00 13.87 14.82 20.92 28.61
Cln{0◦, 270◦} 3.44 1.71 2.85 17.04 23.62 14.94 28.32 20.78 29.77

beta BVN 3.25 1.86 2.60 3.16 2.97 2.42 17.38 15.53 31.40
Frank 3.38 1.96 2.61 3.23 3.13 2.39 19.16 16.66 32.36

§ Cln{0◦, 90◦} 3.38 1.94 2.74 3.35 3.26 2.44 15.01 20.93 29.30
Cln{0◦, 270◦} 3.21 2.01 2.70 3.27 3.26 2.81 29.16 22.00 29.70√

V̄ † normal BVN 3.25 1.43 2.63 14.90 20.36 11.73 14.34 13.37 24.48
Frank 3.21 1.43 2.53 14.87 20.93 11.60 13.08 13.11 21.31
Cln{0◦, 90◦} 3.14 1.35 2.34 14.45 18.53 10.01 11.83 10.51 16.45
Cln{0◦, 270◦} 2.89 1.37 2.51 14.12 19.35 11.70 11.18 10.26 13.86

beta BVN 3.05 1.80 2.48 3.01 2.84 2.30 14.61 13.44 24.71
Frank 3.04 1.79 2.40 3.02 2.93 2.24 13.96 13.34 22.40

§ Cln{0◦, 90◦} 3.00 1.63 2.16 2.88 2.60 1.88 12.54 11.10 17.33
Cln{0◦, 270◦} 2.78 1.71 2.40 2.80 2.73 2.29 12.37 10.98 14.92

RMSE † normal BVN 4.16 3.93 3.93 - - - 18.35 15.78 33.90
Frank 4.24 3.90 4.05 - - - 20.21 16.77 33.39
Cln{0◦, 90◦} 4.25 4.03 3.87 - - - 15.39 21.05 32.50
Cln{0◦, 270◦} 4.53 3.90 4.00 - - - 28.32 24.07 31.50

beta BVN 3.31 1.86 2.60 3.50 3.00 2.49 18.63 15.94 36.07
Frank 3.46 1.96 2.62 3.56 3.13 2.49 20.87 16.69 36.33

§ Cln{0◦, 90◦} 3.45 1.94 2.75 3.69 3.26 2.65 15.56 21.62 32.83
Cln{0◦, 270◦} 3.48 2.03 2.71 3.79 3.27 2.82 29.17 25.27 32.95

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.

These results are in line with our previous studies [12, 16–19]. The estimation of the univariate

meta-analytic parameters is a univariate inference, and hence it is the univariate marginal distribution
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that matters and not the type of the copula. The extended TGLMM [6] is restricted to normal margins,

hence as shown in Table 5 and Supplementary Tables 3 and 4, leads to biased estimates of the meta-

analytic parameters of sensitivity, specificity and prevalence when the true univariate distribution of

the latent sensitivity, specificity, and disease prevalence is beta. This is due to the fact that the vine

copula mixed models with beta margins operate on the original scale of sensitivity, specificity and

disease prevalence, which is not the case for the TGLMM that solely operates on a transformed scale.

4 Re-evaluation of the meta-analysis of coronary CT angiography studies

We illustrate the use of the vine copula mixed model for the meta-analysis of diagnostic accuracy

studies in the presence of non-evaluable subjects by re-analysing the data on 26 studies from a sys-

tematic review for diagnostic accuracy studies of coronary CT angiography [5, 6].

We fit the vine copula mixed model for all different permutations, choices of parametric families

of copulas and margins. To make it easier to compare strengths of dependence, we convert from τ to

the BVN, Frank and (rotated) Clayton copula parameter θ via the relations in (5), (6), and (7). Since

the number of parameters is the same between the models, we use the maximized log-likelihood that

corresponds to the estimates as a rough diagnostic measure for goodness of fit between the models.

In Table 6 we present the results from the first permutation, as a different indexing didn’t lead to

any significant differences due to the small sample size. This is consistent with our previous study

on trivariate vine copula mixed models [12]. The log-likelihoods showed that a vine copula mixed

model with the Clayton copula for the C12(·; τ12) copula and the Clayton copula rotated by 90◦ for

both the C13(·; τ13) and C23|1(·; τ23|1) copulas and beta margins provides the best fit (Table 6). It

is also revealed that a vine copula mixed model with the sensitivity, specificity, and prevalence on

the original scale provides better fit than the TGLMM, which models the sensitivity, specificity and

prevalence on a transformed scale.

Though typically the focus of meta-analysis has been to derive the summary-effect estimates,

there is increasing interest in drawing predictive inference. A summary receiver operating charac-

teristic (SROC) curve has been deduced for the bivariate copula mixed model [16] through a median

regression curve ofX1 onX2. However, as there is no priori reason to regressX1 onX2 instead of the

other way around, Nikoloulopoulos [16] has also provided a median regression curve of X2 on X1.

In addition to using just median regression curves, quantile regression curves with a focus on high
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Table 6: Maximised log-likelihoods, ML estimates and standard errors (SE) of the trivariate vine copula mixed models
for diagnostic accuracy studies of coronary CT angiography.

Normal margins
BVN † Cln{0◦, 90◦} Cln{0◦, 270◦} Frank

Est. SE Est. SE Est. SE Est. SE
π1 0.982 0.006 0.982 0.006 0.982 0.006 0.980 0.005
π2 0.890 0.021 0.892 0.021 0.891 0.021 0.885 0.022
π3 0.481 0.040 0.482 0.039 0.484 0.039 0.478 0.039
σ1 0.687 0.343 0.670 0.347 0.684 0.328 0.478 0.291
σ2 0.866 0.200 0.863 0.198 0.843 0.189 0.878 0.190
σ3 0.790 0.115 0.781 0.094 0.808 0.104 0.753 0.118
τ12 0.539 0.374 0.391 0.375 0.439 0.364 0.815 0.203
τ13 -0.110 0.227 0.018 0.346 -0.058 0.108 -0.026 0.260
τ23|1 -0.231 0.312 -0.320 0.281 -0.040 0.128 -0.911 0.132
logL −194.9 −194.3 −195.4 −194.4

Beta margins
BVN Cln{0◦, 90◦} § Cln{0◦, 270◦} Frank

Est. SE Est. SE Est. SE Est. SE
π1 0.978 0.006 0.977 0.006 0.978 0.005 0.977 0.005
π2 0.864 0.022 0.865 0.022 0.865 0.021 0.856 0.023
π3 0.484 0.034 0.483 0.032 0.487 0.032 0.480 0.034
γ1 0.010 0.011 0.009 0.011 0.009 0.011 0.005 0.006
γ2 0.076 0.031 0.075 0.031 0.073 0.029 0.081 0.031
γ3 0.118 0.027 0.115 0.022 0.123 0.025 0.110 0.028
τ12 0.519 0.367 0.407 0.456 0.465 0.490 0.797 0.205
τ13 -0.105 0.225 0.033 0.272 -0.057 0.107 -0.016 0.252
τ23|1 -0.241 0.282 -0.345 0.234 -0.040 0.124 -0.911 0.104
logL −194.5 −193.9 −195.2 −194.0

§: Best fit; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C12(·; τ12) and {C13(·; τ13),
C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.

(q = 0.99) and low quantiles (q = 0.01), which are strongly associated with the upper and lower tail

dependence imposed from each parametric family of copulas, have also been proposed [16]. These

can been seen as confidence regions of the median regression SROC curve. Finally, a contour plot

of the the random effects distribution at the ML estimate has been proposed to preserve the nature

of a bivariate response instead of a univariate response along with a covariate [16]. The contour plot

can be seen as the predictive region of the estimated pair of sensitivity and specificity. The prediction

region of the copula mixed model does not depend on the assumption of bivariate normality of the

random effects as in the TGLMM and therefore has a non-elliptical shape.

Figure 1 demonstrates the SROC curves and summary operating points (a pair of average sensi-

tivity and specificity) with a confidence and a predictive region from the best fitted and BVN copula
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Figure 1: Contour plots (predictive region) and quantile regression curves from the best fitted and BVN copula with
normal (upper panel graph) and beta (lower panel graph) margins. For normal margins, the axes are in logit scale since
we also plot the estimated contour plot of the random effects distribution as predictive region; this has been estimated for
the logit pair of (Sensitivity, Specificity).
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§: Best fit; †: The resulting model is the same as the TGLMM; �: summary point; ◦: study estimate; Red and green lines
represent the quantile regression curves x1 := x̃1(x2, q) and x2 := x̃2(x1, q), respectively; for q = 0.5 solid lines and
for q ∈ {0.01, 0.99} dotted lines (confidence region).

with normal (upper panel graph) and beta (lower panel graph) margins. From the graph it is apparent

that better prediction is achieved when a Clayton copula with beta margins is assumed for the random

effects distribution of the latent sensitivity and specificity.
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5 Discussion

We have exemplified the vine copula mixed model for trivariate meta-analysis of diagnostic test ac-

curacy studies [12] in the presence of non-evaluable subjects. It includes the extended TGLMM [6]

as a special case and it can be seen to provide an improvement over the latter on the basis of the log-

likelihood principle. Hence, superior statistical inference for the meta-analytic parameters of interest

can be achieved when there is a belief in an MAR assumption.

This improvement relies on the fact that the random effects distribution is expressed via vine

copulas. The TVN distribution of the transformed latent proportions in the TGLMM has restricted

properties, i.e., a linear correlation structure and normal margins. Copulas break the model building

process into two separate steps, the choice of arbitrary marginal distributions, and the choice of an

arbitrary copula function (dependence structure). Hence, we can use beta instead of normal margins

to model the latent proportions in the original scale. The choice of the copula couldn’t be other than

the class of vine copulas. Vine copulas allow for flexible tail dependence, different from assuming

simple linear correlation structures, tail independence and normality [13], which makes them well

suited for meta-analysis of diagnostic tests as the traditional assumption of multivariate normality is

invalid.

It has been reported in the literature that in the TGLMM estimation problems relating to the

correlation parameters exist, such as non-convergence and a singular covariance matrix, particularly

if the sample size is small [8]. Nevertheless, we rather propose a numerically stable ML estimation

technique based on Gauss-Legendre quadrature; the crucial step is to convert from independent to

dependent quadrature points. The application example and simulations use a sufficient number of

individual studies, i.e., N = 30. For meta-analyses with fewer studies one can simplify the model

using a truncated at level 1 vine copula. We refer the interested reader to our previous study on

trivariate vine copula mixed models [12] for simulations and various application examples that involve

a small number of studies and call this notion of a truncated at level 1 vine copula. The improvement

over the reduction of the dependence parameters is small (one dependence parameter less), but for

estimation purposes this is extremely useful for a small number of studies.

In an era of evidence-based medicine, decision makers need high-quality procedures such as the

SROC curves to support decisions about whether or not to use a diagnostic test in a specific clinical

situation. Different SROC curves essentially show the effect of different model (random effect distri-
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bution) assumptions, since SROC is an inference that depends on the joint distribution. For the vine

copula mixed model, the model parameters (including dependence parameters), the choice of the pair

copulas, and the choice of the margin affect the shape of the SROC curve [16], while the SROC curve

from the TGLMM is severely restricted to the elliptical (linear) shape.

A recurrent theme underlying our methodology for analysis in the presence of missing data is the

need to make assumptions that cannot be verified based on the observed data. Throughout this paper

we adopted the assumption of MAR. Nevertheless, it is natural to be concerned about robustness or

sensitivity of inferences to departures from the MAR assumption. Future research will focus to handle

the case when the non-evaluable subjects will be treated as non-missing categories.

Software

R functions to derive estimates and simulate from the vine copula mixed model for trivariate meta-

analysis of diagnostic studies in the presence of non-evaluable subjects are part of the R package

CopulaREMADA [28]. The data and code used in Section 4 are given as code examples in the

package.
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Table 1: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probabilities for diseased and
non-diseased subjects are the same, i.e., l−1(x4) = l−1(x5) = 0.1. The SDs and

√
V̄ ’s for the MLEs of γj’s instead of

σj’s are provided for beta margins.

margin copula π1 π2 π3 σ1 σ2 σ3 τ12 τ13 τ23|1

Bias † normal BVN 0.16 -0.12 0.10 -7.85 -2.23 -1.73 -4.67 -3.19 17.21
Frank 0.20 -0.16 -0.27 -7.31 -1.24 -2.13 -5.95 -0.96 15.46

§ Cln{0◦, 90◦} 0.30 -0.05 0.90 -6.62 2.00 -3.94 -3.64 -6.93 20.98
Cln{0◦, 270◦} 1.25 -0.24 0.04 -9.21 -1.58 1.69 5.31 -16.72 17.55

beta BVN -2.09 -3.59 4.05 - - - -4.02 -4.53 19.03
Frank -1.80 -3.56 3.55 - - - -5.86 -1.62 17.51
Cln{0◦, 90◦} -1.82 -3.76 4.52 - - - -2.67 -10.09 19.11
Cln{0◦, 270◦} -1.15 -3.75 4.22 - - - 5.06 -16.89 20.57

SD † normal BVN 4.34 1.85 3.54 17.82 16.43 14.91 15.14 13.23 23.63
Frank 4.61 1.93 3.59 18.57 17.18 14.98 16.33 14.19 24.25

§ Cln{0◦, 90◦} 4.51 1.91 3.79 19.69 18.66 15.77 13.85 17.67 24.59
Cln{0◦, 270◦} 4.29 2.00 3.72 18.96 18.44 17.75 26.62 17.98 22.34

beta BVN 3.93 2.27 3.36 3.97 3.00 3.38 14.80 13.22 23.57
Frank 4.12 2.33 3.36 4.17 3.07 3.36 16.02 14.04 24.82
Cln{0◦, 90◦} 4.09 2.45 3.63 4.40 3.72 3.55 13.94 17.42 25.30
Cln{0◦, 270◦} 3.90 2.41 3.61 4.23 3.18 4.24 26.48 18.94 22.44√

V̄ † normal BVN 3.96 1.75 3.36 16.77 15.49 13.55 12.37 11.02 18.24
Frank 3.88 1.72 3.18 17.00 15.72 13.16 12.01 10.82 17.07

§ Cln{0◦, 90◦} 3.74 1.67 2.82 16.10 14.39 10.77 10.93 8.33 13.22
Cln{0◦, 270◦} 3.39 1.62 2.98 15.77 14.11 13.03 11.19 7.60 10.05

beta BVN 3.54 1.98 3.04 3.77 2.49 3.02 12.46 11.15 17.99
Frank 3.52 1.92 2.89 3.88 2.48 2.88 12.42 10.92 17.50
Cln{0◦, 90◦} 3.40 1.81 2.47 3.59 2.41 2.30 11.21 8.74 13.76
Cln{0◦, 270◦} 3.13 1.80 2.70 3.51 2.24 2.84 11.68 8.08 10.21

RMSE † normal BVN 4.34 1.85 3.54 19.47 16.58 15.01 15.84 13.60 29.23
Frank 4.62 1.93 3.60 19.96 17.23 15.13 17.38 14.22 28.76

§ Cln{0◦, 90◦} 4.52 1.91 3.90 20.78 18.77 16.26 14.32 18.98 32.32
Cln{0◦, 270◦} 4.47 2.01 3.72 21.08 18.50 17.83 27.15 24.55 28.41

beta BVN 4.45 4.24 5.26 - - - 15.34 13.97 30.29
Frank 4.49 4.26 4.89 - - - 17.06 14.14 30.37
Cln{0◦, 90◦} 4.48 4.49 5.80 - - - 14.19 20.13 31.71
Cln{0◦, 270◦} 4.06 4.46 5.55 - - - 26.96 25.37 30.44

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.
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Table 2: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with normal margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along
with the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probability of diseased group is
larger than non-diseased group, i.e., l−1(x4) = 0.2 > l−1(x5) = 0.1. The SDs and

√
V̄ ’s for the MLEs of γj’s instead of

σj’s are provided for beta margins.

margin copula π1 π2 π3 σ1 σ2 σ3 τ12 τ13 τ23|1

Bias † normal BVN 0.23 -0.12 0.10 -8.23 -2.37 -1.92 -4.97 -3.36 17.51
Frank 0.27 -0.16 -0.25 -7.81 -1.46 -2.34 -6.30 -1.07 15.89

§ Cln{0◦, 90◦} 0.38 -0.05 0.88 -7.15 1.97 -3.90 -3.75 -6.58 20.99
Cln{0◦, 270◦} 1.33 -0.25 0.08 -9.77 -1.73 1.39 4.01 -16.30 17.06

beta BVN -1.95 -3.60 4.07 - - - -4.30 -4.84 19.04
Frank -1.66 -3.58 3.60 - - - -6.18 -1.87 18.03
Cln{0◦, 90◦} -1.68 -3.75 4.50 - - - -2.71 -9.87 18.86
Cln{0◦, 270◦} -1.01 -3.78 4.24 - - - 3.90 -16.65 19.97

SD † normal BVN 4.40 1.85 3.56 18.37 16.30 14.91 15.49 13.48 23.90
Frank 4.64 1.92 3.59 19.06 16.96 14.99 16.81 14.49 25.15

§ Cln{0◦, 90◦} 4.61 1.92 3.81 20.28 18.54 15.72 14.08 18.15 24.63
Cln{0◦, 270◦} 4.30 2.00 3.74 19.55 18.17 17.63 27.34 18.38 22.75

beta BVN 3.97 2.27 3.36 4.07 2.99 3.38 15.25 13.49 23.76
Frank 4.13 2.33 3.37 4.25 3.04 3.36 16.69 14.45 25.94
Cln{0◦, 90◦} 4.16 2.45 3.64 4.44 3.70 3.54 14.29 17.92 25.75
Cln{0◦, 270◦} 3.92 2.43 3.61 4.34 3.17 4.18 27.32 19.34 22.54√

V̄ † normal BVN 4.03 1.75 3.37 17.28 15.51 13.54 12.79 11.31 18.65
Frank 3.94 1.72 3.19 17.47 15.70 13.15 12.29 11.09 17.52

§ Cln{0◦, 90◦} 3.80 1.67 2.83 16.57 14.39 10.81 11.09 8.44 13.48
Cln{0◦, 270◦} 3.46 1.63 3.00 16.30 14.13 12.99 11.20 7.76 10.23

beta BVN 3.58 1.98 3.05 3.88 2.49 3.01 12.92 11.44 18.54
Frank 3.56 1.92 2.89 3.99 2.47 2.87 12.74 11.23 17.82
Cln{0◦, 90◦} 3.45 1.81 2.47 3.66 2.39 2.29 11.44 8.84 13.93
Cln{0◦, 270◦} 3.18 1.80 2.71 3.62 2.23 2.84 11.77 8.23 10.27

RMSE † normal BVN 4.40 1.86 3.56 20.13 16.47 15.04 16.27 13.90 29.63
Frank 4.65 1.93 3.60 20.60 17.02 15.17 17.95 14.53 29.75

§ Cln{0◦, 90◦} 4.62 1.92 3.92 21.51 18.65 16.20 14.57 19.31 32.36
Cln{0◦, 270◦} 4.50 2.01 3.74 21.86 18.25 17.68 27.63 24.57 28.44

beta BVN 4.43 4.25 5.28 - - - 15.84 14.33 30.45
Frank 4.45 4.27 4.93 - - - 17.80 14.58 31.59
Cln{0◦, 90◦} 4.49 4.48 5.79 - - - 14.54 20.46 31.92
Cln{0◦, 270◦} 4.05 4.49 5.57 - - - 27.59 25.52 30.11

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.
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Table 3: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probabilities for diseased and
non-diseased subjects are the same, i.e., l−1(x4) = l−1(x5) = 0.1. The SDs and

√
V̄ ’s for the MLEs of σj’s instead of

γj’s are provided for normal margins.

margin copula π1 π2 π3 γ1 γ2 γ3 τ12 τ13 τ23|1

Bias † normal BVN 2.30 3.59 -2.78 - - - -5.71 -2.61 14.54
Frank 2.17 3.51 -2.89 - - - -6.96 -0.70 12.33
Cln{0◦, 90◦} 2.22 3.67 -2.52 - - - -4.04 -2.62 15.72
Cln{0◦, 270◦} 2.98 3.51 -2.79 - - - 1.31 -12.10 10.89

beta BVN 0.65 -0.02 0.10 -1.50 -0.42 -0.57 -6.48 -3.65 18.12
Frank 0.73 -0.12 -0.12 -1.52 -0.23 -0.69 -7.85 -0.99 17.17

§ Cln{0◦, 90◦} 0.72 -0.02 0.21 -1.54 -0.09 -1.04 -3.92 -5.90 15.13
Cln{0◦, 270◦} 1.35 -0.24 0.21 -1.95 -0.26 -0.13 -0.33 -12.28 15.11

SD † normal BVN 3.50 1.59 2.77 16.26 20.91 13.08 17.04 15.65 30.27
Frank 3.67 1.65 2.81 16.71 22.07 13.12 18.44 16.95 31.64
Cln{0◦, 90◦} 3.68 1.64 2.91 17.45 21.86 13.91 14.80 20.88 28.19
Cln{0◦, 270◦} 3.44 1.71 2.86 17.13 23.36 15.00 28.26 20.83 29.38

beta BVN 3.28 1.87 2.61 3.16 2.91 2.42 17.13 15.64 31.02
Frank 3.40 1.97 2.62 3.25 3.08 2.39 18.87 16.91 32.42

§ Cln{0◦, 90◦} 3.41 1.95 2.74 3.32 3.19 2.46 14.97 20.90 28.71
Cln{0◦, 270◦} 3.21 2.02 2.70 3.27 3.20 2.85 28.91 22.01 29.84√

V̄ † normal BVN 3.25 1.42 2.63 14.95 20.02 11.74 14.03 13.32 23.34
Frank 3.20 1.42 2.53 14.90 20.51 11.56 12.72 13.04 20.91
Cln{0◦, 90◦} 3.13 1.34 2.34 14.48 18.15 10.00 11.35 10.33 15.90
Cln{0◦, 270◦} 2.87 1.35 2.48 14.04 18.83 11.58 10.43 10.07 13.53

beta BVN 3.05 1.78 2.48 3.01 2.77 2.30 14.45 13.43 24.36
Frank 3.03 1.77 2.39 3.01 2.86 2.23 13.67 13.25 22.08

§ Cln{0◦, 90◦} 2.98 1.60 2.15 2.87 2.52 1.87 12.01 10.94 16.58
Cln{0◦, 270◦} 2.77 1.68 2.39 2.78 2.63 2.29 11.70 10.87 14.47

RMSE † normal BVN 4.19 3.93 3.92 - - - 17.97 15.87 33.58
Frank 4.27 3.88 4.03 - - - 19.71 16.96 33.96
Cln{0◦, 90◦} 4.30 4.02 3.85 - - - 15.35 21.05 32.28
Cln{0◦, 270◦} 4.55 3.90 3.99 - - - 28.29 24.09 31.33

beta BVN 3.34 1.87 2.61 3.50 2.94 2.48 18.32 16.07 35.93
Frank 3.48 1.97 2.62 3.59 3.09 2.49 20.44 16.94 36.69

§ Cln{0◦, 90◦} 3.48 1.95 2.75 3.66 3.19 2.67 15.47 21.72 32.45
Cln{0◦, 270◦} 3.48 2.03 2.71 3.81 3.21 2.85 28.91 25.21 33.45

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.
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Table 4: Small sample of sizes N = 30 simulations (104 replications, nq = 15) from the extended trivariate vine copula
mixed model with beta margins and biases, root mean square errors (RMSEs) and standard deviations (SDs), along with
the square root of the average theoretical variances (

√
V̄ ), scaled by 100, for the MLEs under different copula choices

and margins. The true (simulated) copula distributions are the Clayton copulas rotated by 90◦ for both the C12(·; τ12)
and C13(·; τ23|1) copulas and the Clayton copula for the C13(·; τ13) copula. The missing probability of diseased group is
larger than non-diseased group, i.e., l−1(x4) = 0.2 > l−1(x5) = 0.1. The SDs and

√
V̄ ’s for the MLEs of σj’s instead

of γj’s are provided for normal margins.

margin copula π1 π2 π3 γ1 γ2 γ3 τ12 τ13 τ23|1

Bias † normal BVN 2.31 3.61 -2.79 - - - -6.23 -2.45 14.65
Frank 2.20 3.54 -2.90 - - - -7.42 -0.79 12.08
Cln{0◦, 90◦} 2.22 3.70 -2.55 - - - -4.31 -2.08 15.57
Cln{0◦, 270◦} 2.99 3.54 -2.79 - - - 0.35 -11.53 10.19

beta BVN 0.72 -0.01 0.10 -1.54 -0.40 -0.62 -6.84 -3.68 17.82
Frank 0.81 -0.11 -0.11 -1.54 -0.22 -0.73 -8.34 -1.09 16.99

§ Cln{0◦, 90◦} 0.79 0.00 0.20 -1.60 -0.08 -1.05 -3.90 -5.64 15.04
Cln{0◦, 270◦} 1.41 -0.23 0.23 -1.99 -0.23 -0.23 -0.77 -11.75 14.12

SD † normal BVN 3.55 1.58 2.78 16.73 20.95 13.20 17.76 16.29 31.53
Frank 3.70 1.65 2.80 17.14 22.15 13.31 19.18 17.27 31.96
Cln{0◦, 90◦} 3.74 1.64 2.92 17.87 22.03 14.09 15.23 21.30 28.90
Cln{0◦, 270◦} 3.48 1.70 2.86 17.51 23.51 14.93 28.85 21.60 29.88

beta BVN 3.31 1.86 2.61 3.24 2.91 2.43 18.09 16.45 32.47
Frank 3.43 1.97 2.62 3.33 3.08 2.40 19.93 17.41 33.82

§ Cln{0◦, 90◦} 3.45 1.95 2.75 3.38 3.20 2.47 15.43 21.32 29.24
Cln{0◦, 270◦} 3.24 2.02 2.72 3.35 3.25 2.80 29.75 22.91 29.87√

V̄ † normal BVN 3.31 1.41 2.62 15.49 20.03 11.73 14.52 13.76 24.73
Frank 3.26 1.41 2.53 15.41 20.53 11.56 12.93 13.30 21.08
Cln{0◦, 90◦} 3.21 1.34 2.35 15.03 18.28 10.06 11.59 10.53 16.16
Cln{0◦, 270◦} 2.91 1.34 2.47 14.57 18.87 11.53 10.40 10.23 13.70

beta BVN 3.11 1.78 2.48 3.11 2.77 2.29 15.05 13.90 25.80
Frank 3.09 1.77 2.39 3.11 2.86 2.22 14.04 13.54 22.91

§ Cln{0◦, 90◦} 3.04 1.61 2.16 2.96 2.54 1.88 12.29 11.23 17.11
Cln{0◦, 270◦} 2.83 1.68 2.39 2.88 2.66 2.27 11.91 11.19 14.98

RMSE † normal BVN 4.23 3.94 3.93 - - - 18.83 16.48 34.76
Frank 4.30 3.90 4.03 - - - 20.56 17.29 34.17
Cln{0◦, 90◦} 4.35 4.05 3.88 - - - 15.83 21.40 32.83
Cln{0◦, 270◦} 4.58 3.92 3.99 - - - 28.85 24.48 31.57

beta BVN 3.38 1.86 2.62 3.59 2.94 2.50 19.34 16.85 37.04
Frank 3.52 1.97 2.63 3.67 3.09 2.51 21.60 17.45 37.85

§ Cln{0◦, 90◦} 3.54 1.95 2.76 3.75 3.20 2.68 15.91 22.05 32.88
Cln{0◦, 270◦} 3.53 2.03 2.73 3.90 3.26 2.81 29.76 25.74 33.04

§: True model; †: The resulting model is the same as the TGLMM; Cln{ω◦1 , ω◦2}: The C13(·; τ13) and
{C12(·; τ12), C23|1(·; τ23|1)} pair copulas are Clayton rotated by ω1 and ω2 degrees, respectively.
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