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Abstract

In random-effects meta-analysis the between-study variance (�2) has a key role in
assessing heterogeneity of study-level estimates and combining them to estimate an
overall effect. For odds ratios the most common methods suffer from bias in estimat-
ing �2 and the overall effect and produce confidence intervals with below-nominal
coverage. An improved approximation to the moments of Cochran’sQ statistic, sug-
gested by Kulinskaya and Dollinger, yields new point and interval estimators (KD) of
�2 and of the overall log-odds-ratio. Another, simpler approach (SSW) uses weights
based only on study-level sample sizes to estimate the overall effect.
In extensive simulations we compare our proposed estimators with established point
and interval estimators for �2 and point and interval estimators for the overall
log-odds-ratio (including the Hartung-Knapp-Sidik-Jonkman interval). Additional
simulations included three estimators based on generalized linear mixed models and
the Mantel-Haenszel fixed-effect estimator.
Results of our simulations show that no single point estimator of �2 can be recom-
mended exclusively, but Mandel-Paule and KD provide better choices for small and
large K, respectively. The KD estimator provides reliable coverage of �2. Inverse-
variance-weighted estimators of the overall effect are substantially biased, as are the
Mantel-Haenszel odds-ratio and the estimators from the generalized linear mixed
models. The SSW estimator of the overall effect and a related confidence interval
provide reliable point and interval estimation of the overall log-odds-ratio.
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1 INTRODUCTION

Meta-analysis is broadly used for combining estimates of a measure of effect from a set of studies in order to estimate an overall

(pooled) effect. In studies with binary individual-level outcomes, the most common measure of treatment effect is the odds
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ratio1. Our primary interest lies in meta-analysis of odds ratios. The actual measure of effect is the logarithm of the odds ratio

(LOR), and the summary data are the numbers of subjects and the numbers of events in the two arms of each study, from which

the usual analysis calculates the logarithm of each study’s sample odds ratio and the large-sample estimate of its variance. A

fixed-effect (or common-effect) model (FEM) assumes that the studies share a single true effect. It is usually more likely that

the true study-level effects differ. A random-effects model (REM) describes that variation via a distribution, whose mean serves

as the overall effect and whose variance summarizes the heterogeneity of the true study-level effects. Higgins et al.2 point out,

“This variance explicitly describes the extent of the heterogeneity and has a crucial role in assessing the degree of consistency

of effects across studies, which is an element of random-effects meta-analysis that often receives too little attention."

We focus mainly on two-stage approaches, which first calculate the studies’ log-odds-ratios (and their estimated variances)

and then combine those estimates; but we include, for limited comparisons, some one-stage approaches, which use the studies’

numbers of events and subjects (e.g., in a binomial likelihood) and avoid calculating the sample log-odds-ratios. To estimate the

overall effect, the most common methods use a weighted average of the study-level estimates in which the weight for a study’s

estimate is the reciprocal of an estimate of its variance. Under the REM such inverse-variance weights combine the variance of

the study-level estimate and the variance of the distribution of true study-level effects (�2). Thus, they require an estimate of the

between-study variance. Most of the common inverse-variance-weighted methods estimate �2 by using the theoretical moments

of Cochran’s Q or its generalization. However, Kulinskaya and Dollinger3 and van Aert et al.4 have shown that, for log-odds-

ratio, the distributions assumed for those theoretical moments are incorrect. As a result, the moment-based point estimators of �2

are biased, and the interval estimators have coverage below the intended 95% level. Also, in combination with inverse-variance

weighting, the departures from assumptions lead to biased point estimation of the overall effect and undercoverage of the associ-

ated confidence intervals (CIs). Therefore, for estimating between-study variance, we propose new point and interval estimators

based on an improved approximation to the moments of Cochran’sQ statistic, suggested by Kulinskaya and Dollinger3. For the

overall effect, we propose a weighted average in which the weights depend only on the effective sample sizes.

We use simulation to compare bias of our proposed point estimator of �2 with that of three previous moment-based estimators

(the popular estimators of DerSimonian and Laird5 and Mandel and Paule6 and the less-familiar estimator of Jackson7) and

the restricted-maximum-likelihood estimator, and also to compare coverage of our proposed interval estimator of �2 with that

of four previous estimators (profile likelihood8, the Q-profile interval9, and the generalized Q-profile intervals of Biggerstaff

and Jackson10 and Jackson7). We also compare bias and coverage of our proposed point estimator of the overall effect and

a companion interval estimator with those of the related inverse-variance-based estimators. We extend the comparisons by

including point estimators of �2 and point and interval estimators of overall effect obtained from logistic linear mixed-effects

models, and also the Mantel-Haenszel estimator of the odds ratio.

Section 2 reviews estimation of study-level log-odds-ratio, and Section 3 briefly reviews random-effects models. Section 4

discusses previous point and interval estimators of between-study variance and introduces the proposed Kulinskaya-Dollinger
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method. Section 5 describes the corresponding point and interval estimators of the overall effect. Section 6 presents our sim-

ulation study and summarizes its results. In Section 7 we apply the various methods to data on the effect of diuretics on

pre-eclampsia. Section 8 offers a concluding summary.

The Web Appendix reviews the logistic linear mixed-effects models, tabulates the methods studied in our simulations, dis-

cusses the properties of the M-H estimator under the random-effects model, presents the result of the additional simulations

that included the logistic linear mixed-effects estimators and the M-H estimator, and lists our R programs for calculating the

proposed estimators.

2 ESTIMATION OF STUDY-LEVEL LOG-ODDS-RATIO

Consider K studies that used a particular individual-level binary outcome. Each study i reports a pair of independent binomial

variables, XiT and XiC , the numbers of events in niT subjects in the Treatment arm (j = T ) and niC subjects in the Control arm

(j = C); for i = 1,… , K ,

XiT ∼ Binom(niT , piT ) and XiC ∼ Binom(niC , piC ). (2.1)

The log-odds-ratio for Study i is

�i = loge

(

piT (1 − piC )
piC (1 − piT )

)

estimated by �̂i = loge

(

p̂iT (1 − p̂iC )
p̂iC (1 − p̂iT )

)

. (2.2)

The large-sample estimate of the variance of �̂i, derived by the delta method, is

�̂2i = V̂ar(�̂i) =
1

niT p̂iT (1 − p̂iT )
+ 1
niC p̂iC (1 − p̂iC )

(2.3)

(in finite samples Var(�̂i) is not finite). Evaluation of �̂i and �̂2i requires the estimates p̂ij . The usual (and maximum-likelihood)

estimate of pij is p̂ij = xij∕nij , but an adjustment is necessary when either of the observed counts xij is 0 or nij (i.e., when the

2×2 table for Study i contains a 0 cell). The standard approach adds 1∕2 to xiT , niT −xiT , xiC , and niC −xiC when the 2×2 table

contains exactly one 0 cell, and it omits Study i when the 2 × 2 table contains two 0 cells. An alternative approach always adds

a (> 0) to all four cells of the 2 × 2 table for each of the K studies; that is, it estimates pij by p̂ij(a) = (xij + a)∕(nij + 2a). The

most common choice, a = 1∕2, removes bias of order n−1 in �̂i (Gart et al.11). It is convenient to denote the resulting estimate

of �i by �̂i(a).

Using p̂ij(a) with a = 1∕2 in Equation (2.3) yields an estimator of Var(�̂i(a)) that is unbiased except for terms of order n−3.

When nijpij < 3, however, that estimator substantially overestimates Var(�̂i(a)) (Gart and Zweifel12). As far as we are aware,

the corresponding small-sample bias of the standard approach has not been calculated. However, using unbiased estimators of

the �i and Var(�̂i) does not make the inverse-variance estimator of the combined LOR unbiased, because 1∕V̂ar(�̂i) is a biased

estimator of 1∕Var(�̂i) and the �̂i and their estimated variances are not independent13,14.
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Double-zero studies

Meta-analysis of binary data is challenging when the event rates are low. Such situations may involve so-called double-zero

studies (i.e., studies with zero events in both arms or, at the other extreme, xiT = niT and xiC = niC ). Actual practice varies,

but often meta-analyses omit these studies. A popular argument is that such studies provide no information on the direction or

magnitude of the effect15.

Simulations that retain double-zero studies are rather scarce. Kuss16 considers only methods that include double-zero studies

without adjustment. Bhaumik et al.13 refer to their extensive simulation study comparing inclusion (with a = 1∕2) and exclusion

of double-zero studies and claim that inclusion results in less bias in estimation of the overall effect, but negatively affects

estimation of �2. Cheng et al.17 provide a review and some limited simulations for p ≤ 0.01 and K = 5. They argue that

including double-zero studies is beneficial when � is 0, but detrimental when a true treatment effect exists. We believe that this

issue has no major practical consequences for our simulations (Section 6) because we use � ≥ 0 and piC ≥ .1.

3 RANDOM-EFFECTS MODELS

3.1 Standard random-effects model

The standard random-effects model assumes that each estimated study-level effect, �̂i, has an approximately normal distribution

and that the true study-level effects, �i, follow a normal distribution:

�̂i ∼ N(�i, �2i ) and �i ∼ N(�, �2). (3.1)

Thus, the marginal distribution of �̂i is N(�, �2i + �
2). Although the �2i are generally unknown, they are routinely replaced by

their estimates, �̂2i . A key step involves estimating the between-study variance, �2; the most popular random-effects method uses

the DerSimonian-Laird estimate5. The estimate of the overall effect is then

�̂RE =
K
∑

i=1
ŵi�̂i∕

K
∑

i=1
ŵi, (3.2)

where ŵi = ŵi(�̂2) = (�̂2i + �̂
2)−1 is the inverse-variance weight for Study i. If the �2i and �

2 were known, the variance of �̂RE

would be [
∑

wi]−1 with wi = (�2i + �2)−1. In practice, the variance of �̂RE is traditionally estimated by [
∑

ŵi(�̂2)]−1, and a

confidence interval for � uses critical values from the normal distribution.

The assumptions in this model (e.g., within-study normality, between-study normality, and known �2i ) have become familiar

and seldom attract attention. Jackson and White14, however, advocate careful examination; they conclude that methods that

make fewer normality assumptions should be considered more often in practice.

3.2 Logistic linear mixed-effects models

One alternative approach uses a binomial-normal likelihood; the resulting logistic linear mixed-effects model belongs to the class

of generalized linear mixed models (GLMMs) (Turner et al.18, Stijnen et.al19). Kuss16, Jackson et al.20, and Bakbergenuly and
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Kulinskaya21 review these GLMM methods. We include a fixed-intercept model (FIM) and a random-intercept model (RIM),

equivalent toModels 4 and 5, respectively, of Jackson et al.20 and to models FIM2 and RIM2 of Bakbergenuly and Kulinskaya21.

Briefly, the FIM includes fixed control-group effects (log-odds for the control-group probabilities), and the RIM replaces these

fixed effects with random effects. Web Appendix A.1 gives more details.

3.3 Noncentral-hypergeometric-normal model (NCHGN)

When one conditions on the total number of events for Study i,XiT +XiC = Xi, only the number of events in the treatment group

XiT is random. Then, given the study-specific log-odds-ratio �i, XiT has a noncentral hypergeometric distribution. If the �i are

normally distributed, �i ∼ N(�, �2), the exact hypergeometric-normal likelihood function for Study i can be written as22,19:

lHGN (xiT ; �, �2) =

∞

∫
−∞

(

niT
xiT

)(

niC
xiC

)

exp(xiT �i)
P (�i)

�(�i|�, �2)d�i, (3.3)

where the normalizing constant is defined as:

P (�i) =
min(niT ,Xi)

∑

u=max(0,Xi−niC )

(

niT
u

)(

niC
Xi − u

)

exp(u�i),

and �(⋅|�, �2), is the probability density function of the normal distribution with mean � and variance �2. Integrating out the

unobserved study-specific effects produces the marginal distribution of Xi1. See Web Appendix A.1 for more details.

4 METHODS OF ESTIMATING BETWEEN-STUDY VARIANCE

A number of methods provide point and interval estimates of between-study variance. In a comprehensive review of existing

simulation and empirical studies, Veroniki et al.23 focus on general-purpose estimators. Langan et al.24 systematically review

simulation studies that compared estimators of heterogeneity variance. They summarize performance in estimating heterogeneity

and also in estimating the overall effect. The studies used a variety of effect measures, including the odds ratio. Langan et al.25 use

simulated data on standardized mean difference and odds ratio to compare nine estimators. We considered the recommendations

of those three reports in choosing estimators to study. This section briefly reviews them; for reference, Web Appendix A.2

contains a list. More-detailed descriptions appear in Veroniki et al.23, Langan et al.24, and Langan et al.25 and inWebAppendices

A.1 and A.3.

4.1 Point estimators

In applications the DerSimonian-Laird5 method remains the most popular; its relative simplicity facilitated its early implemen-

tation in software. Accumulating evidence of its inferior performance has done little to dislodge it. Recommended alternative

point estimators include restricted maximum likelihood (REML), the method of Mandel and Paule6, and the method of Jack-

son7. These and other methods have been studied by many authors, including Viechtbauer26 and Kosmidis et al.27. This section
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briefly reviews these four methods and describes the Kulinskaya-Dollinger method. Information on the logistic linear mixed-

effects models (FIM, RIM, and NCHGN) appears in Web Appendix A.1. All these methods replace negative values of �̂2 with

zero.

4.1.1 DerSimonian-Laird method (DL)

When �2 = 0, the statistic Q =
∑

ŵi(�̂i − �̂)2, with ŵi = ŵi(0) = 1∕�̂2i and �̂ =
∑

ŵi�̂i∕
∑

ŵi, is customarily assumed to

have approximately the chi-squared distribution on K − 1 degrees of freedom. DerSimonian and Laird5 substitute wi = 1∕�2i
for ŵi, derive the corresponding expected value of Q when Var(�̂i) = �2i + �

2, and estimate �2 by the method of moments. The

resulting closed-form expression has made the DL estimator attractive.

4.1.2 Restricted-maximum-likelihood method (REML)

Assuming that the �̂i are distributed asN(�, �̂2i + �
2), the restricted-maximum-likelihood (REML) estimator �̂2REML maximizes

the restricted (or residual) log-likelihood function lR(�, �2), which differs from the ordinary likelihood function by the addition

of − 1
2
ln(

∑

ŵi(�2)). It is obtained iteratively, using � = �̂REML from Equation (3.2) with weights ŵi(�̂2REML). REML is superior

to DL because of its balance between unbiasedness and efficiency (Viechtbauer26). However, like DL, using the �̂2i as if they

were the �2i may undermine its performance.

One can also obtain the REML estimator of �2 by maximizing the penalized log-likelihood developed by Kosmidis et al.27

to reduce the bias of maximum-likelihood estimation.

4.1.3 Mandel-Paule method (MP)

The Mandel-Paule (MP) estimator, �̂2MP , is another iterative moment-based estimator of the between-study variance6,28.

As in Section 3.1, let the random-effects weights and �̂RE depend on �2; denote the resulting Q by Q(�2). The Mandel-Paule

estimator �̂2MP is obtained by iteratively solving the equation

Q(�2) =
K
∑

i=1
ŵi(�2)(�̂i − �̂RE)2 = K − 1 (4.1)

and requiring �̂2MP > 0.

This method is equivalent to the empirical Bayes methods of Carter and Rolph29 and Morris30, as noted by Rukhin and

Vangel31 and Rukhin et al.32.

4.1.4 Jackson method (J)

DerSimonian and Kacker33 generalizeQ, replacing the ŵi by arbitrary fixed positive constants, ai, to obtainQa =
∑

ai(�̂i−�̂a)2,

from which they derive a general method-of-moments estimator of �2. They discuss several special cases, including DL (with

ai = 1∕�̂2i , treating the �̂
2
i as fixed).
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As an option when some heterogeneity is anticipated but there is little prior knowledge about its extent, Jackson7 uses Qa

with ai = 1∕�i. Although that choice yields a point estimator of �2, he focuses on the interval estimator. However, the R function

inference in the supplementary materials of Jackson7 returns the point estimate. (His computational procedure avoids negative

�̂2.) We abbreviate the point and interval estimators as J. In practice, meta-analyses would use the �̂i, so the ai inQa are not fixed.

4.1.5 Kulinskaya-Dollinger method (KD)

The chi-squared approximation for Q is inaccurate, and the actual distribution depends on the effect measure. Under the null

hypothesis of homogeneity of the log-odds-ratio, Kulinskaya and Dollinger3 obtain corrected approximations for the mean and

variance of Q and match those corrected moments to obtain a gamma distribution that (as their simulations confirm) closely

fits the null distribution of Q. These approximations blend theoretical derivations with simulation results. Let EKD(Q) denote

the corrected expected value of Q under the null hypothesis �2 = 0. This corrected first moment has the form EKD(Q) =

K − 1 − 0.687[K − 1 − Etℎ(Q)], where Etℎ(Q) is a theoretical moment obtained from their general expansion for the mean

of Q for arbitrary effect measures34. The corrected variance of Q is a quadratic function of the corrected mean EKD(Q). The

expression for Etℎ(Q) involved in specifying the corrected distribution of Q is not simple; Kulinskaya and Dollinger3 give the

details. For large sample sizes, Etℎ(Q) → K − 1.

We propose a new estimator of �2 based on this improved approximation. One obtains the KD estimate �̂2KD by iteratively

solving

Q(�2) =
K
∑

i=1

(�i − �̂RE)2

�̂2i + �2
= EKD(Q). (4.2)

This estimator closely resembles the Mandel-Paule estimator; both assume that adding �2 to �̂2i in the IV weights makes the

non-null distribution ofQ (or at least, its mean) close to its null distribution. This assumption needs to be verified by simulation.

4.2 Interval estimators

Viechtbauer9 and Jackson and Bowden35 compare confidence-interval estimators of the between-study variance. Interval esti-

mators recommended by Veroniki et al.23 include profile likelihood8, the Q-profile interval9, and the generalized Q-profile

intervals of Biggerstaff and Jackson10 and Jackson7. Quality of estimation varies with the effect measure; for odds ratio van

Aert et al.4 found that coverage of the last three methods can deviate substantially from the nominal 95% level. If the lower

confidence limit is not defined or is negative, all these methods set it to zero. The logistic linear mixed-effects methods (FIM,

RIM, and NCHGN) as implemented in the rma.glmm function in metafor 36, used in our simulations, do not produce confidence

intervals for �2.

4.2.1 Profile-likelihood interval (PL)

The 95% profile-likelihood confidence interval for �2 consists of the values that are not rejected by the likelihood-ratio test

with �2 as the null hypothesis (Hardy and Thompson8). Here the other parameter in the likelihood, �̂, is a function of �2, as in

This article is protected by copyright. All rights reserved.
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Equation (3.2). The values of �2 in the confidence interval satisfy

{

�2 ∶ lR(�̂(�2), �2) > lR(�̂REML, �̂
2
REML) −

1
2
�2
1;0.95

}

, (4.3)

where �2
1;0.95 = 3.841 is the 0.95 quantile of the �2

1 distribution, and lR(�̂(�2), �2) is the restricted log-likelihood function

evaluated at (�̂(�2), �2).

4.2.2 Q-profile confidence interval (QP)

If the weight for Study i is 1∕(�2i + �
2), the generalized Q-statistic

Q(�2) =
K
∑

i=1

(�̂i − �̂(�2))2

�2i + �2
(4.4)

follows the chi-squared distribution with K − 1 degrees of freedom. To obtain the Q-profile confidence interval, Viechtbauer9

finds the lower and upper confidence limits by iteratively solving Q(�̃2L) = �2
K−1;0.975 and Q(�̃2U ) = �2

K−1;0.025. In practice it

is necessary to use the �̂2i instead of the �2i , and then the generalized Q-statistic no longer follows the assumed chi-squared

distribution.

4.2.3 Biggerstaff and Jackson interval (BJ)

For a generic effect measure, Biggerstaff and Jackson10 derive the exact distribution of the statistic

Q =
K
∑

i=1
wi(�̂i − �̂)2, (4.5)

where wi = 1∕�2i and �̂ = (
∑

wi�̂i)∕(
∑

wi). They show that the distribution is that of a linear combination of mutually

independent chi-squared random variables, each with 1 degree of freedom, and they take advantage of available software for

evaluating the cumulative distribution function FQ of such a distribution.

That distribution yields a generalized Q-profile confidence interval, whose lower and upper limits are the solutions to the

equations

Q(�̃2L) = FQ;0.975, Q(�̃2U ) = FQ;0.025, (4.6)

in which FQ;0.025 and FQ;0.975 are, respectively, the 0.025 and 0.975 quantiles. If the equation for �̃2L has no solution, they set

�̃2L = 0. We refer to this interval as the BJ confidence interval.

Despite the title of Biggerstaff and Jackson10, Q in (4.5) is not Cochran’s heterogeneity statistic. In the definition of Q,

Cochran37 used wi = 1∕�̂2i .

4.2.4 Jackson interval (J)

As mentioned in Section 4.1.4, Jackson7 proposes another generalized Q-profile confidence interval for �2. The approach is the

same as for the BJ interval, but with ai = 1∕�i in Qa.
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4.2.5 Kulinskaya-Dollinger interval (KD)

For the log-odds-ratio, we propose a new confidence interval for the between-study variance. The KD confidence interval for

�2 combines the Q-profile approach and the improved approximation by Kulinskaya and Dollinger3. This corrected Q-profile

confidence interval can be estimated from the lower and upper quantiles of FQ, the cumulative distribution function for the

corrected distribution of Q, as in equation (4.6). The upper and lower confidence limits for �2 can be calculated iteratively.

5 METHODS OF ESTIMATING OVERALL EFFECT

Most of the point estimators of the overall effect have corresponding interval estimators, but some do not. Therefore, we describe

point estimators and interval estimators in separate sections.

5.1 Point estimators

A random-effects method that estimates � by a weighted mean with inverse-variance weights, as in Equation (3.2), is determined

by the particular �̂2 that it uses in ŵi(�̂2). The best-known and most widely used estimator, �̂DL, was introduced by DerSimonian

and Laird5; it uses �̂2DL. Its shortcomings, in particular bias and below-nominal coverage of the companion confidence inter-

val, have led numerous authors to propose alternative estimators of �2. Some of those shortcomings arise from the derivation

underlying �̂2DL, which uses the �
2
i and �

2 and then substitutes the �̂2i and �̂
2. Unfortunately, the alternative methods (REML, J,

and MP) generally rely on that same unsupported substitution. In our simulations, we add one more inverse-variance-weighted

estimator, KD, to this list.

In an attempt to avoid the bias in the inverse-variance-weighted estimators, we include a point estimator whose weights depend

only on the studies’ effective sample sizes (Hedges and Olkin38, Hunter and Schmidt39). For this estimator (SSW) �̂i uses p̂ij(a)

with a = 1∕2 (as discussed in Section 2), and wi = ñi = niT niC∕(niT + niC ); ñi is the effective sample size in Study i. These

weights would be equivalent to the inverse-variance weights if all the probabilities across studies were equal (i.e., piT = piC ≡ p

for i = 1,… , K).

As we mentioned in Section 1, we also include estimators obtained from logistic linear mixed-effects models, namely FIM,

RIM, and NCHGN.

A reviewer pointed out that the weights in SSW are the same as those in the Mantel-Haenszel estimator of a common risk

difference40, and suggested that we include the Mantel-Haenszel estimator (MH) of a common odds ratio. That fixed-effect

estimator applies the weight (niT − xiT )xiC∕(niT + niC ) to the sample odds ratio for Study i. As we discuss in Web Appendix

A.3, we expect MH to be biased under the REM.

In summary, the point estimators that we study are DL, REML, J, MP, KD, SSW, FIM, RIM, NCHGN, and MH.
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5.2 Interval estimators

The point estimators DL, REML, J, MP, and KD have companion interval estimators of �. The customary approach estimates the

variance of �̂RE by [
∑

ŵi(�̂2)]−1 and bases the width of the interval on the normal distribution. That expression for the variance

of �̂RE would be correct if it were based on wi = (�2i + �
2)−1. In practice, however, using ŵi(�̂2) may not yield a satisfactory

approximation. Also, we have not seen empirical evidence that the sampling distributions of �̂RE for the various choices of

estimator for �2 are adequately approximated by a normal distribution.

Hartung and Knapp41 and, independently, Sidik and Jonkman42 developed an estimator for the variance of �̂DL that takes into

account the variability of the �̂2i and �̂
2. The Hartung-Knapp-Sidik-Jonkman (HKSJ) confidence interval uses the estimator

V̂arHKSJ (�̂DL) =
K
∑

i=1
ŵi(�̂2DL)(�̂i − �̂DL)

2∕[(K − 1)
K
∑

i=1
ŵi(�̂2DL)], (5.1)

together with critical values from the t distribution on K − 1 degrees of freedom. A potential weakness is that the derivation

of the variance estimator and the t distribution uses the �2i and �
2 and then substitutes the �̂2i and �̂

2
DL. Also, the HKSJ interval

uses �̂DL as its midpoint, so it will have any bias that is present in �̂DL. We study a modification of HKSJ (HKSJ KD) that uses

the KD estimator of �2 and uses �̂KD as the midpoint.

The interval estimator corresponding to SSW (SSW KD) uses the SSW point estimator as its center, and its width equals the

estimated standard deviation of SSW under the random-effects model times twice the critical value from the t distribution on

K − 1 degrees of freedom. The estimator of the variance of SSW is

V̂ar(�̂SSW ) =
∑

ñ2i (v
2
i + �̂

2)
(
∑

ñi)2
, (5.2)

in which v2i comes from Equation (2.3) and �̂2 = �̂2KD.

In summary, the interval estimators that we study are DL, REML, J, MP, KD, HKSJ, HKSJ KD, SSW KD, FIM, RIM, and

NCHGN.

6 SIMULATION STUDY

In a simulation study with log-odds-ratio as the effect measure, we varied six parameters: the number of studies K , the total

sample size of each study n, the proportion of observations in the Control arm q, the overall true LOR �, the between-study

variance �2, and the probability of an event in the Control arm pC . The number of studies K ∈ {5, 10, 30}. We included

sample sizes that were equal for all K studies and sample sizes that varied among studies. The total sample sizes were n ∈

{40, 100, 250, 1000} for equal sample sizes and the average total sample sizes were n̄ ∈ {30, 60, 100, 160} for unequal sample

sizes. In choosing sample sizes that varied among studies, we followed a suggestion of Sánchez-Meca and Marín-Martínez43,

who selected study sizes having skewness 1.464, which they considered typical in behavioral and health sciences. For K = 5,

Table 1 lists the sets of five sample sizes, which have the chosen skewness and average equal to 30, 60, 100, and 160. The

simulations for K = 10 and K = 30 used each set of unequal sample sizes twice and six times, respectively. The values of q

were .5 and .75. The sample sizes of the Treatment and Control arms were niT = ⌈(1 − q)ni⌉ and niC = ni − niT , i = 1,… , K .
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TABLE 1 Unequal sample sizes for simulations with K = 5

n̄ ⧵ i 1 2 3 4 5

30 12 16 18 20 84

60 24 32 36 40 168

100 64 72 76 80 208

160 124 132 136 140 268

The values of the overall true LOR were � = 0(0.5)2 (that is, from 0 to 2 in steps of 0.5). The probability in the Control arm was

pi2 = .1, .2, .4. The values of the between-study variance were �2 = 0(0.1)1, corresponding to small to moderate heterogeneity.

This interval of �2 values is similar to or, for smaller sample sizes, somewhat shorter than that for the meta-analyses of LOR in

the Cochrane database, Langan et al.25 Appendix 2.

Altogether, the simulations comprised 7,920 combinations of the six parameters. We generated 10,000 meta-analyses for each

combination. The true values of LOR (�i) were generated from a normal distributionwithmean � and variance �2. For a given piC ,

the number of events in the control group,XiC , was generated from the Binomial(niC , piC ) distribution. The number of events in

the treatment group,XiT , was generated from the Binomial(niT , piT ) distribution with piT = piC exp(�i)∕(1 − piC + piC exp(�i)).

The estimate �̂i was calculated as in Equation (2.2), and its sampling variance was estimated by substituting p̂iT and p̂iC in

Equation (2.3). The methods differed however, in the way they obtained p̂ij from xij and nij . In all standard methods, we added

1∕2 to each cell of the 2 × 2 table only when the table had at least one cell equal to 0. This approach corresponds to the default

values of the arguments add, to, and drop00 of the escalc procedure in metafor 36. In the KD methods, and for estimation of

�i in SSW, we corrected for bias by adding 1∕2 to each cell of all K tables. We also tried always adding 1∕2 in the standard

methods, but that made the biases for �̂2 worse.

In expanding our comparative study, we included the MH estimator of � and the estimators from the FIM, RIM, and NCHGN

models in simulations for selected values of the parameters: pC = 0.1, q = 0.5 and equal sample sizes with n = 40 and n = 100.

The three logistic linear mixed-effects methods provide point but not interval estimators of �2 and both point and interval

estimators of �. For the MH point estimator of �, we studied two versions: the usual version (MH), which does not modify the

cell counts, and a version that always adds 1∕2 to each cell (MHwith 1∕2). The results of these additional simulations are plotted

in Web Appendix A.4.

6.1 Results of simulation studies

Our full simulation results are available as an arXiv e-print (Bakbergenuly et al.44). They comprise 300 figures, each presenting

a plot of bias or coverage versus �2 for the four values of n or n̄ and the three values of K . A detailed summary is given below

and illustrated by Figures 1 to 3.

This article is protected by copyright. All rights reserved.



12 AUTHOR ONE ET AL

Bias in estimation of �2 (Figure 1)

All the estimators have bias that varies with �2, often roughly linearly. The sign and magnitude of the bias and the slope of that

relation depend on pi2, �, n, K , and q. For example, when pi2 = .1, � = 0, q = .5, n = 40, and K = 5, the bias of KD goes

from +0.32 when �2 = 0 to −0.08 when �2 = 1, and the traces for the other estimators, close together, go from around +0.12 to

around −0.47. Among these, MP appears to be the least biased. As K increases, the pattern shifts down; and as n increases, the

traces tend to flatten (when n = 1000, most of the estimators are unbiased, but the bias when �2 = 1 is −0.08 for J and −0.17 for

DL). As � increases, the patterns shift down. When all studies are unbalanced (in favor of the control arm), q = .75, the patterns

often shift down, and the slopes become steeper.

Figure 1 shows these patterns for KD and MP in the balanced case (q = .5). Both estimators have positive bias at zero,

but for larger values of �2, the bias of MP is mostly negative, whereas for KD it may be positive for larger values of �. MP is

considerably worse than KD (apart from �2 = 0) for K = 30. For K = 5 and 10, KD is less biased than MP for large values of

�2, but it may be worse for small values.

The effect of increasing pi2 is not simple. As pi2 increases from .1 to .2 to .4, the (positive) bias of KD at �2 = 0 decreases, and

its bias at �2 = 1 approaches 0; at �2 = 0 the (positive) bias of the other estimators changes little, but at �2 = 1 the magnitude

of the (negative) bias decreases when � = 0 but decreases and then increases when � = 2.

None of the point estimators of �2 has bias consistently close enough to 0 to be recommended; but among the existing

estimators, MP and KD provide better choices for small and large K , respectively.

Bias in estimation of � (Figure 2)

In the results for bias of the point estimators of �, a common pattern is that the bias is roughly linearly related to �2 with a

positive slope. The varied positions of the estimators’ traces relative to the horizontal line of zero bias, however, complicate the

process of summarizing. The situation with piC = .1 and � = 0 is straightforward: When n = 40 and K = 5, all estimators have

no bias when �2 = 0; when �2 = 1, SSW has bias 0.14, and the other estimators’ biases range from 0.23 to 0.26. Increasing K

(to 10 and 30) has little effect on the pattern, and increasing n (to 100, 250, and 1000) flattens the pattern until little bias remains.

(The plots for n = 100 show that the bias of SSW decreases more rapidly.) When � = 0.5, the pattern splits into three: SSW has

much smaller slope and flattens to essentially zero bias; the bias of KD changes from negative to positive around �2 = 0.5; and

the common trace for the other estimators parallels that for KD and is about 0.06 units above it. Again, by n = 1000 the traces

have flattened and merged. As � increases (to 1.0, 1.5, and 2.0), the traces for all estimators except SSW shift down further, and

the gap between KD and the others widens. When piC = .2 and � > 0, slopes of the non-SSW traces decrease as � increases (the

traces are flat when � = 2). When piC = .4 and � > 0, the non-SSW traces go from flat to having negative slope as � increases.

Also, increasing K tends to shift those traces down slightly.

When allK studies are unbalanced (q = .75), piC = .1, � = 0, and n = 40, the estimators have larger positive bias, even when

�2 = 0. This effect decreases as � and piC increase, consistent with the behavior when q = .5, and it is absent when n ≥ 100.
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As expected, in the vast majority of situations, SSW avoids most, if not all, of the bias in the IV-weighted estimators. The

bias of the IV-weighted estimators affects their efficiency, so SSW tends to have smaller mean squared error than MP as �2 and

K increase, but larger MSE than KD when K = 5 and K = 10 and when K = 30 and �2 is small.

Coverage in estimation of �2 (Figure 3)

Coverage of �2 is generally good for K = 5, but is considerably worse for larger numbers of studies, especially so for large

values of �. All methods are somewhat conservative at �2 = 0. When K = 5, PL is very conservative, whereas KD provides

close to nominal coverage for �2 > 0, though it may become a bit liberal for large �. The other methods are between these

two, being somewhat conservative for small sample sizes n. For K = 10, PL is still mostly conservative, though it may become

somewhat liberal for larger �2. KD is almost perfect, though in one instance, for unequal sample sizes with n̄ = 30, pC = .4,

and � = 2, its coverage drops to 90%. The other intervals are too liberal for small n. The large number of studies K presents

the greatest challenge for the standard methods. PL is the most affected, with considerable undercoverage up to n = 100 for

medium to large values of �2. The other methods also have low coverage for small n, but they improve faster with increasing

n. KD provides reliable coverage except for small sample sizes combined with pC = .4 and � ≥ 1.5, where its undecoverage

worsens with increasing �2, though it is still considerably better than all the competitors.

Coverage in estimation of � (Figure 3)

Interval estimators of � respond in a variety of ways to the variables in the simulations. No simple description adequately

summarizes the patterns. In one common pattern, coverage decreases as �2 increases, often falling substantially below the

nominal 95% for the IV-weighted estimators. For a given value of � andK = 10 andK = 30, undercoverage tends to decrease as

n increases. For K = 5, however, the undercoverage of the IV-weighted estimators generally increases as n goes from 40 to 100

to 250 to 1000; when n = 1000, coverage is around 95% when �2 = 0 and roughly constant, at several percentage points below

95%, for 0.1 ≤ �2 ≤ 1 (the decrease is greater for piC = .2 and piC = .4 than for piC = .1). Because HKSJ, HKSJ KD, and SSW

KD do not exhibit such undercoverage in these situations, the explanation is likely to lie in the use of the normal distribution as

the basis for the CI.

On the other hand, for given values of �, n = 40 and n = 100, and �2 > 0, coverage tends to decrease as K increases.

This effect is small for SSW KD (which moves from overcoverage to coverage close to 95%) and larger (by varying amounts)

for all the other estimators. Thus, counterintuitively, when more than a small amount of heterogeneity is present and n ≤ 100,

increasing the number of studies decreases coverage. A likely contributor is bias in estimating �, which (for n = 40 and n = 100)

is positive and increasing as �2 increases, and changes little with K .

A different pattern arises when � ≥ 1, n = 40 and n = 100 (and n̄ = 30 and 100), and K = 30. Coverage of HKSJ KD

and KD is below 95% when �2 = 0 and increases toward 95% as �2 increases. For KD the explanation probably lies in its

bias in estimating �, which is negative and rises toward 0 (but remains < 0) as �2 increases. For HKSJ KD (which has greater

undercoverage), the reason is less clear. Undercoverage of both KD and HKSJ KD at �2 = 0 increases as � increases. This
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pattern arises when piC = .1 and piC = .2. When piC = .4, however, it is not evident when � = 1. When � ≥ 1.5, coverage of

KD and HKSJ KD decreases as �2 increases and then stabilizes.

We do not recommend standard confidence intervals based on IV-weighted estimators of �, because of their undercoverage.

HKSJ and HKSJ KD often have coverage close to 95%, but they sometimes have serious undercoverage. All problems are

typically worse for the unbalanced sample sizes. The SSW KD interval often has coverage somewhat greater than 95%, but its

coverage is at least 93% (except for a few cases involving K = 30 and unequal sample sizes with n̄ = 30).

Additional results: FIM, RIM, NCHGN, and MH

In estimating �2, FIM and RIM (Figure A4.1) often have bias that is between those of �̂2KD and �̂2MP (Figure 1) and is generally

not small, going from positive near �2 = 0 to negative at larger �2. The size of their bias tends to decrease as K increases. As �

increases, the bias of RIM tends to decrease, whereas the bias of FIM remains roughly constant. The pattern of NCHGN is more

complicated: positive and decreasing as K increases and � increases when n = 40; but roughly linear (+ to −) in �2, increasing

as � increases, and flattening as K increases when n = 100, where NCHGN is almost unbiased for larger �2 when K = 30.

However, convergence rates of NCHGN are rather low, especially so for low values of �2 and K; they improve somewhat for

larger values of n (Figure A4.4).

For point estimation of � (Figure A4.2), the biases of FIM, RIM, NCHGN, and MH follow patterns that resemble those of

KD and MP and are quite unlike the (generally more favorable) patterns of SSW. The bias of MH increases with �2, starting at

0 when � = 0 but at around −0.1 to −0.05 when � = 1. MH with 1∕2 is less positively biased than MH when � = −1 or 0, but

more negatively biased than MH for low values of �2 when � = 1 (Figures A3.1 and A3.2).

For interval estimation of � (Figure A4.3), FIM, RIM, and NCHGN generally have lower coverage than the other estimators,

decreasing as � increases. When n = 100, the coverage of RIM decreases rapidly as �2 increases, and that pattern becomes more

pronounced as K increases.

In summary, we do not recommend MH or the GLMMs for point or interval estimation of �.

7 EXAMPLE: EFFECTS OF DIURETICS ON PRE-ECLAMPSIA

Data from nine trials that reported the effect of diuretics on pre-eclampsia Collins et al.45 were studied by Hardy and Thomp-

son8, Biggerstaff and Tweedie46, Turner et al.18, Viechtbauer9, Kulinskaya and Olkin47, and Bakbergenuly and Kulinskaya48.

The data are shown in Table 2 and are re-analyzed here in order to compare the methods of point and interval estimation of

between-study variance and the log-odds-ratio. estimation in interval estimation of between study variance, eight methods in

point estimation of overall effect measure and ten methods in confidence interval estimation of overall effect measure. For com-

parison we include results from three generalized linear mixed models available in the metafor package36: the fixed-intercept

model (FIM), the random-intercept model (RIM), and the exact method based on the noncentral hypergeometric distribution

(NCHGN). Bakbergenuly and Kulinskaya21 give more details on those methods.
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TABLE 2 Data for meta-analysis on effects of diuretics on pre-eclampsia,45

Study yiT yiC niT niC p̂iT p̂iC �̂i ñi

1 14 14 131 136 0.1068 0.1029 0.042 66.727

2 21 17 385 134 0.0545 0.1268 -0.924 99.403

3 14 24 57 48 0.2456 0.5000 -1.122 26.057

4 6 18 38 40 0.1579 0.4500 -1.473 19.487

5 12 35 1011 760 0.0118 0.0460 -1.391 433.857

6 138 175 1370 1336 0.1007 0.1310 -0.297 676.393

7 15 20 506 524 0.0296 0.0382 -0.262 257.421

8 6 2 108 103 0.0555 0.0194 1.089 52.720

9 65 40 153 102 0.4248 0.3921 0.135 61.200

Table 3 provides the point estimates of the between-study variance and the point estimates and confidence intervals for the

overall log-odds-ratio and the overall odds ratio; and Table 4 shows the point estimates and confidence intervals for the between-

study variance. DL has the lowest estimate of �2, 0.230, followed by the GLMM estimates at 0.254 to 0.264, and KD gives the

highest estimate, 0.392. MP is second highest at 0.386. QP provides the longest confidence interval for �2, with length 2.130,

and KD the second longest at 1.875, whereas BJ is considerably shorter at 1.384, and NCHGN has a very short interval with a

length of just 0.667.

In estimating �, all inverse-variance-weighted methods give similar values, ranging from −0.518 to −0.517 apart from KD

which is −0.507, and the GLMMmethods also give similar values ranging from −0.516 to −0.513. By contrast the fixed-effect

model produces the highest estimate,−0.398, and SSW produces the lowest,−0.558. All the standard inverse-variance-weighted

methods and the GLMMs show a significant effect of diuretics on pre-eclampsia, whereas all methods using t quantiles (HKSJ

DL, HKSJ KD, and SSW KD) do not find a significant effect.

It is rather difficult to decide, from our simulation results, which method gives the best estimates, as the sample sizes, even

though rather balanced, vary greatly, from 38 to 1370 in the Treatment arm. Therefore we ran additional simulations, where we

kept the sample sizes and the prevalence in the Control arm as in the actual nine trials, and varied the value of � from −0.4 to

−0.6 and the value of �2 = 0.20(0.05)0.45 to cover the range of possible values of these parameters. We used 10, 000 repetitions

at each combination of � and �2. Results of these simulations are shown in Figure 4.

From these simulations, MP and KD are the least biased estimates of �2; the other methods have considerable negative bias,

especially DL and the GLMMs, RIM being the most biased. KD provides the best coverage of �2, though the coverage of all

methods appears to be reasonable. All methods but SSW considerably overestimate �, though here NCHGN and FIM are the

least biased, with positive biases of 0.01 to 0.03. Coverage of � is best for SSWKD and somewhat too low for the other methods

based on t quantiles. The coverage of the standard IV-weighted methods based on normal quantiles is clearly not acceptable,

and the GLMMs provide even worse coverage, probably because of their underestimation of �2.
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TABLE 3Meta-analysis of diuretics in pre-eclampsia. Point estimates of the between-study variance �2 and point estimates and

confidence intervals for the overall log-odds-ratio (�) and the overall odds ratio (OR); REM is the random-effects model, and

FEM is the fixed-effect model. L and U are the lower and upper limits of the 95% confidence intervals.

Model Method �̂2 �̂ L U Length OR L U

FEM −0.398 −0.573 −0.223 0.530 0.672 0.564 0.800

REM DL 0.230 −0.517 −0.916 −0.117 0.799 0.596 0.400 0.889

REM HKSJ DL −0.517 −1.061 0.028 1.089 0.596 0.346 1.028

REM REML 0.300 −0.518 −0.956 −0.080 0.876 0.596 0.384 0.923

REM J 0.329 −0.518 −0.971 −0.065 0.906 0.596 0.379 0.937

REM MP 0.386 −0.518 −0.998 −0.037 0.961 0.596 0.369 0.963

REM KD 0.392 −0.507 −0.987 −0.027 0.960 0.602 0.373 0.973

REM HKSJ KD 0.392 −0.507 −1.054 0.040 1.094 0.602 0.348 1.040

REM SSW KD 0.392 −0.558 −1.337 0.221 1.558 0.572 0.263 1.247

GLMM FIM 0.254 −0.513 −0.923 −0.104 0.819 0.599 0.398 0.901

GLMM RIM 0.264 −0.516 −0.930 −0.102 0.828 0.597 0.395 0.903

GLMM NCHGN 0.260 −0.513 −0.927 −0.100 0.827 0.599 0.396 0.905

TABLE 4Meta-analysis of diuretics in pre-eclampsia. Point estimates and confidence intervals for the between-study variance

�2. REM is the random-effects model, and GLMM is a generalized linear mixed model. L and U are the lower and upper limits

of the 95% confidence intervals. Methods are DL with QP and BJ confidence intervals, J, MP with QP interval, REML with PL

interval, and KD. The GLMM estimate using the NCHGN distribution is included for comparison.

Model Method �̂2 L U Length

REM DL (QP) 0.230 0.072 2.202 2.130

REM DL (BJ) 0.230 0.047 1.431 1.384

REM J 0.329 0.074 1.678 1.604

REM MP (QP) 0.386 0.072 2.202 2.130

REM REML (PL) 0.300 0.043 1.475 1.432

REM KD 0.392 0.087 1.962 1.875

GLMM NCHGN 0.260
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8 SUMMARY

Our extensive simulations demonstrate that the existing methods of meta-analysis of (log) odds ratio often present a biased

view of both the heterogeneity and the overall effect. In brief: small sample sizes are rather problematic, and meta-analyses

that involve numerous small studies are especially challenging. Because the study-level effects and their variances are related,

estimates of the overall effects are biased, and the coverage of confidence intervals is too low, especially for small sample sizes

and larger numbers of studies.

The between-study variance, �2, is typically estimated by generic methods which assume normality of the estimated effects �̂i.

It is usually overestimated near zero, but the standard methods are negatively biased for larger values of �2. Our findings agree

with those by vanAert et al.4 that the standard interval estimators of �2 are often too liberal. The behavior of the profile-likelihood

method is especially erratic.

Therefore, we proposed and studied a new method of estimating �2 based on the corrected approximation to the null distri-

bution of Cochran’s Q for log-odds-ratio developed by Kulinskaya and Dollinger3. The KD method provides reliable interval

estimation of �2 across all values of �2, n, and K . Point estimation of �2 is more challenging; even though KD is better for

K = 30, for small values of K it has positive bias and MP is better.

Arguably, the main purpose of a meta-analysis is to provide point and interval estimates of an overall effect.

Usually, after estimating the between-study variance �2, inverse-variance weights are used in estimating the overall effect and

its variance. This approach relies on the theoretical result that, for known variances, and given unbiased estimates �̂i, it yields a

uniformly minimum-variance unbiased estimate (UMVUE) of �.

In practice, however, the true within-study variances are unknown, and use of the estimated variances makes the inverse-

variance-weighted estimate of the overall effect biased. These biases (and even their sign) depend on �2 and the true value of �,

worsen for unbalanced studies, and may be considerable, even for reasonably large sample sizes such as n = 250. The coverage

of the overall effect follows the same patterns because the centering of the confidence intervals is biased. Additionally, traditional

intervals using normal quantiles are too narrow; and the use of t-quantiles, as in the HKSJ method, brings noticeable though not

sufficient improvement.

Our additional simulations showed that the MH method and the GLMMs also do not perform well for point or interval

estimation of �.

A pragmatic approach to unbiased estimation of � uses weights that do not involve estimated variances of study-level estimates,

for example, weights proportional to the study size ni. Hedges and Olkin38, Hunter and Schmidt39, and Shuster49, among others,

have proposed such weights. We use weights proportional to an effective sample size, ñi = niT niC∕ni; these are equivalent to the

optimal inverse-variance weights for LOR when all the probabilities are equal. Importantly, because inverse-variance-weighted

estimators have considerable biases, little, if any efficiency is lost by using the sample-size-based weights.

A reasonable estimator of �2, such as MP or KD, can be used as �̂2. Further, confidence intervals for � centered at �̂SSW with

�̂2KD in Equation (5.2) can be used. In our simulations, this is by far the best interval estimator of �, providing near-nominal

coverage under all studied conditions.
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HIGHLIGHTS

What is already known?

• In combining estimates from studies that had a binary individual-level outcome, the most common methods of meta-

analysis use a weighted average of the studies’ odds ratios (on the logarithmic scale), under a random-effects model; but

their required estimators of the between-study or heterogeneity variance suffer from bias and below-nominal coverage,

and produce bias and undercoverage in estimates of the overall log-odds-ratio.

What is new?

• Our extensive simulations confirm that the usual methods of meta-analysis produce biased estimates of the overall effect

and confidence intervals whose coverage is too low. Estimates of heterogeneity variance have similar shortcomings. Small

sample sizes are rather problematic, and meta-analyses that involve numerous small studies are especially challenging.

• For estimating between-study variance, a new method (KD), based on an improved approximation to the null distribution

of Cochran’s Q, provides reliable interval estimates. The KD point estimator is inferior to another estimator (Mandel-

Paule) when the number of studies is small, but is better otherwise.

• A new, pragmatic point estimator of the overall effect (SSW) uses a weighted average in which a study’s weight is pro-

portional to its effective sample size. It has less bias than the popular inverse-variance-weighted estimators and three

estimators obtained from generalized linear mixed models.

• The best interval estimator of the overall log-odds-ratio is centered on SSW and bases its endpoints on a t distribution and

the KD point estimator of the between-study variance.

Potential impact for RSM readers outside the authors’ field

• The methods in common use for random-effects meta-analysis of odds ratios can advantageously be replaced by the new

estimators, which have better performance.

• Meta-analysis software should include the new estimators.
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FIGURE 1 Bias of �̂2KD and �̂2MP in estimating the between-study variance �2 for � = 0(0.5)2, piC = 0.1, q = .5, n = 40, 100.

The symbols for the values of � are � = 0, black ◦; � = 0.5, brown△; � = 1, green +; � = 1.5, blue ×; and � = 2, red ⋄. Light

grey line at 0.
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FIGURE 2 Bias and ratio of MSEs for estimators of the overall effect � for � = 0, piC = .1, q = .5, and equal sample sizes

n = 40, 100. Light grey line at 0 and 1, respectively.
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FIGURE 3 Coverage of between-studies variance �2 (top two rows) and overall effect � (bottom two rows) for � = 0, piC = .1,

q = .5, and unequal sample sizes n̄ = 30, 100. Light grey line at 0.95.

This article is protected by copyright. All rights reserved.



26 AUTHOR ONE ET AL

 Between study variance τ2

 B
ia

s 
of

 τ
2

●

●

● ●

● ●
●

●

●

●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

10
−

0.
09

−
0.

08
−

0.
07

−
0.

06
−

0.
05

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

θ = −0.6

 Between study variance τ2

 B
ia

s 
of

 τ
2

●
●

●

●

●

●

●

●

●

●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

10
−

0.
09

−
0.

08
−

0.
07

−
0.

06
−

0.
05

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

θ = −0.5

 Between study variance τ2

 B
ia

s 
of

 τ
2

●
●

●

●

●

●

●

● ●
●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

10
−

0.
09

−
0.

08
−

0.
07

−
0.

06
−

0.
05

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

θ = −0.4

●

●

DL
REML
MP
KD
J
NCHGN
FIM
RIM

 Between study variance τ2

 C
ov

er
ag

e 
of

 τ
2

●

●

●
●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.6

 Between study variance τ2

 C
ov

er
ag

e 
of

 τ
2

●

● ●
●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.5

● QP
BJ
KD
PL
J

 Between study variance τ2
 C

ov
er

ag
e 

of
 τ

2

● ● ●
● ●

●

0.20 0.25 0.30 0.35 0.40 0.45

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.4

 Between study variance τ2

B
ia

s 
of

 θ

●

● ●

●

●
●

●

●

●

●
●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

θ = −0.6

 Between study variance τ2

B
ia

s 
of

 θ

●
●

●
●

●

●

●

●

●

●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

θ = −0.5

●

●

DL
REML
MP
KD
J
SSW
NCHGN
FIM
RIM

 Between study variance τ2

B
ia

s 
of

 θ

●

●

●

●
●

●

●

●

●

● ●

●

0.20 0.25 0.30 0.35 0.40 0.45

−
0.

05
−

0.
04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

θ = −0.4

 Between study variance τ2

 C
ov

er
ag

e 
of

 θ

●

●
● ●

●

●

●

●
●

●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.6

 Between study variance τ2

 C
ov

er
ag

e 
of

 θ

●
● ●

●
●

●

●

●

●

●

●

●

0.20 0.25 0.30 0.35 0.40 0.45

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.5

●

●

DL
REML
MP
KD
J
HKSJ (DL)
HKSJ KD
SSW KD
NCHGN
FIM
RIM

 Between study variance τ2

 C
ov

er
ag

e 
of

 θ

●
●

●
●

●
●

●

●

●

●

●
●

0.20 0.25 0.30 0.35 0.40 0.45

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

θ = −0.4

FIGURE 4 Bias and coverage of estimators of the between-study variance �2 and of the LOR � for the sample sizes and the p̂iC

in the pre-eclampsia data of Collins et al.45, � = −0.6, −0.5, −0.4, and �2 = 0.20(0.05)0.45.
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