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Abstract Tree shape statistics are important for investigating evolutionary mechanisms mediating phylo-

genetic trees. As a step towards bridging shape statistics between rooted and unrooted trees, we present a

comparison study on two subtree statistics known as numbers of cherries and pitchforks for the proportional

to distinguishable arrangements (PDA) and the Yule-Harding-Kingman (YHK) models. Based on recursive

formulas on the joint distribution of the number of cherries and that of pitchforks, it is shown that cherry dis-

tributions are log-concave for both rooted and unrooted trees under these two models. Furthermore, the mean

number of cherries and that of pitchforks for unrooted trees converge respectively to those for rooted trees

under the YHK model while there exists a limiting gap of 1/4 for the PDA model. Finally, the total variation

distances between the cherry distributions of rooted and those of unrooted trees converge for both models.

Our results indicate that caution is required for conducting statistical analysis for tree shapes involving both

rooted and unrooted trees.

Keywords tree shape · subtree distribution · Yule-Harding-Kingman model · PDA model · total variation

distance

1 Introduction

As a common way of representing evolutionary relationships among biological systems ranging from genes to

populations, phylogenetic trees retain important signatures of the underlying evolutionary events and mech-

anisms which are often not directly observable, such as speciation and expansion (Mooers et al, 2007; Heath
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et al, 2008). To utilise these signatures, one popular approach is to compare empirical tree shape indices with

those predicted by neutral models specifying tree generating processes (see, e.g. Blum and François, 2006;

Colijn and Gardy, 2014; Hagen et al, 2015). Moreover, topological tree shapes are also closely related to a

number of basic population genetic statistics (Ferretti et al, 2017; Arbisser et al, 2018) and are useful for

identifying the bias of tree reconstruction methods (Pickett and Randle, 2005; Holton et al, 2014).

Phylogenetic trees can be broadly grouped into two categories: rooted and unrooted. A rooted tree contains

a specific node designated as the root, which gives a temporal direction to the tree that unrooted trees

do not have. Tree shapes for rooted trees are relatively better studied, partly due to a general framework

known as the recursive shape index (Matsen, 2007; Chang and Fuchs, 2010; Disanto and Wiehe, 2013;

Cardona et al, 2013). However, less is known about properties of tree shapes for unrooted trees, which are used

extensively in phylogenetic analysis, particularly when the location of the root is too difficult to be inferred from

data (Steel, 2012). As a step towards bridging this gap, we investigate the exact joint distribution of two subtree

statistics known as cherries and pitchforks, e.g. subtrees of two and three leaves, respectively, for unrooted

trees under two commonly used tree generating models: the proportional to distinguishable arrangements

(PDA) and Yule-Harding-Kingman (YHK) models. Combining these results with subtree distributions on

rooted trees (McKenzie and Steel, 2000; Rosenberg, 2006; Wu and Choi, 2016), we then conduct a comparison

study on these subtree distributions between rooted and unrooted trees to gain further insights into these two

models.

We now summarize the contents of the rest of the paper. In the next section, we begin by reviewing some

definitions and results concerning phylogenetic trees and tree-generating models. These models are described

using a random tree growth framework based on taxon attachment that can be applied to both rooted and

unrooted trees. We then study the cherry and the pitchfork distributions under the PDA model in Section 3

and those under the YHK model in Section 4. For each model, our starting point is a recursive formula on the

joint distributions of cherries and pitchforks, which leads to a common approach to computing the mean and

variance for cherries and for pitchforks, as well as their covariance.

In Section 5 we present comparison studies on properties of the cherry and pitchfork distributions under

the two models for both rooted and unrooted cases. In particular, it is shown that the cherry distributions

under both models are log-concave (Theorem 7). For both cherry distributions and pitchfork distributions,

the difference between the mean number for unrooted trees and that for rooted trees converges to 0 under

the YHK model, whereas it converges to 1/4 under the PDA model (Proposition 6). Finally, we show that

the total variation distances between the cherry distributions of rooted and those of unrooted trees converge

under the YHK model (Proposition 8), and converge to 0 under the PDA model (Theorem 9). We conclude

in the last section with a discussion of our results and some open problems.

2 Preliminaries

In this section, we present some basic notation and background concerning phylogenetic trees, random tree

models, and log-concavity. From now on n will be a positive integer greater than three unless stated otherwise

and [n] = {1, 2, . . . , n} is the set of all positive integers between 1 and n.
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2.1 Phylogenetic trees

A tree T = (V (T ), E(T )) is a connected acyclic graph with vertex set V (T ) and edge set E(T ). A vertex is

referred to as a leaf if it has degree one, and an interior vertex otherwise. An edge incident to a leaf is called

a pendant edge, and let E◦(T ) be the set of pendant edges in T . A tree is rooted if it contains exactly one

distinguished degree-one node designated as the root, which is not regarded as a leaf and is usually denoted

by ρ, and unrooted otherwise. All trees consider here are binary, that is, each interior vertex has degree three.

A (rooted) phylogenetic tree on a finite set X is a (rooted) tree with leaves bijectively labelled by the

elements of X. The set of binary unrooted phylogenetic trees and rooted phylogenetic trees on [n] are denoted

by Tn and T ∗n , respectively. See Fig. 1 for examples of trees in T8 and T ∗8 .

Removing the root of a tree T ∗ in T ∗n , that is, removing ρ and suppressing its adjacent interior vertex r

(i.e. deleting r and adding an edge connecting the remaining two neighbours of r), results in an unrooted tree

ρ−1(T ∗) in Tn. For example, in Fig. 1 the unrooted phylogenetic tree T is obtained from the rooted tree T ∗

by removing its root.

T ′T

1

5

3

6

7

e9 e11 e13e12

8

4

2

e10

1

5

3

6

7

8

4

29

T ∗

ρ

r

1 8 3 4 6 2 5 7

Fig. 1: Examples of phylogenetic trees. T ∗ is a rooted phylogenetic tree on X = {1, . . . , 8}; T is an unrooted

phylogenetic tree on X (where the pendant edge incident to i is ei); T
′ = T [e11] is a phylogenetic tree on

{1, . . . , 9} obtained from T by attaching a new leaf labelled 9 to edge e11.

Removing an edge in a phylogenetic tree T results in two connected components; such a connected com-

ponent is referred to as a subtree of T if it does not contain the root of T . In other words, removing an edge

in a phylogenetic tree T results in two subtrees if T is unrooted, and one subtree if T is rooted. A subtree is

called a cherry if it has two leaves, and a pitchfork if it has three leaves. Given a phylogenetic tree T , let A(T )

and B(T ) be the number of pitchforks and cherries, respectively, contained in T .

Given an edge e in a phylogenetic tree T on X and a taxon x′ 6∈ X, let T [e;x′] be the phylogenetic

tree on X ∪ {x′} obtained by attaching a new leaf with label x′ to the edge e. Formally, let e = {u, v}

and let w be a vertex not contained in V (T ). Then T [e;x′] has vertex set V (T ) ∪ {x′, w} and edge set(
E(T )\{e}

)
∪{(u,w), (v, w), (w, x′)}. See Fig. 1 for an illustration of this construction, where tree T ′ = T [e11; 9]

is obtained from T by attaching leaf 9 to edge e11. Note that we also use T [e] instead of T [e;x′] when the

taxon name x′ is not essential.
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2.2 The YHK and the PDA models

Let Tn be the set of unrooted phylogenetic trees with n leaves. In this subsection, we present a formal definition

of the two null models investigated in this paper: the proportional to distinguishable arrangements (PDA)

model and the Yule-Harding-Kingman (YHK) model. Although these two models are typically presented

through the rooted version, for our purpose here we follow the direct approach based on Markov processes as

described by Steel (2016, Section 3.3.3).

Under the YHK process (Harding, 1971; Yule, 1925), a random unrooted phylogenetic tree Tn is generated

as follows.

(i) Select a uniform random permutation (x1, . . . , xn) of [n];

(ii) start with the unrooted phylogenetic tree T2 on the taxon set {x1, x2};

(iii) for 2 ≤ k < n, uniformly choose a random pendant edge e in Tk and let Tk+1 = Tk[e;xk+1].

Here a permutation (x1, . . . , xn) of [n] means a taxon sequence with xi ∈ [n] and xi 6= xj for all i 6= j. A

similar process can be used to sample a rooted tree under the YHK model by using the rooted phylogenetic

tree T2 on {x1, x2} in Step (ii). Moreover, the PDA process can be described using a similar scheme; the only

difference is that in Step (iii) the edge e is uniformly sampled from the edge set of Tk, instead of the pendant

edge set1.

The probability of generating a given unrooted tree T under the YHK model (respectively the PDA model)

is denoted by Py(T ) (resp. Pu(T )). We use Ey, Vy, Covy, and ρy to denote respectively the expectation,

variance, covariance, and correlation taken with respect to the probability measure Py under the YHK model.

Similarly, Eu, Vu, Covu, and ρu are defined with respect to the probability measure Pu under the PDA model.

For n ≥ 4, let Bn be the random variable B(T ) for a random tree T in Tn. Similarly, for n ≥ 6, let An be

the random variable A(T ) for a random tree T in Tn. The probability distributions of An (resp. Bn) will be

referred to as pitchfork distributions (resp. cherry distributions). Since each tree in Tn with n = 4, 5 contains

precisely two cherries, the following statement clearly holds.

For n = 4, 5, we have Py(Bn = b) = Pu(Bn = b) =

1, if b = 2,

0, otherwise.

(1)

When n = 6, we have

Py(A6 = a,B6 = b) =


4
5 , if a = 2, b = 2,

1
5 , if a = 0, b = 3,

0, otherwise,

and Pu(A6 = a,B6 = b) =


6
7 , if a = 2, b = 2,

1
7 , if a = 0, b = 3,

0, otherwise.

(2)

In this paper, we are interested in the joint and marginal distributional properties of An and Bn under the

YHK and the PDA models for n ≥ 6.

1 Under the PDA process, Step (i) can also be simplified by using a fixed permutation, say (1, 2, · · · , n).
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2.3 Edge decomposition

The edge set E(T ) of a phylogenetic tree T can be decomposed into two sets: the pendant edge set E◦(T ) and

the interior edge set E•(T ). That is, we have

E(T ) = E◦(T ) t E•(T ),

where t denotes the union of disjoint sets. A cherry is called essential if it is not contained in a pitchfork. Let

E•ec(T ) be the set of interior edges whose removal induces an essential cherry as one of the two subtrees, and

denote its complement in E•(T ) by E•nec(T ). Then we have

E•(T ) = E•ec(T ) t E•nec(T ).

For pendant edges, let E◦ec(T ) be the set of pendant edges contained in essential cherries, let E◦pf (T ) be the set

of pendant edges contained in a pitchfork but not a cherry, let E◦cp be the set of pendant edges contained both

in a cherry and in a pitchfork, let E◦ind be the set of pendant edges contained in neither a cherry nor a pitchfork.

To illustrate the above notation, considering the tree T depicted in Fig. 1, we have E◦ec(T ) = {e1, e3, e4, e8},

E◦pf (T ) = {e2}, E◦cp(T ) = {e5, e7}, E◦ind(T ) = {e6}, E•ec = {e9, e10}, and E•nec(T ) = {e11, e12, e13}.

For a tree T in Tn with n ≥ 6, we have

E◦(T ) = E◦ec(T ) t E◦pf (T ) t E◦cp(T ) t E◦ind(T ) and (3)

E(T ) = E•ec(T ) t E•nec(T ) t E◦ec(T ) t E◦pf (T ) t E◦cp(T ) t E◦ind(T ). (4)

Furthermore, it is easy to see that |E(T )| = 2n − 3, |E◦pf (T )| = A(T ), and |E◦cp(T )| = 2A(T ). Since each

pitchfork contains precisely one non-essential cherry, it follows that |E◦ec(T )| = 2(B(T )−A(T )) and |E•ec(T )| =

B(T )−A(T ). Finally, we have |E◦ind(T )| = n−A(T )− 2B(T ) and |E•nec(T )| = n− 3 +A(T )−B(T ) because

T has precisely n pendant edges and the number of interior edges in it is n− 3.

The following lemma, whose proof is straightforward and hence omitted here, relates the values B(T [e])−

B(T ) and A(T [e])−A(T ) to the choice of e.

Lemma 1 Suppose that e is an edge in a phylogenetic tree T and T ′ = T [e]. Then we have

A(T ′) =


A(T )− 1 if e ∈ E◦pf (T ),

A(T ) + 1 if e ∈ E◦ec(T ) ∪ E•ec(T ),

A(T ) otherwise;

and B(T ′) =


B(T ) + 1 if e ∈ E◦pf (T ) ∪ E◦ind(T ),

B(T ) otherwise .

2.4 Miscellaneous

A sequence (y1, . . . , ym) of numbers is called positive if each number in the sequence is positive, that is, greater

than zero. It is defined to be log-concave if yk−1yk+1 ≤ y2k holds for 2 ≤ k ≤ m−1. Clearly, a positive sequence

(yk)1≤k≤m is log-concave if and only if the sequence (yk/yk+1)1≤k≤m−1 is increasing. Therefore, a log-concave

sequence is necessarily unimodal; that is, there exists an index 1 ≤ k ≤ m such that

y1 ≤ y2 ≤ · · · ≤ yk ≥ yk+1 ≥ · · · ≥ ym
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holds. Moreover, a non-negative integer-valued random variable Y with probability mass function {pk : k ≥ 0}

is log-concave if {pk}k≥0 is a log-concave sequence.

Next, for each positive integer n, we let ∆(n) = bn/4c be the largest integer that is less than or equal to

n/4. Then we have ⌊
n(n− 1)

2(2n− 3)

⌋
= ∆(n) for n ≥ 4. (5)

To see that the last equation holds, let r be the integer between 0 and 3 such that n = 4m + r holds for

some m ≥ 1. When r = 0, that is, n = 4m for some m ≥ 1, it is straightforward to verify that m <

4m(4m − 1)/(16m − 6) < m + 1, from which (5) follows. The other three cases, where r ∈ {1, 2, 3}, can be

verified in a similar manner. Furthermore, let ∇(n) = dn/4e be the smallest integer that is greater than or

equal to n/4. Then a proof similar to that of (5) shows that⌊
(n+ 1)(n+ 2)

2(2n− 1)

⌋
= ∇(n) for n > 8. (6)

We end this section with the following fact on the rising factorial. Let k(r) = k(k + 1) · · · (k + r − 1) for

positive integers k, r. Then we have the following identity (see, e.g. Graham et al, 1994):

m∑
k=1

k(r) =
m(r+1)

r + 1
. (7)

When r = 1, this gives us the following well-known formula for the triangular numbers:

1 + 2 + · · ·+m =
m(2)

2
=
m(m+ 1)

2
. (8)

3 Subtree distributions under the PDA model

In this section, we study the joint distribution of the random variables An (i.e. the number of pitchforks) and

Bn (i.e., the number of cherries) under the PDA model.

Our starting point is the following result on a recursion of the joint distribution, which will then be used

to deduce the marginal distribution of Bn, as well as the joint moments of An and Bn.

Theorem 1 Let n ≥ 6. Then we have Pu(An = a,Bn = b) = 0 if either a ∈ {−1, n, n+1} or b ∈ {1, n} holds.

Furthermore, for 0 ≤ a ≤ n and 1 < b ≤ n we have

Pu(An+1 = a,Bn+1 = b) =
n+ 3a− b− 3

2n− 3
Pu(An = a,Bn = b) +

a+ 1

2n− 3
Pu(An = a+ 1, Bn = b− 1)

+
3(b− a+ 1)

2n− 3
Pu(An = a− 1, Bn = b) +

n− a− 2b+ 2

2n− 3
Pu(An = a,Bn = b− 1). (9)

Proof Fix an integer n ≥ 6. Since 0 ≤ A(T ) ≤ n/3 and 1 < B(T ) ≤ n/2 holds for every tree T ∈ Tn, it follows

that Pu(An = a,Bn = b) = 0 if either a ∈ {−1, n, n+ 1} or b ∈ {1, n} holds.

Next, let T2, . . . , Tn, Tn+1 be a sequence of random trees generated by the PDA process. That is, choosing

a random permutation (x1, . . . , xn+1) of [n + 1] and considering the tree T2 with two leaves {x1, x2}, then

Ti+1 = Ti[ei;xi+1] where ei is a uniformly chosen edge in Ti for 2 ≤ i ≤ n. In particular, we have |E(Ti)| = 2i−3
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for 2 ≤ i ≤ n+ 1. For 0 ≤ a ≤ n and 1 < b ≤ n put ∆(a, b) = {(a, b), (a+ 1, b− 1), (a− 1, b), (a, b− 1)}. Then

we have

Pu(An+1 = a,Bn+1 = b) = P(A(Tn+1) = a,B(Tn+1) = b)

=
∑
p,q

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = p,B(Tn) = q)P(A(Tn) = p,B(Tn) = q)

=
∑
p,q

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = p,B(Tn) = q)Pu(An = p,Bn = q)

=
∑

(p,q)∈∆(a,b)

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = p,B(Tn) = q)Pu(An = p,Bn = q). (10)

Here the first and third equalities follow from the definition of random variables An and Bn while the second one

follows from the law of total probability. The last equality holds because by Lemma 1 and Tn+1 = Tn[en;xn+1]

we have

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = p,B(Tn) = q) = 0

for (p, q) 6∈ ∆(a, b).

It remains to consider the cases with (p, q) ∈ ∆(a, b). The first case is that (p, q) = (a, b). By Lemma 1, we

have

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = a,B(Tn) = b) =
|E•nec(Tn) ∪ E◦cp(Tn)|

E(Tn)
=
n+ 3a− b− 3

2n− 3
. (11)

Similarly, we have

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = a+ 1, B(Tn) = b− 1) =
|E◦pf (Tn)|
E(Tn)

=
a+ 1

2n− 3
, (12)

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = a− 1, B(Tn) = b) =
|E◦ec(Tn) ∪ E•ec(Tn)|

E(Tn)
=

3(b− a+ 1)

2n− 3
, (13)

P(A(Tn+1) = a,B(Tn+1) = b|A(Tn) = a,B(Tn) = b− 1) =
|E◦ind(Tn)|
E(Tn)

=
n− a− 2b+ 2

2n− 3
. (14)

Now the theorem follows from substituting (11)-(14) into (10). �

Similar to the dynamic programming approach outlined in Wu and Choi (2016, p.16), we can use the

initial condition in (2) and the recursion in Theorem 1 to compute the joint distribution of An and Bn under

the PDA model in O(n3). See Fig. 2 for the contour plots of the probability density functions for the joint

distribution of the numbers of cherries and pitchforks on unrooted phylogenetic trees with 50 and 200 leaves.

To study the moments of An and Bn, we present below a functional recursion form of Theorem 1.

Theorem 2 Let ϕ : N× N→ R be an arbitrary function. For n ≥ 6 we have

Euϕ(An+1, Bn+1) =
1

2n− 3
Eu[(n+ 3An −Bn − 3) ϕ(An, Bn)] +

1

2n− 3
Eu[An ϕ(An − 1, Bn + 1)]

+
3

2n− 3
Eu[(Bn −An) ϕ(An + 1, Bn)] +

1

2n− 3
Eu[(n−An − 2Bn) ϕ(An, Bn + 1)]. (15)

Proof Fix two arbitrary numbers a, b ∈ N and consider the indicator function Ia,b : R × R → {0, 1} where

Ia,b(x, y) = 1 if and only if x = a, y = b. Multiplying both sides of (9) by ϕ(a, b) leads to

(2n− 3)Eu[ϕ(An+1, Bn+1)Ia,b(An+1, Bn+1)] = Eu[(n+ 3An −Bn − 3)ϕ(An, Bn)Ia,b(An, Bn)]

+ Eu[Anϕ(An − 1, Bn + 1)Ia,b(An − 1, Bn + 1)] + Eu[3(Bn −An)ϕ(An + 1, Bn)Ia,b(An + 1, Bn)]

+ Eu[(n−An − 2Bn)ϕ(An, Bn + 1)Ia,b(An, Bn + 1)].
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Fig. 2: Contour plots of the probability density functions for the joint distribution of the numbers of cherries

and pitchforks on unrooted phylogenetic trees under the PDA model (solid lines) and the YHK model (dashed

lines) with 50 leaves (left) and 200 leaves (right). The polygonal contours arise because the joint distribution

is defined only on integer lattice points.

Now the theorem follows from summing over all a and b. �

Theorem 2 leads to the following result on cherry distributions.

Proposition 1 Let ψ : N→ R be an arbitrary function. Then for n ≥ 4, we have

Euψ(Bn+1) =
1

2n− 3
Eu[(n+ 2Bn − 3) ψ(Bn)] +

1

2n− 3
Eu[(n− 2Bn) ψ(Bn + 1)]. (16)

Proof Let ψ : N→ R be an arbitrary function as in the statement of the proposition. Then (16) clearly holds

for n = 4, 5 in view of (1) and (2). Now consider the function ϕ∗(x, y) = ψ(y) on N×N. Applying Theorem 2

to the function ϕ∗ shows that (16) holds for n ≥ 6. �

Note that the recursion in Proposition 1 can be utilised to study the moments of the cherry distribution

under the PDA model. As an example, we present below an alternative proof for the well-known result on the

mean and variance of Bn obtained by McKenzie and Steel (2000); Steel and Penny (1993).

Corollary 1 For n ≥ 4, we have

Eu(Bn) =
n(n− 1)

2(2n− 5)
=
n

4
+

3

8
+O(n−1), (17)

Vu(Bn) =
n(n− 1)(n− 4)(n− 5)

2(2n− 5)2(2n− 7)
=

n

16
− 3

32
+O(n−1). (18)

Proof Note that the corollary clearly holds for n = 4 because by (1) we have Eu(Bn) = 2 and Vu(Bn) = 0.

Substituting ψ(x) = x in the recursive equation (16) in Proposition 1 shows that

Eu(Bn+1) =
1

2n− 3
Eu
[
(n+ 2Bn − 3)Bn + (n− 2Bn)(Bn + 1)

]
=

n

2n− 3
+

2n− 5

2n− 3
Eu(Bn) (19)

holds for n ≥ 4.

The recurrence in (19) can be solved by a summation factor method. First, we multiply both sides of (19)

by the summation factor sn = 2n − 3. Next, set f(n) = sn−1Eu(Bn) = (2n − 5)Eu(Bn) for n ≥ 4. Then

substituting n with n− 1 in (19) leads to

f(n) = (n− 1) + f(n− 1) for n ≥ 5.
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Finally, solving the recurrence on f(n) gives us that

f(n) =

n∑
k=5

(k − 1) + f(4) =

n∑
k=1

(k − 1) =
n(n− 1)

2
for n ≥ 5, (20)

from which (17) follows. Note that the second equality in (20) follows from the fact that f(4) = 6, and the

third equality follows from (8).

To establish (18), substituting ψ(x) = x2 into (16) and using (17) shows that

Eu(B2
n+1) =

2n− 7

2n− 3
Eu(B2

n) +
2(n− 1)

2n− 3
Eu(Bn) +

n

2n− 3

=
2n− 7

2n− 3
Eu(B2

n) +
n(n− 1)2

(2n− 3)(2n− 5)
+

n

2n− 3
(21)

holds for n ≥ 4. Similarly to the proof of (17), the recurrence in (21) can be solved using the summation

factor method. That is, consider the summation factor s∗n = (2n− 3)(2n− 5) and set f∗(n) = s∗n−1Eu(B2
n) =

(2n− 5)(2n− 7)Eu(B2
n). Then for n ≥ 5, by (21) we have

f∗(n) = f∗(n− 1) + (n− 1)(n− 2)2 + (n− 1)(2n− 7) = f∗(4) +
n−2∑
k=3

k(3) − 3

n−1∑
k=4

k

=

n−2∑
k=1

k(3) − 3

n−1∑
k=1

k =
(n− 2)(4)

4
− 3(n− 1)n

2
=

(n− 1)n(n2 − n− 8)

4
.

Here the third equality follows from f∗(4) = 12 and the fourth one follows from (7). This implies

Eu(B2
n) =

1

4

n(n− 1)(n2 − n− 8)

(2n− 5)(2n− 7)
, (22)

and hence (18) follows in view of (17). �

Using the recursion in Proposition 1 also leads to an alternative proof of the following exact formula on

the cherry distribution for the PDA model obtained by Hendy and Penny (1982).

Theorem 3 For n ≥ 4, we have

Pu(Bn+1 = k) =
n+ 2k − 3

2n− 3
Pu(Bn = k) +

n− 2k + 2

2n− 3
Pu(Bn = k − 1) for 1 < k < n. (23)

Furthermore, we have

Pu(Bn = k) =
n!(n− 2)!(n− 4)!2n−2k

(n− 2k)!(2n− 4)!k!(k − 2)!
for 2 ≤ k ≤ n/2. (24)

Proof First, by (1) the theorem clearly holds for n = 4. Next, consider the function Ik(x) which equals 1 if

x = k, and 0 otherwise. By taking ψ(x) = Ik(x) in (16) shows that (23) holds for n ≥ 4 and 1 < k < n.

Together with Pu(Bn = 1) = 0 for n ≥ 4, it is straightforward to show that (24) holds for n > 4 and

2 ≤ k ≤ n/2. �

We complete this section by using Theorem 1 to compute the mean and variance of An, as well as the

covariance and correlation between An and Bn. Note that they are negatively correlated.
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Proposition 2 For n ≥ 6, we have

Eu(An) =
n(n− 1)(n− 2)

2(2n− 5)(2n− 7)
=
n

8
+

3

8
+O(n−1), (25)

Covu(An, Bn) = − 3n(n− 1)(n− 2)(n− 5)

2(2n− 5)2(2n− 7)(2n− 9)
= − 3

32
− 15

32n
+O(n−2), (26)

Vu(An) =
3n(n− 1)(n− 2)(4n4 − 76n3 + 527n2 − 1555n+ 1610)

4(2n− 5)2(2n− 7)2(2n− 9)(2n− 11)
=

3n

64
− 45

128n
+O(n−2). (27)

Moreover, ρu(A6, B6) = ρu(A7, B7) = −1, and the correlation coefficient sequence {ρu(An, Bn)}n≥7 increases

monotonically in n towards zero.

Proof The Proposition holds for n = 6 because by (2) we have

Eu(A6) = 12/7, Covu(A6, B6) = −12/49, and Vu(A6) = 24/49. (28)

As the remainder proof is similar to that of Corollary 1, we only outline the main differences here.

First, substituting ϕ(x, y) = x into Theorem 2 and using (17) shows that for n ≥ 6 we have

Eu(An+1) =
2n− 7

2n− 3
Eu(An) +

3

2n− 3
Eu(Bn) =

2n− 7

2n− 3
Eu(An) +

3n(n− 1)

2(2n− 3)(2n− 5)
.

Solving this recurrence with the summation factor (2n− 3)(2n− 5) and the first equality in (28) yields (25).

Next, substituting ϕ(x, y) = xy into Theorem 2 shows that for n ≥ 6, we have

Eu(An+1Bn+1) =
2n− 9

2n− 3
Eu(AnBn) +

n− 1

2n− 3
Eu(An) +

3

2n− 3
Eu(B2

n)

=
2n− 9

2n− 3
Eu(AnBn) +

n(n− 1)(5n2 − 9n− 20)

4(2n− 3)(2n− 5)(2n− 7)
,

where the second equality follows from (22) and (25). Solving this recurrence with the summation factor

(2n− 3)(2n− 5)(2n− 7) and the initial condition Eu(A6B6) = 24/7 leads to

Eu(AnBn) =
1

4

n(n4 − 6n3 + 5n2 + 12n− 12)

(2n− 5)(2n− 7)(2n− 9)
, (29)

from which (26) follows.

Finally, substituting ϕ(x, y) = x2 into Theorem 2 shows that for n ≥ 6, we have

Eu(A2
n+1) =

2n− 11

2n− 3
Eu(A2

n) +
6

2n− 3
Eu(AnBn)− 2

2n− 3
Eu(An) +

3

2n− 3
Eu(Bn).

By (17), (25), and (29), this recurrence can be solved using the summation factor (2n−3)(2n−5)(2n−7)(2n−9)

and the initial condition Eu(A2
6) = 24/7 to give

Eu(A2
n) =

1

4

n(n5 − 7n4 − 19n3 + 229n2 − 480n+ 276)

(2n− 5)(2n− 7)(2n− 9)(2n− 11)
,

from which (27) follows.

Since ρu(An, Bn) = Covu(An, Bn)/
√
Vu(An)Vu(Bn), it is clear that ρu(A6, B6) = ρu(A7, B7) = −1 and

the sequence {ρu(An, Bn)}n≥7 converges to 0. Hence it remains to show that this sequence is decreasing. To

this end, let g(n) = 4n4 − 76n3 + 527n2 − 1555n+ 1610. Then it suffices to show that the ratio

R(n) =
ρ2u(An, Bn)

ρ2u(An+1, Bn+1)
=

(n− 2)(n− 3)(n− 5)(2n− 11)(2n− 7)2g(n+ 1)

(n− 1)(n− 4)2(2n− 5)(2n− 9)2g(n)
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is greater than 1 for n ≥ 7. Since R(n) > 1 holds for 7 ≤ n ≤ 15 by numerical computation, we may further

assume n ≥ 16. Denote the numerator and denominator of R(n) by R1(n) and R2(n), respectively. Then using

n ≥ 16 we have

R1(n)−R2(n) = (n− 6)[(8n− 109)2n6 + (8444n− 132200)n5 + (519316n− 1250941)n3 + (1775858n− 1318095)n+ 364350]

> 0,

which completes the proof. �

4 Subtree distributions under the YHK model

In this section, we study the joint distribution of the random variables An (i.e. the number of pitchforks) and

Bn (i.e. the number of cherries) under the YHK model. For easy comparison, the results are presented in an

order similar to that in Section 3.

Our starting point is the following recursion on the joint distribution, whose proof is omitted.

Theorem 4 Let n ≥ 6. Then we have Py(An = a,Bn = b) = 0 if either a ∈ {−1, n, n+ 1} or b ∈ {1, n} holds.

Furthermore, for 0 ≤ a ≤ n and 1 < b ≤ n we have

Py(An+1 = a,Bn+1 = b) =
2a

n
Py(An = a,Bn = b) +

a+ 1

n
Py(An = a+ 1, Bn = b− 1)

+
2(b− a+ 1)

n
Py(An = a− 1, Bn = b) +

n− a− 2b+ 2

n
Py(An = a,Bn = b− 1). (30)

As described in Section 2.2, the tree generating schemes of both models are similar, with the main difference

being that the YHK model uses a random pendant edge at each step while the PDA model uses a random edge.

As a result, the proof of Theorem 4 is similar to that of Theorem 1; the main differences are the expressions

in (11)-(14), where certain terms in the numerators become zero and the denominator 2n−3 (the total number

of edges in Tn) is replaced with n (the total number of pendant edges in Tn). Note also that the coefficients

in the above recursion are exactly the same as in the rooted case (Wu and Choi, 2016), but the initial values

are different.

To study the moments of An and Bn, we present below a functional recursion form of Theorem 4, whose

proof is similar to that of Theorem 2 and hence omitted here.

Theorem 5 Let ϕ : N× N→ R be an arbitrary function. Then for n ≥ 6 we have

Eyϕ(An+1, Bn+1) =
2

n
Ey[An ϕ(An, Bn)] +

1

n
Ey[An ϕ(An − 1, Bn + 1)]

+
2

n
Ey[(Bn −An) ϕ(An + 1, Bn)] +

1

n
Ey[(n−An − 2Bn) ϕ(An, Bn + 1)]. (31)

Theorem 5 leads to the following proposition on cherry distributions, whose proof is similar to that in

Proposition 1 and hence omitted here.

Proposition 3 Let ψ : N→ R be an arbitrary function. Then for n ≥ 4 we have

Eyψ(Bn+1) =
1

n
Ey[2Bn ψ(Bn) + (n− 2Bn) ψ(Bn + 1)]. (32)

Proposition 3 enables us to work out the central moments of the cherry distribution for the YHK model.
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Corollary 2 We have Vy(B4) = 0,

Ey(Bn) =
n

3
+

4

(n− 1)(n− 2)
=
n

3
+

4

n2
+O(n−3) for n ≥ 4, and (33)

Vy(Bn) =
2n

45
− 4(n2 − 3n+ 14)

3(n− 1)2(n− 2)2
=

2n

45
− 4

3n2
+O(n−3) for n ≥ 5. (34)

Proof By (1) we have Ey(Bn) = 2 and Vy(Bn) = 0 for n ∈ {4, 5}. Hence (33) holds for n ∈ {4, 5} and (34)

holds for n = 5.

Substituting ψ(x) = x in (32) shows that

Ey(Bn+1) =
1

n
Ey
[
2B2

n + (n− 2Bn)(Bn + 1)
]

= 1 +
n− 2

n
Ey(Bn) for n ≥ 4. (35)

This recurrence can be solved by the summation factor method. First, we multiply both sides of (35) by the

summation factor sn = (n − 1)(2). Let f(n) = sn−1Ey(Bn) = (n − 2)(2) Ey(Bn). Substituting n with n − 1

in (35) shows that for n ≥ 5 we have

f(n) = (n− 2)(2) + f(n− 1) = f(4) +

n−2∑
k=3

k(2) = 4 +

n−2∑
k=1

k(2) = 4 +
n(n− 1)(n− 2)

3
,

from which (33) follows. Here the third equality follows from f(4) = 12 and the fourth equality follows from (7).

Applying Proposition 3 with ψ(x) = x2 and using (33), we have

Ey(B2
n+1) =

n− 4

n
Ey(B2

n) +
2n+ 1

3
+

8

n(n− 2)
for n ≥ 4. (36)

Consider the summation factor s∗n = (n − 3)(4) and let f∗(n) := (n − 4)(4)Ey(B2
n). Using (36), by f∗(4) = 0

and (7) we have

f∗(n) = f∗(n− 1) +
(2n− 1)(n− 4)(4)

3
+ 8(n− 2)(n− 4)

=
1

3

n∑
k=5

(2k − 1)(k − 4)(4) + 8

n∑
k=5

(k − 2)(k − 4)

=
2

3

n∑
k=5

(k − 4)(5) − 1

3

n∑
k=5

(k − 4)(4) + 8

n∑
k=5

(k − 3)(2) − 8

n∑
k=5

(k − 2)

=
(5n+ 2)(n− 4)(5)

45
+

8(n− 3)(3)

3
− 4(n− 2)(2) + 8

for n ≥ 5. This implies

Ey(B2
n) =

n(5n+ 2)

45
+

4(2n− 1)

3(n− 1)(n− 2)
for n ≥ 5, (37)

from which (34) follows. �

The following theorem also follows directly from Proposition 3, whose proof is omitted as it is similar to

that of Theorem 3. However, Theorem 3 provides a closed-form formula in (24) for the distribution of Bn

under the PDA model; whether such a closed-form formula exists under the YHK model remains to be seen.

Theorem 6 For n ≥ 4 and 1 < k < n we have

Py(Bn+1 = k) =
2k

n
Py(Bn = k) +

n− 2k + 2

n
Py(Bn = k − 1). (38)
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We complete this section by using Theorem 5 to compute the mean and variance of An, as well as the

covariance and correlation between An and Bn, under the YHK model.

Proposition 4 We have Vy(A6) = 16/25,

Ey(An) =
n

6
+

4(2n− 3)

(n− 1)(n− 2)(n− 3)
=
n

6
+

8

n2
+O(n−3) for n ≥ 6, (39)

Covy(An, Bn) = − n

45
− 4(n3 − 6n2 + 35n− 42)

3(n− 1)2(n− 2)2(n− 3)
= − n

45
− 4

3n2
+O(n−3) for n ≥ 6, and (40)

Vy(An) =
23n

420
− 16(2n− 3)2

(n− 1)2(n− 2)2(n− 3)2
=

23n

420
− 64

n4
+O(n−5) for n ≥ 7. (41)

Moreover, ρy(A6, B6) = ρy(A7, B7) = −1, and the correlation coefficient sequence {ρy(An, Bn)}n≥7 increases

monotonically in n towards the constant −
√

14/69.

Proof The proposition holds for n = 6 because by (2) we have

Ey(A6) = 8/5, Covy(A6, B6) = −8/25, and Vy(A6) = 16/25. (42)

As the remainder of the proof is similar to that of Corollary 2, we only outline the main differences here.

Applying Theorem 5 with ϕ(x, y) = x and using Corollary 2, we have

Ey(An+1) =
n− 3

n
Ey(An) +

2

3
+

8

n(n− 1)(n− 2)
for n ≥ 6.

Using the summation factor (n−2)(3) and the initial value Ey(A6) = 8/5 in (42), we can solve the last recursion

to obtain (39).

Next, applying Theorem 5 with ϕ(x, y) = xy gives us

Ey(An+1Bn+1) =
n− 5

n
Ey(AnBn) +

n− 1

n
Ey(An) +

2

n
Ey(B2

n)

=
n− 5

n
Ey(AnBn) +

35n− 7

90
+

4(10n2 − 29n+ 15)

3(n− 3)(4)
for n ≥ 6. (43)

Here the second equality follows from (37) and (39). Consider the summation factor sn = (n − 4)(5) and let

f(n) = sn−1Ey(AnBn). Since f(6) = 384, by (43) and (7) we have

f(n) = f(6) +

n−5∑
k=2

(
7k(6)

18
− 7k(5)

15
+

40k(3)

3
+ 28k(2) + 24k(1)

)

=
(n− 5)(7)

18
− 7(n− 5)(6)

90
+

10(n− 5)(4)

3
+

28(n− 5)(3)

3
+ 12(n− 5)(2)

for n ≥ 7. This gives us

Ey(AnBn) =
5n4 − 27n3 + 40n2 + 288n− 360

90(n− 3)(n− 2)
for n ≥ 7, (44)

from which (40) follows.

To obtain Vy(An), applying Theorem 5 with ϕ(x, y) = x2 we have

Ey(A2
n+1) =

n− 6

n
Ey(A2

n)− 1

n
Ey(An) +

2

n
Ey(Bn) +

4

n
Ey(AnBn)

=
n− 6

n
Ey(A2

n) +
20n5 − 83n4 − 2n3 + 1487n2 − 2862n+ 360

90n(n− 1)(n− 2)(n− 3)
for n ≥ 6, (45)
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where the second equality follows from (33), (39), and (44). Using the summation factor (n − 6)(6) and the

initial condition Ey(A2
6) = 16/5, we solve the recurrence in (45) to show that

Ey(A2
n) =

n(35n4 − 141n3 − 29n2 + 3909n− 5454)

1260(n− 3)(n− 2)(n− 1)
for n ≥ 7,

from which (41) follows.

To establish the last statement in the proposition, note that ρy(A6, B6) = ρy(A7, B7) = −1 clearly holds.

For simplicity let

fc(n) = n6 − 9n5 + 31n4 + 9n3 − 320n2 + 2088n− 2520,

ga(n) = 23n(n− 1)2(n− 2)2(n− 3)2 − 420× 16(2n− 3)2, and

gb(n) = 2n(n− 1)2(n− 2)2 − 60(n2 − 3n+ 14).

Then we have

ρy(An, Bn) =
Covy(An, Bn)√
Vy(An)Vy(Bn)

=
−
√

84fc(n)

3
√
ga(n)gb(n)

,

by which it follows that ρy(An, Bn) converges to −
√

14/69. Hence it remains to show that this sequence is

decreasing. To this end it suffices to show that

R(n) =
ρ2y(An, Bn)

ρ2y(An+1, Bn+1)
=
f2c (n)ga(n+ 1)gb(n+ 1)

f2c (n+ 1)ga(n)gb(n)

is greater than 1 for n ≥ 7. Since R(n) > 1 holds for 7 ≤ n ≤ 19 by numerical computation, we may further

assume n ≥ 20. Denote the numerator and denominator of R(n) by R1(n) and R2(n), respectively. Then for

n ≥ 20 we have

R1(n)−R2(n) = 60(n− 1)2[(345n− 6900)n17 + (78310n− 567730)n15 + (2579592n2 − 5970866n− 6240646)n12

+(119332554n− 613621681)n10 + (2240461678n− 7810653888)n8 + (26499724352n− 84099771728)n6

+(197227522272n− 276252591744)n4 + 190463028480n3 + (59732121600n− 201790310400)n+ 73156608000]

> 345(n− 20)n17 + 10(7831n− 56773)n15 + (2579592n2 − 5970866n− 6240646)n12

+(119332554n− 613621681)n10 + (2240461678n− 7810653888)n8 + (26499724352n− 84099771728)n6

+(197227522272n− 276252591744)n4 + 12441600(4801n− 16219)n

> 0.

�

5 Comparison of random models

In this section, we compare and contrast the properties of the cherry and pitchfork distributions under the

PDA and the YHK models, in both rooted and unrooted cases. To this end, for n ≥ 4, let A∗n and B∗n be the

random variables A(T ∗) and B(T ∗), respectively, for a random tree T ∗ in T ∗n .
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PDA YHK

E(A∗n)
n(n−1)(n−2)

2(2n−3)(2n−5)
n
6

E(An)
n(n−1)(n−2)

2(2n−5)(2n−7)
n
6

+
4(2n−3)

(n−1)(n−2)(n−3)

E(B∗n)
n(n−1)
2(2n−3)

n
3

E(Bn)
n(n−1)
2(2n−5)

n
3

+ 4
(n−1)(n−2)

V(A∗n)
3n(n−1)(n−2)(n−3)(4n3−40n2+123n−110)

4(2n−3)2(2n−5)2(2n−7)(2n−9)
23n
420

(n ≥ 7)

V(An)
3n(n−1)(n−2)(4n4−76n3+527n2−1555n+1610)

4(2n−5)2(2n−7)2(2n−9)(2n−11)
23n
420
− 16(2n−3)2

(n−1)2(n−2)2(n−3)2
(n ≥ 7)

V(B∗n)
n(n−1)(n−2)(n−3)

2(2n−3)2(2n−5)
2n
45

(n ≥ 5)

V(Bn)
n(n−1)(n−4)(n−5)

2(2n−5)2(2n−7)
2n
45
− 4(n2−3n+14)

3(n−1)2(n−2)2
(n ≥ 5)

Cov(A∗n, B
∗
n) − n(n−1)(n−2)(n−3)

2(2n−3)2(2n−5)(2n−7)
− n

45
(n ≥ 6)

Cov(An, Bn) − 3n(n−1)(n−2)(n−5)

2(2n−5)2(2n−7)(2n−9)
− n

45
− 4(n3−6n2+35n−42)

3(n−1)2(n−2)2(n−3)

Table 1: The means, variances, and covariances of pitchfork distributions and cherry distributions for the YHK

and PDA models. Note that other than the five formulas where the range of n is explicitly given in the brakets,

we have n ≥ 6 for the formulas on E(An), V(An) and Cov(An, Bn), and n ≥ 4 for all the others.

5.1 Mean and Variance

In Table 1 we collect the means, variances, and covariances for pitchfork and cherry distributions under these

two models, for both rooted and unrooted trees. The entries for unrooted trees follow from Sections 3 and 4,

while those for rooted trees follow from the relevant results in Wu and Choi (2016, Sections 3 and 4).

Using the entries in Table 1, we show below that a tree generated under the YHK model typically contains

more cherries and more pitchforks than one under the PDA model, which is in line with the numerical results

seen in Fig. 2.

Proposition 5 (i): For n ≥ 6 and Yn ∈ {A∗n, B∗n, Bn}, we have

Eu(Yn) < Ey(Yn) <
4

3
Eu(Yn). (46)

Furthermore, we have Eu(An) < Ey(An) for n ≥ 12, and Ey(An) < 4
3Eu(An) for n ≥ 6.

(ii): As n→∞, we have

E(An) ∼ 1

2
E(Bn) and E(A∗n) ∼ 1

2
E(B∗n) (47)

under both the YHK and the PDA models.

Proof (i) When Y ∈ {A∗n, B∗n}, the inequalities in (46) follow from Wu and Choi (2016, Proposition 6).

Next, the inequalities in (46) hold for the unrooted cherry distributions because we have Eu(B6) = 15
7 <

11
5 = Ey(B6),

Eu(Bn) =
n(n− 1)

2(2n− 5)
≤ n

3
< Ey(Bn) for n ≥ 7,

and

Ey(Bn) <
n

3
+

1

3
=
n+ 1

3
<

2n(n− 1)

3(2n− 5)
=

4

3
Eu(Bn) for n ≥ 6.

For the unrooted pitchfork distributions, we have

Ey(An)− Eu(An) =
4(2n− 3)

(n− 1)(n− 2)(n− 3)
+
n[(n− 7)(n− 8)− 27]

6(2n− 5)(2n− 7)
> 0
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for n ≥ 12 (but note that Ey(A11) < Eu(A11)). Moreover, it is straightforward to check that Ey(An) <

4Eu(An)/3 holds for n ∈ {6, 7}, and we also have

Ey(An) <
n+ 2

6
<

2n(n− 1)(n− 2)

3(2n− 5)(2n− 7)
=

4

3
Eu(An) for n ≥ 8.

(ii) Note that (47) holds for the YHK model because Ey(A∗n) = Ey(B∗n)/2 for n ≥ 4 and

Ey(An) ∼ Ey(A∗n) and Ey(Bn) ∼ Ey(B∗n).

Furthermore, we have (47) for the PDA model because

lim
n→∞

Eu(An)

Eu(Bn)
=

1

2
, Eu(An) ∼ Eu(A∗n), and Eu(Bn) ∼ Eu(B∗n).

�

Next, we compare the means of the cherry and pitchfork distributions between rooted trees and unrooted

trees. Note that the limiting difference between the two models is different, which is in line with the result on

cherry distributions reported by McKenzie and Steel (2000, Lemma 6).

Proposition 6 For n ≥ 6 and Yn ∈ {An, Bn}, we have

Ey(Y ∗n ) < Ey(Yn) ≤ Ey(Y ∗n ) +
3

5
and Eu(Y ∗n ) +

1

4
< Eu(Yn) ≤ Eu(Y ∗n ) +

16

21
. (48)

Moreover, {E(Yn) − E(Y ∗n )}n≥6 is a strictly decreasing sequence whose limit is 0 under the YHK model, and

1/4 under the PDA model.

Proof Define an = Ey(An)−Ey(A∗n), bn = Ey(Bn)−Ey(B∗n), ãn = Eu(An)−Eu(A∗n) and b̃n = Eu(Bn)−Eu(B∗n).

Then we have

an =
4(2n− 3)

(n− 1)(n− 2)(n− 3)
and bn =

4

(n− 1)(n− 2)
.

Thus we have an, bn > 0 and limn→∞ an = limn→∞ bn = 0. Moreover, it is straightforward to check

thatan+1/an < 1 and bn+1/bn < 1 hold for n ≥ 6, from which we know that {an}n≥6 and {bn}n≥6 are

strictly decreasing sequences whose limits are 0. This completes the proof of the proposition for the YHK

model in view of a6 = 3/5 and b6 = 1/5.

Similarly,

ãn =
2n(n− 1)(n− 2)

(2n− 3)(2n− 5)(2n− 7)
and b̃n =

n(n− 1)

(2n− 3)(2n− 5)
.

Thus we have ãn, b̃n > 0 and limn→∞ ãn = limn→∞ b̃n = 1/4. Since ãn+1/ãn < 1 and b̃n+1/b̃n < 1 hold

for n ≥ 6, it follows that {ãn}n≥6 and {b̃n}n≥6 are strictly decreasing sequences whose limits are 1/4. This

completes the proof of the proposition for the PDA model in view of ã6 = 16/21 and b̃6 = 10/21. �

In the following proposition, we show that the variance of the number of cherries is greater in the rooted

tree case than it is in the unrooted tree case regardless of whether the YHK model or the PDA model is used.

The same conclusion applies to the variance of the number of pitchforks, as well as the covariance.
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Proposition 7 For n ≥ 7 and Yn ∈ {An, Bn}, we have

Vy(Y ∗n ) > Vy(Yn) and Vu(Y ∗n ) > Vu(Yn). (49)

Moreover, when n ≥ 6 we have

Covy(A∗n, B
∗
n) > Covy(An, Bn) and Covu(A∗n, B

∗
n) > Covu(An, Bn). (50)

Proof Let an = Vy(A∗n)−Vy(An), bn = Vy(B∗n)−Vy(Bn), ãn = Vu(A∗n)−Vu(An) and b̃n = Vu(B∗n)−Vu(Bn).

Then for n ≥ 7 we have an, bn > 0 because using Table 1 we have

an =
16(4n2 − 12n+ 9)

(n− 1)2(n− 2)2(n− 3)2
> 0 and bn =

4(n2 − 3n+ 14)

3(n− 1)2(n− 2)2
> 0.

Similarly, by Table 1 we have

b̃n =
n(n− 1)[(2n− 9)n2 + n+ 15]

(2n− 3)2(2n− 5)2(2n− 7)
> 0.

Moreover, we have

ãn =
6n(n− 1)(n− 2)κ(n)

(2n− 3)2(2n− 5)(2n− 7)2(2n− 9)(2n− 11)
,

where

κ(n) = 6n3 − 75n2 + 277n− 273 = n(2n− 15)(3n− 15) + 52n− 273.

Then ãn > 0 holds for n ≥ 7 because κ(n) > 0 clearly holds for n ≥ 8 and κ(7) = 49 > 0.

Finally, when n ≥ 6, using Table 1 we have

Covy(A∗n, B
∗
n)− Covy(An, Bn) =

4[n(n− 2)(n− 4) + 27n− 42]

3(n− 1)2(n− 2)2(n− 3)
> 0 and

Covu(A∗n, B
∗
n)− Covu(An, Bn) =

n2(n− 1)(n− 2) [4(n− 7) + 39)]

(2n− 3)2(2n− 5)2(2n− 7)(2n− 9)
> 0.

�

Note that for the pitchfork distributions, the condition n ≥ 7 is optimal for (49) in view of Vy(A∗6) =

2
5 < 16

25 = Vy(A6) and Vu(A∗6) = 104
441 < 24

49 = Vu(A6). However, for the cherry distributions, the proof of

Proposition 7 can be extended to show that both Vy(B∗n) > Vy(An) and Vu(B∗n) > Vu(Bn) hold for n ≥ 4.

5.2 Log-Concavity

In addition to mean and variance, in this subsection we shall use results in Sections 3 and 4 to gain more insights

into the properties of the subtree distributions, particularly the cherry distributions. To this end, denote the

probability mass functions (PMFs) of B∗n and Bn under the PDA model by σ∗n and σn, respectively. Similarly,

denote the probability mass functions of B∗n and Bn under the YHK model by τ∗n and τn, respectively.

First, by (24) in Theorem 3 it follows that when n ≥ 4 we have

σn(k) = Pu(Bn = k) =
n!(n− 2)!(n− 4)!2n−2k

(n− 2k)!(2n− 4)!k!(k − 2)!
for 2 ≤ k ≤ n/2, (51)

and σn(k) = 0 otherwise. Moreover, Wu and Choi (2016, Theorem 6) implies that when n ≥ 4 we have

σ∗n(k) = Pu(B∗n = k) =
n!(n− 1)!(n− 2)!2n−2k

(n− 2k)!(2n− 2)!k!(k − 1)!
for 1 ≤ k ≤ n/2, (52)
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and σ∗n(k) = 0 otherwise.

Next, we show that both τn and σn (i.e. the probability mass functions of Bn under the YHK model and

the PDA model, respectively) are log-concave, and hence also unimodal. To this end, recall that ∇(n) = dn/4e.

Furthermore, by Wu and Choi (2016, Lemma 3) it follows that for four non-negative numbers z1, z2, z3, z4 with

z22 ≥ z1z3 and z23 ≥ z2z4, we have

z2z3 ≥ z1z4 and z1z3 + z2z4 ≥ 2z1z4. (53)

Theorem 7 For n ≥ 4 and 2 ≤ k ≤ n/2 we have

τ2n(k) > τn(k − 1)τn(k + 1) and σ2
n(k) > σn(k − 1)σn(k + 1). (54)

Moreover, when n > 8, then σn(k− 1) < σn(k) for 2 ≤ k < ∇(n), and σn(k) > σn(k+ 1) for ∇(n) ≤ k ≤ n/2.

Proof For n ≥ 4 and 2 ≤ t ≤ n/2, let

gn(t) :=
σn(t− 1)

σn(t)
=

4t(t− 2)

(n− 2t+ 1)(n− 2t+ 2)
, (55)

where the equality follows from (51). Note that gn is a strictly increasing function, that is, gn(t− 1) < gn(t)

holds for 2 < t ≤ n/2. Since we have σn(k) > 0 if 2 ≤ k ≤ n/2, and σn(k) = 0 otherwise, it follows that

σ2
n(k) > σn(k − 1)σn(k + 1) holds for 2 ≤ k ≤ n/2. This completes the proof of (54) for σn.

Next, assume n > 8. Since gn is strictly increasing and gn(t) = 1 if and only if t = (n+1)(n+2)/(2(2n−1)),

by (6) we have gn(t) < 1 for 2 ≤ t < ∇(n). Together with the fact that σn(k) > 0 holds if and only if

2 ≤ k ≤ n/2, this shows that σn(k− 1) < σn(k) holds for 2 ≤ k < ∇(n). Similarly, noting that gn(t) > 1 holds

for ∇(n) < t ≤ n/2, we have σn(k) > σn(k + 1) for ∇(n) ≤ k < n/2, from which the last statement of the

theorem follows.

It remains to prove (54) for τn, which will be established by induction on n. The base case n = 4 clearly

holds. Now assume n ≥ 4 and let βt = τn(t) for 1 ≤ t ≤ n. Then (38) implies

nτn+1(t) = 2tβt + (n− 2t+ 2)βt−1 for 1 < t < n. (56)

Furthermore, we have the induction assumption:

β2
t = τ2n(t) > τn(t− 1)τn(t+ 1) = βt−1βt+1 for 2 ≤ t ≤ n/2. (57)

Since τn+1(t) = 0 holds for t > (n+ 1)/2, we have τn+1(k+ 1) = 0 for k ≥ n/2. Together with τn+1(1) = 0, it

follows that for the induction step it suffices to show

n2τ2n+1(k) > nτn+1(k − 1)nτn+1(k + 1) for 2 < k < n/2. (58)

To this end, denote the left-hand and right-hand sides of (58) by L(k) and R(k), respectively, that is, we have

L(k) = n2τ2n+1(k) and R(k) = nτn+1(k − 1)nτn+1(k + 1).

Now fix a number k with 2 < k < n/2. Then both a = (n − 2k + 2)2 and b = 2k(n − 2k + 2) + 2n are

greater than 0. Furthermore, using (56) three times with t = k, t = k − 1, and t = k + 1, we have

L(k) = 4k2β2
k + aβ2

k−1 + 4k(n− 2k + 2)βk−1βk and (59)

R(k) = (4k2 − 4)βk−1βk+1 + (a− 4)βk−2βk + 2(n− 2k)(k − 1)βk−1βk + (b+ 8)βk−2βk+1, (60)
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where the equalities (n− 2k)(n− 2k + 4) = a− 4 and 2(k + 1)(n− 2k + 4) = b+ 8 are used to obtain (60).

Since b = 4k(n− 2k + 2)− 2(n− 2k)(k − 1), by (59) and (60) we have

L(k)−R(k) = 4k2(β2
k − βk−1βk+1) + a(β2

k−1 − βk−2βk) + b(βk−1βk − βk−2βk+1)

+ 4(βk−2βk + βk−1βk+1 − 2βk−2βk+1)

> 0. (61)

To prove (61), by using (57) twice with t = k − 1 and t = k we have

β2
k−1 > βk−2βk and β2

k > βk−1βk+1. (62)

Next, combining (53) and (62) shows

βk−1βk ≥ βk−2βk+1 and βk−2βk + βk−1βk+1 ≥ 2βk−2βk+1. (63)

Then (61) follows from (62)-(63) and the fact that a > 0 and b > 0. This completes the proof of (58), and

hence also the theorem. �

Note that the last statement of Theorem 7 does not hold for n = 8 because in this case we have ∇(n) = 2

and σn(2) = σn(3) = 16/33.

Finally, we show that there exists a unique change point between τn and σn. Note that a similar result for

τ∗n(k) and σ∗n(k) is established in Wu and Choi (2016, Theorem 8).

Theorem 8 Let n ≥ 6. Then the ratio τn(k)/σn(k) is strictly increasing for 2 ≤ k ≤ n/2. In particular, there

exists a real number κn with 2 < κn < n/2 such that

τn(k) < σn(k) for 2 ≤ k < κn and τn(k) > σn(k) for κn < k ≤ n/2.

Proof First, by (38) in Theorem 6 we have

τn+1(t) =
2t

n
τn(t) +

n− 2t+ 2

n
τn(t− 1) for n ≥ 5 and 2 ≤ t < n. (64)

Next, we have τn(2) > σn(2) for n ≥ 6 because τ5(2) = 1 = σ5(2) and

τn(2)

τn−1(2)
=

4

n− 1
<

n

2n− 5
=

σn(2)

σn−1(2)
for n ≥ 6,

where the first equality derives from (64) and τn(1) = 0, and the second equality follows from (51).

Finally, when n ≥ 6, since the sum of τn(k) (resp. σn(k)) over k between 2 and n/2 is 1 and we have

τn(2) > σn(2), it remains to establish the inequality in

fn(k) :=
τn(k − 1)

τn(k)
<
σn(k − 1)

σn(k)
=

4k(k − 2)

(n− 2k + 2)(n− 2k + 1)
:= gn(k)

for 3 ≤ k ≤ n/2. To this end, we shall proceed by induction on n. The base case n = 6 follows from

f6(3) = 4 < 6 = g6(3) in view of (2). Let n ≥ 6 and assume that fn(k) < gn(k) holds for 3 ≤ k ≤ n/2. For the

induction step it suffices to show

fn+1(k) < gn+1(k) for 3 ≤ k ≤ (n+ 1)/2. (65)
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In the remainder of the proof, we shall establish (65) by considering the following three cases. The first

one is k = 3. Since fn+1(3) > 0 and gn+1(3) > 0, the inequality in (65) follows from

1

fn+1(3)
=
τn+1(3)

τn+1(2)
=

3τn(3)

2τn(2)
+
n− 4

4
>

3(n− 4)(n− 5)

24
+
n− 4

4
>

(n− 3)(n− 4)

12
=

1

gn+1(3)
,

where the second equality derives from using (64) twice with t = 3, and with t = 2 and τn(1) = 0; the first

inequality follows from 0 < fn(3) < gn(3) = 12/(n− 4)(n− 5), as implied by the induction assumption.

The second case2 occurs when n+ 1 is an even number and k = (n+ 1)/2. Using n− 2k + 1 = 0, we have

gn+1(k) = 2k(k − 2) and 3gn(k − 1) = 2(k − 1)(k − 3). Therefore (65) follows from

fn+1(k) = 2(k − 1) + 3fn(k − 1) < 2(k − 1) + 2(k − 1)(k − 3) = 2(k − 1)(k − 2) < 2k(k − 2) = gn+1(k),

where the first equality derives from using (64) twice with t = k − 1, and with t = k and τn(k) = 0; the first

inequality follows from 3fn(k − 1) < 3gn(k − 1) = 2(k − 1)(k − 3), as implied by the induction assumption.

The final case is 3 < k < (n+ 1)/2. Since 3 < k ≤ n/2, we have

fn+1(k) =
nτn+1(k − 1)

nτn+1(k)
=

2(k − 1)τn(k − 1) + (n− 2k + 4)τn(k − 2)

2kτn(k) + (n− 2k + 2)τn(k − 1)

=
2(k − 1) + (n− 2k + 4)fn(k − 1)

(n− 2k + 2) + 2k
fn(k)

<
2(k − 1) + (n− 2k + 4)gn(k − 1)

(n− 2k + 2) + 2k
gn(k)

,

where the second equality derives from using (64) twice with t = k and t = k − 1; the third equality follows

from τn(k − 1) > 0. Furthermore, the inequality derives from fn(k − 1) < gn(k − 1) and 0 < fn(k) < gn(k),

both following from the induction assumption. Since gn(k) > 0, for (65) it suffices to show

2(k − 1) + (n− 2k + 4)gn(k − 1) < (n− 2k + 2)gn+1(k) +
2kgn+1(k)

gn(k)
. (66)

To this end, denote the left-hand and right-hand sides of (66) by L(k, n) and R(k, n), respectively. Since

gn+1(k)

gn(k)
=
n− 2k + 1

n− 2k + 3
= 1− 2

n− 2k + 3

and

(n− 2k + 2)gn+1(k)− (n− 2k + 4)gn(k − 1) =
4k(k − 2)

n− 2k + 3
− 4(k − 1)(k − 3)

n− 2k + 3
=

4(2k − 3)

n− 2k + 3
,

we have

R(k, n)− L(k, n) = 2k − 4k

n− 2k + 3
+

4(2k − 3)

n− 2k + 3
− 2(k − 1) = 2 +

4(k − 3)

n− 2k + 3
> 0.

This completes the proof of (66), hence also the theorem. �

5.3 Total Variation Distance

In this subsection, we study the differences between rooted and unrooted cherry distributions for the two

models. One common approach to quantifying such differences is total variation distance, that is, the largest

possible difference between the probabilities that the two probability distributions can assign to the same

event. More specifically, we are interested in the behaviour of

duTV (B∗n, Bn) =
1

2

bn/2c∑
k=1

|σ∗n(k)− σn(k)| and dyTV (B∗n, Bn) =
1

2

bn/2c∑
k=1

|τ∗n(k)− τn(k)|.

2 Note that in this case the induction assumption is not applicable to fn(k) and gn(k) as k > n/2 implies fn(k) = gn(k) = 0.
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We begin with the total variation distance duTV (B∗n, Bn) for the PDA model. To this end, recall that

∆(n) = bn/4c.

Lemma 2 Let n ≥ 4. Then we have

σ∗n(k) =
(2n− 3− 2k)

(2n− 3)
σn(k) +

2(k + 1)

(2n− 3)
σn(k + 1), 1 ≤ k ≤ n/2. (67)

Moreover, we have σ∗n(k) ≥ σn(k) for 1 ≤ k ≤ ∆(n), and σ∗n(k) < σn(k) for ∆(n) < k ≤ n/2.

Proof Fix n ≥ 4 and 1 ≤ k ≤ n/2. Noting that σn(1) = 0 and σn(k + 1) = 0 for k = bn/2c, by (51) and (52)

we have
σn(k)

σ∗n(k)
=

2(2n− 3)(k − 1)

(n− 2)(n− 3)
and

σn(k + 1)

σ∗n(k)
=

(n− 2k)(n− 2k − 1)(2n− 3)

2(k + 1)(n− 2)(n− 3)
.

This implies
(2n− 3− 2k)

(2n− 3)

σn(k)

σ∗n(k)
+

2(k + 1)

(2n− 3)

σn(k + 1)

σ∗n(k)
= 1,

from which (67) follows.

Putting cn = n!(n− 2)!(n− 4)!/(2n− 4)!, then we have

σn(k) = cn
2n−2k

(n− 2k)!k!(k − 2)!
.

Using (67), we have

σ∗n(k)− σn(k) =
2

(2n− 3)

(
(k + 1)σn(k + 1)− kσn(k)

)
(68)

=
cn2n−2k−1

(2n− 3)(n− 2k)!k!(k − 1)!

(
(n− 2k)(n− 2k − 1)− 4k(k − 1)

)
=

cn2n−2k−1

(2n− 3)(n− 2k)!k!(k − 1)!

(
n(n− 1)− 2(2n− 3)k

)
.

Hence, σ∗n(k)− σn(k) ≥ 0 if and only if k ≤ n(n−1)
2(2n−3) or, equivalently, 1 ≤ k ≤ ∆(n) in view of (5). �

Theorem 9 For n ≥ 4, the total variation distance duTV (B∗n, Bn) between the cherry distributions under the

PDA model is

duTV (B∗n, Bn) =
n!(n− 2)!(n− 4)!2n−2∆(n)−1

(2n− 3)!(n− 2∆(n)− 2)!∆(n)!(∆(n)− 1)!
=

1√
2πn

(1 + o(1)) . (69)

Proof Write x+ = max{x, 0}. Noting that
∑bn/2c
k=1 (σ∗n(k)− σn(k)) = 0, we have

duTV (B∗n, Bn) =
1

2

bn/2c∑
k=1

|σ∗n(k)− σn(k)| =
bn/2c∑
k=1

(
σ∗n(k)− σn(k)

)
+

=

∆(n)∑
k=1

(
σ∗n(k)− σn(k)

)
(70)

=
2

2n− 3

∆(n)∑
k=1

(
(k + 1)σn(k + 1)− kσn(k)

)
(71)

=
2 (∆(n) + 1)σn(∆(n) + 1)

2n− 3
,

where the equality in (70) follows from Lemma 2 and the equality in (71) follows from (68). This establishes

the first equality in (69) after substituting the expression of σn(∆(n) + 1).
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To prove the second equality in (69), we abbreviate ∆(n) = bn/4c to ∆ for simplicity. Note first that

∆ = n
4 (1 + o(1)). Furthermore, we have

gn :=

(
2n− 4∆

n

)n−2∆(
4∆

n

)2∆+1

= 1 + o(1). (72)

To prove (72), for r ∈ {0, 1, 2, 3} let {grm}m≥1 be the subsequence of {gn}n≥1 consisting of entries gn with

n = 4m+ r for some m ≥ 1. Note that each item in the subsequence g0m is 1. Furthermore, for r = 1 we have

lim
m→∞

g1m = lim
m→∞

(
4m+ 2

4m+ 1

)2m+1(
4m

4m+ 1

)2m+1

= lim
m→∞

(
1− 1

(4m+ 1)2

)2m+1

= 1.

Using a similar argument, we have grn = 1 + o(1) for r ∈ {2, 3}. Therefore we can conclude that gn = 1 + o(1).

Now we have

2 (∆+ 1)σn(∆+ 1)

2n− 3
=

n! (n− 2)! (n− 4)! 2n−2∆−1

(2n− 3)! (n− 2∆− 2)!∆! (∆− 1)!

=
(n!)3 2n−2∆−1

(2n)! (n− 2∆)! (∆!)2
× 2n(2n− 1)(2n− 2)(n− 2∆)(n− 2∆− 1)∆

n(n− 1)n(n− 1)(n− 2)(n− 3)

=
(n!)3 2n−2∆−1

(2n)! (n− 2∆)! (∆!)2
× 4(2n− 1)(n− 2∆)(n− 2∆− 1)∆

n(n− 1)(n− 2)(n− 3)

=
(n!)3 2n−2∆−2

(2n)! (n− 2∆)! (∆!)2

(
1 + o(1)

)
, (73)

where the last equality follows from ∆ = n
4 (1 + o(1)). Using Stirling’s formula: n! =

√
2πn(n/e)n(1 + o(1)),

(see, e.g. Abramowitz and Stegun, 1972, Chapter 6), the expression in (73) can be further simplified as

(n!)3 2n−2∆−2

(2n)! (n− 2∆)! (∆!)2

(
1 + o(1)

)
=

nn+1(1 + o(1))√
π(n− 2∆) 2n+2∆+3(n− 2∆)n−2∆∆2∆+1

=
1 + o(1)

gn
√
π(n− 2∆)

=
1√
2πn

(
1 + o(1)

)
.

Here the last equality follows from (72). This completes the proof of the second equality in (69). �

To study the total variation distance between the cherry distributions under the YHK model, we need

some further observations. Note that for n ≥ 4, we have

τ∗n(1) =
2n−2

(n− 1)!
> τn(1) = 0 (74)

because there exist rooted trees in T ∗n with one cherry, whereas each tree in Tn has at least two cherries. On

the other hand, putting m = bn/2c, then we have
∑m
k=1 τ

∗
n(k) =

∑m
k=1 τn(k) = 1. Therefore, we have the

following result showing that there exists a sign change between the point-wise difference between these two

functions.

Lemma 3 For each n ≥ 4, there exists an integer 1 < k0 = k0(n) ≤ n/2 with

(τ∗n(k0)− τn(k0))× (τ∗n(k0 − 1)− τn(k0 − 1)) < 0.

With Lemma 3, we are in a position to prove the following result.
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Fig. 3: Total variation distances between the cherry distributions of rooted and unrooted trees (4 ≤ n ≤ 1000)

under the YHK model (dashed line) and the PDA model (solid line).

Proposition 8 The sequence of the total variation distances {dyTV (B∗n, Bn)}n≥4 between the cherry distribu-

tions under the YHK model is a strictly decreasing sequence in n.

Proof For 1 ≤ k ≤ 2n, let αn(k) = 2k/n and βn(k) = (n − 2k + 2)/n. By (38) and Wu and Choi (2016,

Eq. (11)) we have

τ∗n+1(k) = αn(k)τ∗n(k) + βn(k)τ∗n(k − 1) and τn+1(k) = αn(k)τn(k) + βn(k)τn(k − 1),

for n ≥ 4 and 1 ≤ k ≤ n/2, where the case k = 1 follows from (74) and the fact that τn(0) = τn(1) = τ∗n(0) = 0.

For simplicity, set m =
⌊
n+1
2

⌋
. Then we have τ∗n+1(k) = τn+1(k) = 0 for k > m. Therefore we have

2dyTV (B∗n+1, Bn+1) =

m∑
k=1

|τ∗n+1(k)− τn+1(k)| =
m∑

k=1

|αn(k) (τ∗n(k)− τn(k)) + βn(k) (τ∗n(k − 1)− τn(k − 1))| . (75)

By Lemma 3, let k0 be a constant so that (τ∗n(k0)− τn(k0))× (τ∗n(k0 − 1)− τn(k0 − 1)) < 0 holds. By the

triangle inequality, using (75) it follows that

2dyTV (B∗n+1, Bn+1) <
∑
k 6=k0

|αn(k) (τ∗n(k)− τn(k))|+
∑
k 6=k0

|βn(k) (τ∗n(k − 1)− τn(k − 1))|

+αn(k0)| (τ∗n(k0)− τn(k0)) |+ |βn(k0) (τ∗n(k0 − 1)− τn(k0 − 1))|

=

m∑
k=1

αn(k) |(τ∗n(k)− τn(k))|+
m∑
k=1

βn(k) |(τ∗n(k − 1)− τn(k − 1))|

=

m∑
k=1

αn(k) |(τ∗n(k)− τn(k))|+
m−1∑
k=0

βn(k + 1) |(τ∗n(k)− τn(k))|

=

m∑
k=1

|τ∗n(k)− τn(k)|

= 2dyTV (B∗n, Bn),
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from which this proposition holds. Note that the second last equality holds because τ∗n(0) = τn(0) = 0,

αn(m) = 1 when n is even, and τ∗n(m) = τn(m) = 0 when n is odd. �

6 Discussion and Conclusion

Tree shape statistics play an important role in studying evolutionary signals in phylogenetic trees, so it is

helpful to understand how they are related between tree generating models for rooted and unrooted trees. In

this paper, we present a comparison study on properties of statistical distributions for cherries and pitchforks

under the YHK and the PDA models. In addition to common patterns between rooted and unrooted trees

for both models, such as the log-concavity of the cherry distributions, we also observe some differences. For

instance, by Proposition 6 we know that the difference between the mean number of cherries (resp. pitchforks)

for unrooted trees and for rooted trees converges to 0 under the YHK model but to 1/4 under the PDA model.

As a result, due caution is required for conducting statistical analysis for datasets containing both rooted

and unrooted trees: when subtree statistics are computed from such a dataset, bias could be introduced if we

simply treat the rooted trees as unrooted ones by ignoring their roots.

Several questions derived from the work presented here remain open. For example, numerical computation

(see, e.g. Fig. 3) suggests that the total variation distance dyTV (B∗n, Bn) is bounded above by duTV (B∗n, Bn). If

this can be established analytically, then by Theorem 9 and Proposition 8 it follows that dyTV (B∗n, Bn) also

converges to zero. Next, we conjecture that the pitchfork distributions for both rooted trees and unrooted trees

are log-concave under the two null models. Note that log-concave and unimodal sequences arise naturally from

problems in a variety of fields (Stanley, 1989), including in phylogenetics (Zhu et al, 2015; Wu and Choi, 2016).

Furthermore, for rooted trees, previous studies have investigated various properties of subtrees with four or

more leaves, including mean, variance, and asymptotic distribution (see, e.g. Rosenberg, 2006; Chang and

Fuchs, 2010; Holmgren and Janson, 2015), but much less is known for unrooted trees.

The work presented here also leads to some broad questions that may be interesting to explore in future

work. First, the two models considered here can be regarded as two special cases for some more general tree

generating models, such as Ford’s alpha model (Chen et al, 2009) and the Aldous β-splitting model (Aldous,

1996). Therefore it is of interest to extend our studies on subtree indices to these models as well. Secondly, our

results indicate that the problem of comparing distributions of shape statistics between rooted and unrooted

trees is nontrivial. Finally, one can also consider aspects of tree shapes that are related to the distribution of

branch lengths (Ferretti et al, 2017; Arbisser et al, 2018), which will help us design more complex models that

may in some cases provide a better fit to real data.

Acknowledgements The authors would like to sincerely thank two anonymous referees for their insightful comments and

constructive suggestions.



On cherry and pitchfork distributions of random trees 25

References

Abramowitz M, Stegun IA (1972) Handbook of Mathematical Functions. Dover Publications, New York

Aldous D (1996) Probability distributions on cladograms. In: Aldous D, Pemantle R (eds) Random Discrete

Structures, The IMA Volumes in Mathematics and its Applications, vol 76, Springer-Verlag, pp 1–18

Arbisser IM, Jewett EM, Rosenberg NA (2018) On the joint distribution of tree height and tree length under

the coalescent. Theoretical Population Biology 122:46–56

Blum MGB, François O (2006) Which random processes describe the tree of life? A large-scale study of

phylogenetic tree imbalance. Systematic Biology 55(4):685–691
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