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The co-evolution of life and organics on Earth: expansions of energy 20 

harnessing  21 

 22 

Abstract: The organic matter was absent prior to planetesimal formation (4.6 Gyr) but 23 

at present abundant in planetary environments. The aim of this study was to combine 24 

information about the organic inventory of the Earth, which is accompanied by the 25 

evolution of life. A variety of available free energy sources, including geochemical 26 

energy, sunlight, oxygen and fire have supported life evolution. In the meantime these 27 

energy sources have mediated the diversity and complexity of living organisms and 28 

resulted in a concomitant increase in the diversity and complexity of organic matter, 29 

including microbial-, plant-, fire-, and human derived organics. The change of the 30 

diversity and complexity of organic matter (microbial-, plant-, fire- and 31 

human-derived organics) have in-return significantly influenced Earth's carbon 32 

cycle, planetary climate and ecosystems. Overall, energy harnessing and 33 

conservation of life entwined and expanded the evolutional histories of life and organic 34 

molecules on the planet. Considering the key role of organics on the stability of the 35 

oxygen level of the atmosphere, temperature, the tectonic rise of continents, and global 36 

habitability, the changing characters of organics over geologic time had an important 37 

shaping influence on Earth’s geochemical cycles. 38 

Keywords: organic matter; life; energy harnessing 39 

1. Introduction  40 

Life is processes of generating reduced organic compounds from carbon dioxide as well 41 

as the harnessing of environmental energy. Over the course of Earth history, the harnessing of 42 

free energy by organisms has had a dramatic impact on the geosphere, including minerals and 43 
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organics (Dietrich et al., 2006; Grosch & Hazen, 2015; Judson, 2017), shaped the whole 44 

trajectory of life evolution. As a direct consequence of a coevolving geosphere and biosphere, 45 

the Earth’s crust has changed greatly over billions of years. The origin and evolution of 46 

organic compounds on the planetary environment are compelling because of their potential 47 

role in the origin of life and sustaining microbial communities (Lazcano & Miller, 1996; 48 

McDermott et al., 2015; Schönheit et al., 2016). Carbon lies at the heart of carbon-based life 49 

forms and provides unparelleled potential for earth evolution. The origin of life is 50 

inextricably linked to the behavior of carbon (Hazen, 2019). The evolution of organics is 51 

coupled with the evolution of life, which is expanded with a variety of available free energy 52 

sources (Judson, 2017). Collectively, these linkages have mediated the generation and 53 

transformation of soils and sediments. Here we review the origin and evolution of organics 54 

on Earth, and their relationship with diversification and expansion of energy utilization and 55 

with biological and geological development.  56 

2. The prebiotic organics 57 

Earth accreted 4.56 billion years (Gyr) ago from largely homogeneous material (Judson, 58 

2017; Hazen et al., 2013). With the dissipation of thermal energy produced by compaction, 59 

radiation, and impacting meteorites, the Earth cooled. About 4.4 Gyr ago patches of a rocky 60 

scum had solidified and eventually separated into core, mantle, and crust (Mojzsis, 2010). 61 

Water vapor condensed as rain and formed early oceans and seas (Wilde et al., 2001; Rosing 62 

et al., 2006; Hazen et al., 2013). The early ocean was a reservoir of inorganic elements, and 63 

also a reservoir of potential free energy in the form of protons. Before the emergence of life 64 
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on early Earth at ~3.8 Gyr (Dodd et al., 2017), these prebiotic organics were either 65 

synthesized abiotically on the Earth itself or synthesized extraterrestrially and then delivered 66 

to the Earth (Hayes et al., 1967; Dalai et al., 2016). A wide range of organic compounds 67 

including amino acids, monocarboxylic acids, sugars, nucleobases, and membrane-forming 68 

lipids have been synthesized in prebiotic conditions simulation experiments (McCollom, 69 

2013). Questions remain, however, concerning whether the conditions that allow synthesis of 70 

these compounds in the laboratory accurately simulate those that might have been present on 71 

the early Earth (McCollom, 2013; Dalai et al., 2016). High concentrations of the reactants, 72 

water pH and ambient temperature are of central importance in experimental abiotic synthesis 73 

of organics. The extreme environments (highly acidic condition) of early Earth presented 74 

severe limitations with respect to their potential for prebiotic chemistry because of stability 75 

and synthetic pathway issues associated with temperatures and pH (Bada, 2013). It has been 76 

claimed that autocatalytic metabolic-like reactions can overcome these limitations (Huber & 77 

Wächtershäuser, 1998). The micro-conditions in the hydrothermal systems supposedly could 78 

drive abiotic syntheses of organics (McCollom &Seewald, 2007; McDermott et al., 2015). 79 

Prebiotic syntheses could have taken place in a variety of geochemical environments that 80 

may have existed on the primitive Earth, although this has never been demonstrated using 81 

plausible geochemical conditions (Box 1). Highly reducing fluids such as deep-sea 82 

hydrothermal fluids have the potential for abiotic reduction of dissolved inorganic carbon to 83 

produce organic compounds (Shock, 1990; Shock & Schulte, 1998; Seewald et al., 2006; 84 

McDermott et al., 2015). There is also increasing evidence that supports an abiotic origin for 85 

CH4 and other low-molecular weight reduced organic compounds in ultramafic-hosted 86 
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hydrothermal systems (Charlou et al., 2002; McCollom & Seewald, 2007; Proskurowski et al., 87 

2008). Given the scarcity of suitable abiotic regime the yield prebiotic organics on the early 88 

Earth would have been very small (Lollar et al., 2002).  89 

Besides the abiotic synthesis of organic molecules on the young Earth driven by various 90 

energy sources such as UV radiation in sunlight, cosmic rays, X-rays, hypervelocity impacts, 91 

volcanic eruptions with lightning, geothermal heat, and redox gradients, the total inventory of 92 

organics would have included exogenous sources (the interstellar medium, interplanetary dust, 93 

asteroids, comets, meteorites) (Dalai et al., 2016; Kwok, 2016; Sahai et al., 2016; Sandford et 94 

al., 2016). It has long been speculated that Earth accreted prebiotic organic molecules from 95 

impacts of carbonaceous asteroids and comets during the period of 4.5 Gyr to 3.8 Gyr ago 96 

(Chyba et al., 1990; Chyba & Sagan, 1992; Botta & Bada, 2002) because the exogenous 97 

delivery has showered the Earth (Pizzarello & Weber, 2004). Polyhydroxylated compounds 98 

(such as sugars, sugar alcohols and sugar acids) are formed under interstellar conditions via 99 

photolysis of small molecules (e.g. CO, NH3 and H2O) and are therefore present in meteorites 100 

(Agarwal et al., 1986; McDonald et al., 1996; Cooper et al., 2001). The carbonaceous 101 

component of interplanetary dust could be up to 50 wt% (Ehrenfreund & Charnley, 2000; 102 

Dalai et al., 2016). This dust material has been reported to contain simple aliphatic, aromatic 103 

compounds, macromolecular polyaromatic hydrocarbons (Ehrenfreund & Charnley, 2000; 104 

Dalai et al., 2016), amino acids and other organic compounds (Cooper et al., 2001) that are 105 

vital to the origin of life. Tens of thousands of tons of interplanetary dust particles enter the 106 

Earth’s atmosphere annually, and the rate may have been much greater on early Earth (Kwok, 107 

2016). It was estimated that Earth was also accreting intact cometary organics at a rate of at 108 
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least -109 to 1010 g per year at 4.5 Gyr (Chyba et al., 1990). Organics delivered from space 109 

comprising as much as perhaps 10% of the Earth's modern biomass by weight (Sephton, 2002; 110 

Schönheit et al., 2016) estimated that about 1.0×1021 mol of reduced carbon were probably 111 

delivered to the surface of Earth by asteroids (4.4 - 3.8 Gyr) (Catling et al., 2001; Hayes & 112 

Waldbauer, 2006). 113 

3. Geochemical energy 114 

Organics underpin the co-evolution of Earth’s geosphere and biosphere. Organics likely 115 

played critical roles in the origin of life, and, in return, life has played a symbiotic role in the 116 

production and cycling of organics. The emergence of life on Earth gave rise to a source of 117 

organics in both abundance and diversity. Life began very early, before 3.8 Gyr (Des Marais, 118 

2000; Nisbet & Sleep, 2001). Two main theories, based on heterotrophic versus 119 

chemoautotrophic metabolisms, have emerged to account the origin and early evolution of 120 

life (Ferry & House, 2006; Herd et al., 2011; Schönheit et al., 2016). Theories for autotrophic 121 

origins posit that the first cells satisfied their carbon needs from CO (Say & Fuchs, 2010; 122 

Fuchs, 2011; McDermott et al., 2015). While the heterotrophic theory proposes that life arose 123 

from an ‘‘organic soup’’ of diverse preexisting molecules which were delivered from space or 124 

abiotically formed (Lazcano & Miller, 1999; Bada & Lazcano, 2002). Regardless of the 125 

chemoautotrophic or heterotrophic origins, organisms had evolved to take advantage of the 126 

available energy to fuel their proliferation and to produce new organic matter.  127 

At this time in Earth history, oxygen was at trace levels (Canfield et al., 2006), so the 128 

first ecosystems must have existed in an anoxic world and their activities were driven by 129 
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anaerobic metabolisms (Canfield et al., 2006; Judson, 2017). The proposed emergency of life 130 

under anoxic geothermal environments implies that life started not as a planetary but as a 131 

local phenomenon. It was reported that metabolisms of early anaerobic ecosystems were 132 

probably 2–3 orders of magnitude less active than the present biosphere (Des Marais, 2000). 133 

Given these factors and the probable limits on accessing the most limiting chemical 134 

compounds, various ecosystems most likely existed in relative isolation (Canfield et al., 135 

2006).  136 

Noting that the energy budget of Earth places strict constraints on fluxes of basic 137 

components required for chemoautotrophic life, life was unable to influence the Earth's 138 

carbon cycle in any significant way in the absence of photosynthesis (Rosing et al, 2006). 139 

Geochemical models (Bergman et al., 2004; Berner, 2009) suggest that the productivity of the 140 

biosphere before it was powered by sunlight harvested through photosynthesis, would have 141 

been at least a thousand times less than it is today (and maybe one million times less). 142 

Combined continental reservoirs of organic carbon probably grew very slowly through the 143 

Earth history and were still negligible before 3.5 Gyr ago (Godderis & Veizer, 2000; Canfield 144 

et al., 2006). Owing to the low productivity of the non-photosynthetic early biosphere, its 145 

initial influence upon the life-energy-organic dynamic would have been small (Canfield et al., 146 

2006; Sleep & Bird, 2007; Judson, 2017). 147 

4. Sunlight  148 

The greatest energy source in the surface environment of the Earth is sunlight. Today the 149 

average solar energy flux to Earth surface is 340 W/m2 (Rosing et al., 2006). The early Sun 150 
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was fainter and solar luminosity was probably a quarter to a third less than the present day (ca 151 

250 W/m2 at 4.0 Gyr; Sagan & Chyba, 1997; Nisbet & Sleep, 2001). 152 

It is reported that by ca. 3.7 Gyr (Fig. 1) (Rosing, 1999; Pecoits et al., 2015; Nutman et 153 

al., 2016), photosynthetic organisms emerged to harness the energy in sunlight to drive 154 

chemical reactions. When the biosphere developed photosynthesis, living organisms acquired 155 

the ability to absorb solar energy and convert a fraction of it into chemical free energy 156 

(Rosing et al., 2006). Photoautotrophs acquired the ability to build up gradients in chemical 157 

potential, rather than just exploiting existing gradients, as was the fate of their 158 

chemoautotrophic predecessors. With evolution of photosynthesis, energy resources available 159 

for lives became several orders of magnitude larger than that available from 160 

oxidation-reduction reactions (chemoautotrophic primary production) associated with 161 

hydrothermal activities (Des Marais, 2000; Rosing, 2005; Rosing et al., 2006). The 162 

development of photosynthesis allowed life to escape the hydrothermal setting (Nisbet & 163 

Sleep, 2001). Energy harvested from sunlight, therefore, enhanced the rates of autotrophic 164 

carbon fixation, and carbon burial in anoxic environments. The primary productivity of the 165 

photosynthetic world was estimated to be 10,000 times higher than those of 166 

non-photosynthetic ecosystems (Sleep & Bird, 2008; Summons & Hallman, 2014), although 167 

the rates would have been significantly lower than the present (Summons & Hallman, 2014). 168 

The earliest photosynthetic organisms performed anoxygenic photosynthesis, and were 169 

dependent on mineral sources as electron donors, but relieved the energy constraints to 170 

perform reduction of organic compounds (Olson & Blankenship, 2004; Rosing et al., 2006). 171 

The genesis of photosynthesis had irreversible consequences for Earth surface environments 172 
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whether it was oxygenic or anoxygenic. 173 

Estimates suggest that anoxygenic phototrophs increased the flux of carbon through the 174 

biosphere and the most active ecosystems were probably driven by the cycling of Fe2+, with 175 

the oxidation of Fe2+ yielding potentially the highest rates of primary production (Canfield et 176 

al., 2006). The importance of hydrogen as an early fuel for anoxygenic photosynthesis has 177 

also been emphasized by Olson, (2006), and may have been sufficiently abundant in the early 178 

Earth to drive CO2 reduction. Other dynamic ecosystems would have also been driven by the 179 

microbial cycling of sulfur and nitrogen species, but these would have been considerably less 180 

active in comparison with those based on iron and hydrogen as electron donors to reduce CO2 181 

(Canfield et al., 2006). For all the ecosystems mentioned above, the production rates of 182 

organics were considerably less than those of today. The primary production rates of total 183 

carbon at 3.8 Gyr ago were estimated as 2.8×1014 mol yr-1. Organic carbon accounted for 184 

14% of the total carbon. This primary production estimate is 14 times lower than present rates 185 

(4.0×1015 mol yr-1) (Canfield et al., 2006). Considering that prokaryotic life was flourishing 186 

and presumably widespread in the biosphere, organics must have been completely 187 

microbially derived, which produces more labile organic matter with high H/C (the degree of 188 

aliphatic character) and low O/C or (O + N)/C (the degree of polar character) ratios (Qiu et al., 189 

2014) such as lipid-, protein-, and amion sugar-like products (Fig. 2) (Brocks et al., 1999; 190 

Grannas et al., 2006; D'Andrilli et al., 2015).  191 

5. Oxygen  192 

As the third most energetic oxidant, oxygen reduction provides the largest potential 193 
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source of energy per electron transfer, except for the reduction of chlorine and fluorine 194 

(Catling & Claire, 2005). Given the much less abundance of both chlorine and fluorine 195 

(several orders of magnitude less than oxygen) and their high reactivity with organics, their 196 

energy cannot be harnessed for life. On account of chemical sinks (such as reduced 197 

geothermal outflows and rock weathering) greatly exceeded the abiotic sources of oxygen 198 

(UV photolysis of water) ambient oxygen levels were insignificantly low (approximately 199 

10-14 of present atmospheric O2 levels) before oxygenic photosynthesis arose (Rosing et al., 200 

2006; Buick, 2008). With the evolution of more advanced oxygen producing photosynthetic 201 

pathways, life became independent of both energy and reducing power derived from mineral 202 

substrates (Rosing et al., 2006). Geologic evidence suggests that oxygenic photosynthesis 203 

originated before 2.8 Gyr (Fig. 1) (Des Marais, 2000). At present cyanobacteria are the most 204 

numerous (~1027) among all organisms performing oxygenic photosynthesis (among green 205 

plants, phytoplankton and cyanobacteria) (Catling & Claire, 2005). Cyanobacteria raised 206 

oxygen levels in the atmosphere (> 10-3 present atmospheric O2 level) by around 2.32 Gyr. 207 

This planetary change to atmospheric O2 levels is referred to as the Great Oxidation Event 208 

(GOE) (Kopp et al., 2005; Buick, 2008). Oxygenic photosynthesis was clearly well 209 

established by this time (Schirrmeister et al., 2013). 210 

The stratospheric ozone layer seems to have been created at 2.3 Gyr (Goldblatt et al., 211 

2006). The formation of the ozone layer was facilitated by O2 levels rising to 1-3% of present 212 

levels; at these levels, photolysis of oxygen (yielding reactive oxygen radicals) was 213 

sufficiently frequent for an ozone layer to be produced, which shielding life from short-wave 214 

UV-radiation (200-300 nm) and was suitable for life to expand on the continents (Goldblatt et 215 
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al., 2006). Beyond the energetic limitations, defined by the availability of oxygen, the only 216 

limiting factors for life from the environment became the availability of bio-essential 217 

elements (Rosing et al., 2006). The increase in the oxygen content of the atmosphere and 218 

ocean driven by photosynthesis increased chemical weathering rates (Shields, 2007), which 219 

in turn increased nutrient (e.g. phosphorus, partly nitrogen, and iron) availability (Shields, 220 

2007; Kump, 2010). The far-reaching impact of the GOE cannot be emphasized enough: it 221 

changed Earth’s history by enabling the evolution of aerobic life, an explosion in the 222 

biosynthesis of organics and this underpinned the opportunity for organics to be generated 223 

and to proliferate in large quantities on a planetary scale. 224 

Oxygenic photosynthesis is by far the most efficient mechanism for harvesting solar 225 

energy (Rosing et al., 2006). The GOE changed Earth’s history by enabling the evolution of 226 

aerobic life (eukaryotes) and the emergence of the lineage that would eventually produce land 227 

plants. On Earth, aerobic metabolism provides about an order of magnitude more energy for a 228 

given intake of food than anaerobic metabolism (Judson, 2017). As a consequence of 229 

energetic limitations, life without O2 as a strong electron acceptor, well mixed in the 230 

atmosphere and the surface ocean, could not grow large and complex (Lane & Martin, 2010). 231 

On account of prohibitively low growth efficiencies and energetic limitations anaerobes do 232 

not grow beyond the complexity of uniseriate filaments of cells (Schulz & Jørgensen, 2001; 233 

Catling & Claire, 2005). The oxygenated atmosphere and ocean enabled the evolution of 234 

more complex life (Payne et al., 2009; Dahl et al., 2010; Kump, 2010). The maximum body 235 

size of organism has increased by 16 orders of magnitude since emergence of life; this 236 

transition occurred via two discrete steps (Payne et al., 2009). The first was the emergence of 237 
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eukaryotic cell (~1.9 Gyr) and the second was eukaryotic multi-cellularity (0.6-0.45 Gyr). 238 

These two steps coincide or slightly postdate with increases in atmospheric oxygen levels 239 

(Payne et al., 2009). The evolution of Earth’s biota is intimately linked to the oxygenation of 240 

the atmosphere and the oceans (Dahl et al., 2010). This atmospheric oxygenation correlates 241 

with the diversification and radiation of vascular plants on the continents (Gensel, 2008) and 242 

the oxygenation of the oceans correlates with the expansion of large predatory fish (Bambach, 243 

2002). This evolution significantly enhanced the burial of reduced carbon and was companied 244 

by the accumulation of organic matter (Fig. 1). 245 

There exists a striking temporal overlap between the atmospheric oxidation and the rise 246 

of the continents (Dietrich et al., 2006; Rosing et al., 2006). Continent shaping was probably 247 

associated with burial of organic matter fixed by oxygenic photosynthetic organisms under 248 

sediment eroded from the new blocks of crust (Des Marais et al., 1992; Dietrich et al., 2006). 249 

The rifting of large continental plates on the global scale probably promoted the development 250 

of extensive anoxic basins favorable for organic preservation (Des Marais et al., 1992), 251 

promoted the burial of refractory plant material (e.g., lignin, cellulose, and of other refractory 252 

organic compounds) (Berner, 2009).  253 

The emergence of larger, and less easily degradable organic molecules related to 254 

eukaryotic diversification thus enhanced the burial of organic matter and its diversity. One of 255 

the most unique and pervasive biological characteristics of organic matter in terrestrial 256 

environments is the predominance of sources from vascular plants (Oades, 1993). For 257 

example, during the Carboniferous period (360-300 Ma), oxygen in atmosphere rose to 258 
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between 30 and 35% (Berner et al., 2003; Hsia et al., 2013), coinciding with the appearance 259 

giant vascular plants, fern-dominated forests (Shear, 1991). Fern are lignin rich plants that 260 

contain > 40% of lignin than modern plants (~20%) (Robinson, 1990), and this lignin was 261 

difficult to decompose until organisms like fungi evolved and effective degradation occurred 262 

until 200 million years after fern plant emergence (Robinson, 1990). The rise of ligniferous 263 

plants and low lignin breakdown (due to the rare or absence of lignolytic organisms) 264 

contributed to increased terrestrially derived organic matter burial through inhibited 265 

decomposition (Robinson, 1990; Berner et al., 2003). The spread of vascular plants in the 266 

terrestrial environment increased the diversity of organic matter, including plant-derived 267 

polysaccharides such as cellulose and phenolic compounds such as lignin (Benner et al., 1984; 268 

McLatchey & Reddy, 1998). These organic compounds are characterized by less labile, more 269 

recalcitrant chemical nature with H/C <1.5 (Fig. 2) (D'Andrilli et al., 2015).  270 

6. Fire 271 

To trigger wildfire, all of three conditions must be met (Scott & Glasspool, 2006). Firstly, 272 

a source of ignition—such as lightning strikes, meteor strikes and volcanic activity. 273 

Throughout the Earth history, these have been abundant. Lightning is the pre-eminent source 274 

of heat for the ignition of fossil wildfires. Lightning strikes occurred more than 1.4 billion 275 

lightning strikes per year owing to its global frequency (44 ± 5 strikes/s) (Christian et al., 276 

2003), of which an appreciable number ignite wildfires. Secondly, sufficient amount of 277 

oxygen became present in the atmosphere. Assuming current atmospheric pressure, at least 278 

16% oxygen is the minimum concentration in order for plants to ignite and for fire to be 279 
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self-sustaining (Belcher & McElwain, 2008; Belcher et al., 2010). For most of Earth’s history, 280 

oxygen levels have been lower than this threshold until 0.35 Gyr (Scott, 2000; Scott et al., 281 

2013). Thirdly, fire requires fuel. The earliest land plants (embryophytes) evolved from 282 

charophycean green algal ancestors (Steemans et al., 2009) at approximately 0.47 Gyr 283 

(Berner, 2009). The appearance of vascular plants on land occurred around 0.42 Gyr ago, 284 

although they were tiny and leafless (Lenton, 2001; Banks et al., 2011). All three conditions 285 

were met and fire activity has begun to influence the Earth system and the cycling of organic 286 

matter. 287 

The evolution of plants increased the atmospheric oxygen concentration, contributing to 288 

increase the amount of oxygen for fire formation. In the meantime, plants provide the fuel for 289 

fire. Fire activity would be globally distributed, even in wetter climatic areas as when oxygen 290 

reaches levels >30%, fire can be sustained (Scott & Glasspool, 2006). The Carboniferous 291 

period was characterized as a ‘high-fire’ world due to elevated levels (35%) of oxygen 292 

(Berner, 2006; Glasspool & Scott, 2010). A diverse vegetation provided a major and 293 

extensive fuel resource although vast swamps were present on the continents (Berner, 1999). 294 

Significantly enhanced fire activity continued during the Cretaceous (145–65 Ma) (Belcher et 295 

al., 2010), and is hypothesized to be associated with the rise of angiosperms during this 296 

period (Bond & Scott, 2010; Bond & Midgley, 2012). 297 

Fire has had both geological and biological impacts on ecosystems. Fire regimes drive 298 

the evolution of plant traits, such as thick bark (Bond et al., 2005; Pausas & Keeley, 2009; 299 

Keeley et al., 2011); the initial spread of flowering plants (Bond & Scott, 2010); faunal 300 
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abundance and diversity such as ants (Moreau et al., 2006); shape biomes (Crisp et al., 2010, 301 

2011; Scheiter et al., 2012); affect soils quality and nutrient cycling such as the carbon, 302 

oxygen and phosphorous cycles; promote biodiversity (Bond & Keeley, 2005). Due to the fire 303 

integration to ecosystem function and maintenance (Keeley & Rundel, 2005; Edwards et al., 304 

2010), pyrophilic grasslands and savannas such as C4 grasslands expanded and replaced 305 

woodlands (Keeley & Rundel, 2005; Hoetzel et al., 2013). 306 

The emergence of fire in terrestrial environment likely had a profound effect upon the 307 

compositions and dynamics of organic carbon. Furthermore, fire contributes new material to 308 

the Earth—pyrogenic carbon or fire-derived organic matter (partly charred organic matter 309 

including black carbon, charcoal and soot) (Lenton, 2013; Judson, 2017). Glinka, (1914) 310 

described that “there was almost no soil profile in which charcoal particles did not occur in 311 

the upper horizon” (Bird et al., 2015). In modern peats, charcoal may constitute 4% of the 312 

total volume. In the Carboniferous, charcoal represented more than 20% of dead organic 313 

matter (Scott et al., 2013). It was recently estimated that 3-5 million km2 of the Earth surface 314 

are burned by wildfires annually (Jones et al., 2019) and approximately 116-385 Tg/yr of 315 

pyrogenic carbon are now produced globally by fires (Santin et al., 2016). Pyrogenic carbon 316 

can represent a significant proportion of total organic carbon in the environment: ranging 317 

from 2% to 60% of the total soil organic carbon in terrestrial systems (Singh et al., 2012; 318 

Reisser et al., 2016). Santin et al. (2016) provided a global assessment of pyrogenic carbon 319 

fluxes. Accounted for 8 to 27% of the annual production of pyrogenic carbon were inputted to 320 

oceans from rivers and most of pyrogenic carbon was deposited on the continental shelf 321 

(Santin et al., 2016). These reports indicate that pyrogenic carbon is a significant component 322 
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in both terrestrial and oceanic carbon storage (Preston & Schmidt, 2006). Moreover, 323 

pyrogenic carbon has a condensed aromatic structure with low H/C and O/C ratios; it is 324 

therefore recalcitrant (D'Andrilli et al., 2015). It has been established that pyrogenic carbon 325 

can persist in soils and sediments for millions of years and thus it plays an important role in 326 

the global carbon inventory of the Earth and fluxes between reservoirs over long time scales 327 

(Schmidt & Noack, 2000; Forbes et al., 2006; Scott, 2010). Human activities that suppress 328 

the production of pyrogenic carbon have significantly disturbed the pyrogenic carbon cycle 329 

(Bowman et al., 2011; Andela et al., 2017).  330 

The advent of anthropogenic fire was a revolutionary event in Earth history because fire 331 

technology has significantly influenced the biosphere over the last 10,000 years (Box 2) 332 

(Raupach & Canadell, 2010). Fire gave protection, extended the range of food, and expanded 333 

adaptation to different environments on Earth (Froestad & Shearing, 2017). Fire plays a 334 

pivotal role in the clearing of forests to create permanent fields with the development of 335 

sedentary agriculture-based societies during the Holocene (Bowman et al., 2013). During the 336 

late Quaternary humans have dramatically altered fire regimes around the globe, which is 337 

largely dependent on fossil fuels, both directly and indirectly. The production and existence 338 

of pyrogenic carbon underpin the significant perturbations of the carbon cycles both, on long 339 

(million year) (Berner, 1999; 2003) and on short (thousand year) timescales. The application 340 

of fire by humans, especially the fossil fuel burning, has accelerated both long- and 341 

short-term carbon cycles through anthropogenical alternation of carbon fluxes, the increase of 342 

CO2 in the atmosphere, and global warming (Berner, 1999). Organic aerosols such as soot 343 

from fire smoke in Earth’s atomsphere is an important contributor to global climate change 344 
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by absorbing heat and warming the air (Bond et al., 2013; Berner, 2003; Johansson et al., 345 

2018).  346 

Life is a process of harnessing energy to maintain states far from thermodynamic 347 

equilibrium, leading to an energy flow through the biosphere (Raupach & Canadell, 2010). 348 

Any reduction of an energy source could cause a corresponding contraction in the biosphere 349 

and drop in the rate of global organic matter burial. In the traditional “big five” mass 350 

extinctions oceanic anoxic events (due to the worldwide reduction of oxygen) have coincided 351 

with four of these mass extinctions, especially, the end-Ordovician (Zhang et al., 2009), the 352 

Late Devonian (Goddéris & Joachimski, 2004), the end-Permian (Wignall & Twitchett, 1996; 353 

Grice et al., 2005), and the end-Triassic (Isozaki, 1997). Thus, rapid declines in atmospheric 354 

O2 have been proposed to have a major influence upon mass extinction events. For example, 355 

in the most severe extinction (loss of as much as 95% of all species on Earth) that occurred in 356 

the Late Permian (~251 Mya) (Benton & Twitchett, 2003; Grice et al., 2005; Chen & Benton, 357 

2012), the oxygen level (at 30% or more in the Carboniferous period) fell dramatically to 358 

13% in the late Permian and the early part of the subsequent Triassic (Lane, 2007). One 359 

factor in the last mass extinction (end-Cretaceous) may be the prevention of sunlight from 360 

reaching the surface of the Earth due to the dust, soot or aerosols in the atmosphere ejected by 361 

the Chicxulub asteroid impact (Kring, 2007).  362 

The sudden mass mortality of the terrestrial and marine organisms irreversibly 363 

reorganized the global carbon cycle (Caplan & Bustin, 1999; Berner, 2002). A drop in burial 364 

fluxes for global organic carbon is coincident with the abrupt biota change at the time of late 365 



18 

 

Permian (Berner, 2005) and the end-Cretaceous mass extinctions (D'hondt et al., 1998). Such 366 

a reduction in the organic flux could have been a natural consequence of the ecosystem 367 

reorganization that resulted from the mass extinctions.  368 

7. Conclusions  369 

The amount and proportion of pyrogenic carbon in total organic carbon on Earth are 370 

expected to increase, which changed the diversity and complexity of organic matter on Earth. 371 

The change of the diversity and complexity of organic matter (microbial-, plant-, fire- and 372 

human-derived organics) have in-return significantly influenced Earth's carbon cycle, 373 

planetary climate and ecosystems. The long-term organic carbon cycle has dominant 374 

influenced the levels of atmospheric oxygen and carbon dioxide over a multimillion-year 375 

time scale. The levels of atmospheric carbon dioxide and oxygen were mainly mediated via 376 

weathering of organic matter on the continents, the burial of organic matter in sediments, and 377 

the thermal breakdown of organic matter at depth. The increased oxidation of organic carbon 378 

to carbon dioxide by weathering and thermal breakdown results in the O2 consumption and 379 

CO2 production. The burial of organic matter in sediments leads to an increase in atmospheric 380 

O2 and a decrease of atmospheric CO2 due to a net excess of photosynthesis over respiration 381 

(Berner & Caldeira, 1997; Berner, 1999). Current burning of fossil carbon results in a 382 

decrease of atmospheric O2 by about 2 ppm per year (Keeling and Manning, 2014). The 383 

fluctuation of atmospheric levels of O2 and CO2 would change the planetary climate, 384 

temperature, precipitation (enhanced atmospheric CO2 leads to a warmer and wetter climate 385 

via the greenhouse effect), resulting in the evolution of biology. An integrated view of 386 
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assessing the role of the change of diversity and complexity of organic matter is required. A 387 

full understanding of the role of pyrogenic carbon on planetary climate and ecosystems can 388 

provide us with new opportunities for mitigating climate change.  389 

If the development of life-energy-organic dynamics on other life-planet systems have 390 

paralleled those on Earth (i.e. microbial-, plant-, fire-derived and anthropogenic organics), 391 

then it follows that by analyzing the type of organics in their soils or rocks the evolution of 392 

life-energy-organic histories/dynamics can be speculated upon (Hazen, 2019). For example, if 393 

the soils or meteorites from another planet have only simple organic molecules it might be 394 

inferred that the planet is in a prebiotic (or early life) stage. In contrast, where the soils or 395 

meteorites from a planet have plant-derived or pyrogenic carbon, like Mars (Lin et al., 2014), 396 

there exist implications for a possibly complex biosphere being present. Given, the entwined 397 

evolution of life, energy utilization and organics there exist the possibility to evidence the 398 

development of life elsewhere in the universe though assessment of organic matter profile 399 

and the fingerprint they provide of biotic diversification. 400 
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Box 1 Abiotic Synthesis of Organic Compounds in Hydrothermal 833 

Environments 834 

Since the discovery of deep-sea hydrothermal systems in the late 1970sError! Reference 835 

source not found. (Corliss et al., 1979), there has been keen interest in the origin of life in 836 

these environments. The concept that deep-sea hydrothermal systems as sites of abiotic 837 

organic synthesis is based largely on their strongly reducing chemical environments. Based 838 

on geological observations as well as theoretical and experimental constraints, the theory 839 

received support as having the potential for abiotic synthesis of organic compounds within 840 

hydrothermal environments (Charlou et al., 2002; Martin et al., 2008; McDermott et al., 841 

2017). The abiotic formation of organic compounds in geologic systems involves the abiotic 842 

reduction of dissolved inorganic carbon (∑CO2 = CO2 + HCO3¯+ CO3
2−) to organic 843 

compounds by dissolved H2 produced by serpentinization, which can be expressed by the 844 

following reaction (McCollom & Seewald, 2007): 845 

CO2 + H2 → CH4 + C2H6 + C3H8 + CnHn+2... + H2O 846 

The synthesis of CH4 and organics from H2 and CO2 releases energy. Geothermal energy is 847 

transferred into chemical energy in the form of organic compounds. These reactions take 848 

place readily on the Earth. Geochemistry thus offered fresh chemical, energetic, and 849 

thermodynamic perspectives on biochemical origins (Martin, 2012).  850 

851 
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Box 2 Fire and Hominins 852 

The use of fire is a defining feature of humans with reliable records of fire use by 853 

hominins dated at 1 million years (Myr) ago (Berna et al., 2012; Bowman et al., 2013). The 854 

habitual use of fire for preparing food about 0.400 Myr (Roebroeks & Villa, 2011; Sandgathe 855 

et al., 2011) supported the larger human brains (Carmody & Wrangham, 2009) and relatively 856 

small gut given body size (Milton, 1999). Fire was a central evolutionary force and cooked 857 

diets tend to provide more energy for growing energy-expensive brains (Roebroeks & Villa, 858 

2011).  859 

With the harnessing of fire and the technological explosion, fire was replaced by the 860 

internal combustion engine. Considering that most of the energy used by human beings 861 

comes from the combustion of fossilized organic matter it might be asserted that humans 862 

have become the most important evolutionary force on the planet (Palumbi, 2001) 863 

considering most of the energy used by human beings comes from the combustion of 864 

fossilised organic matter. Industrial-scale use of energy flows from fossil carbon have 865 

significant effects on the climate, atmosphere, hydrosphere, and on global biogeochemistry 866 

(Gillings et al., 2015). These changes have altered the carbon and energy cycle in the Earth 867 

system, leading to the new epoch: the “Anthropocene”. 868 

Many kinds of man-made organics such as synthetic polymers were produced and 869 

delivered into the environment. One of the most ubiquitous polymer is debris of plastics, 870 

which was produced in large quantities after World War II (Carpenter & Smith, 1972). 871 

Jambeck et al. (2015) reported that 275 million metric tons of plastic waste was generated in 872 

2010 and 5 ~ 13 million tonnes of plastic have been transported to the ocean. Plastic 873 



42 

 

fragments are stable and highly durable, potentially lasting hundreds to thousands of years 874 

(Barnes et al., 2009; Cózar et al., 2014). Thus, like the emergence of lignin with the 875 

appearance of vascular plants on land (~420 Mya; Lenton, 2001; Banks et al., 2011) or 876 

pyrogenic carbon (420 Mya; Cressler, 2001; Bird et al., 2015) the emergence of plastics 877 

marks the beginning of a new era in the evolution of organics on Earth (Wu et al., 2017, 878 

2019a, b). 879 

 880 

881 
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Figure legends 882 

 883 

Fig. 1 Quantity of organic carbon in the crust against age according to references (Des Marais 884 

et al., 1992; Hayes & Waldbauer, 2006). PAL: present atmospheric level. The variety of 885 

energy sources, e.g. geochemical energy, sunlight, oxygen and fire, to support the evolution 886 

of life.  887 

Fig. 2 The derivation and characteristics of organic matter from asteriods, microbes, plants, 888 

fires and humans. 889 
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