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Abstract
Motivation: microRNA (miRNA) target prediction algorithms do not generally consider biological context 
and therefore generic target prediction based on seed binding can lead to a high level of false positive 
predictions. Here we present FilTar, a method that incorporates RNA-Seq data to make miRNA target 
prediction specific to a given cell type or tissue of interest.
Results: We demonstrate that FilTar can be used to 1) provide sample specific 3’UTR reannotation; 
extending or truncating default annotations based on RNA-Seq read evidence. and 2) filter putative 
miRNA target predictions by transcript expression level, thus removing putative interactions where the 
target transcript is not expressed in the tissue or cell-line of interest. We test the method on a variety 
of miRNA transfection datasets and demonstrate increased accuracy versus generic miRNA target 
prediction methods.
Availability: FilTar is freely available and can be downloaded from https://github.com/TBradley27/FilTar. 
The tool is implemented using the Python and R programming languages, and is supported on 
GNU/Linux operating systems.
Contact: s.moxon@uea.ac.uk 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
MicroRNAs (miRNAs) exert widespread post-transcriptional control over 
mRNA expression in most animal lineages (Bartel, 2018), creating a need 
for the accurate identification of miRNA targets in order to better 
understand gene regulation. Traditional methods for providing 
experimental support for putative interactions include the use of reporter 
assays to test for a direct interaction between the miRNA and mRNA, or 
perturbation experiments to test for the effect of increased or decreased 
miRNA levels on target mRNA, or the corresponding proteins translated 
from these molecules (Kuhn, et al., 2008). More recent methods allow 
researchers to test for direct interactions between miRNA and putative 
targets using transcriptome-wide crosslinking and immunoprecipitation 
experiments. These methods usually test for binding between the putative 
miRNA target and argonaute (AGO) (Chi, et al., 2009; König, et al., 2010; 
Van Nostrand, et al., 2016), a key component of the miRNA-guided RISC 

(RNA-induced silencing complex), and in addition some methods can also 
be used to determine the identity of the miRNA which is guiding AGO to 
the target transcript (Helwak and Tollervey, 2014; Kudla, et al., 2011).

Currently available data for these types of experiments are generally 
limited in number and diversity of cell types and species. Inspection of the 
TarBase resource (v8.0) (Karagkouni, et al., 2017), a database of 
published, experimentally-supported miRNA interactions, reveal that, at 
the time of writing, even for a widely utilised model organism such as 
mouse, AGO immunoprecipitation datasets are available for only three 
cell lines and five tissues. The problem is exacerbated when examining 
records for other model organisms such as rat and zebrafish, in which no 
data from immunoprecipitation experiments is reported.  This is likely 
because generating data of this type is usually prohibitively expensive in 
terms of skills, time and material resources needed to complete 
sophisticated transcriptome-wide, next-generation library preparation and 
sequencing protocols. The limited applicability of experimental 
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approaches therefore underlies the continuing necessity of computational 
approaches for predicting miRNA targets.

There are a number of existing computational tools for predicting 
miRNA targets in animals. Algorithms such as TargetScan use 
complementarity between the seed sequence of the miRNA (Bartel, 2018; 
Lewis, et al., 2003) and a corresponding region of the 3’UTR of its target 
as the basis of target prediction (Agarwal, et al., 2015; Friedman, et al., 
2009; Garcia, et al., 2011; Grimson, et al., 2007; Lewis, et al., 2005; 
Lewis, et al., 2003). Alternatively, some miRNA target prediction 
algorithms do not require full complementarity in the miRNA seed region 
(Enright, et al., 2003; Gumienny and Zavolan, 2015; John, et al., 2004; 
Khorshid, et al., 2013; Wang, 2016), or predict miRNA targeting to occur 
in the coding region of the transcript as well as the 3’UTR (Reczko, et al., 
2012). Most algorithms, in addition to considerations of seed 
complementarity, and the location of the target site within the transcript, 
also consider features such as the conservation of the miRNA target site 
in closely related species, the thermodynamic stability of the miRNA-
mRNA duplex, and the structural accessibility of putative target sites to 
the miRNA-RISC complex, as variables which are also thought to 
influence miRNA targeting and subsequent transcript repression (Ritchie 
and Rasko, 2014).

Although intramolecular features are often considered, current miRNA 
target predictions currently do not account for the broader cellular context 
in which miRNA targeting occurs. The clearest indication of this, is that 
current target prediction tools do not account for whether predicted targets 
are expressed within a given cell type or tissue. If the predicted target is 
not expressed, it cannot physically interact and be translationally inhibited 
or repressed by miRNA molecules.  As expression profiles vary across 
different cell types and tissues, failing to consider whether a predicted 
target is expressed in a given cellular context may lead to false positive 
results when making miRNA target predictions.

For the prediction of miRNA targets in the 3’UTR, an additional 
complication is that the identity of an individual 3’UTR may not be 
constant across different cell types or different biological conditions due 
to alternative cleavage and polyadenylation (APA) (Elkon, et al., 2013; 
Tian and Manley, 2017). APA is the process by which cellular 
polyadenylation machinery utilises alternative polyadenlyation sites 
located on precursor mRNA molecules to produce transcripts with 
alternative 3’UTR sequences. Differential usage of polyadenylation sites 
in diverse tissues or biological conditions, can result in distinct 3’UTR 
isoform abundance profiles existing between different cell types (Nam, et 
al., 2014). One consequence of the existence of 3’UTR isoforms, is that a 
miRNA target site may exist for some 3’UTR isoforms of the same 
annotated mRNA, but not others.

As a result, APA allows the differential usage of miRNA target sites by 
the cell, diversifying and modifying the effect of miRNAs in different 
cellular contexts. For example, in cancer cells, shortening of 3’UTRs can 
activate oncogenes by increasing mRNA stability, partially through the 
reduction in the number of miRNA target sites in their 3’UTRs, decreasing 
the extent to which they are repressed (Mayr and Bartel, 2009). In contrast, 
an extensive enrichment of longer 3’UTRs and hence additional miRNA 
target sites has been discovered in mammalian brain tissue (Miura, et al., 
2013), which has been hypothesised to serve as an extended platform for 
the regulation of gene expression (Wang and Yi, 2014). This evidence of 
context-specific miRNA action underlies the utility of methods which 
accounts for this information in order to increase the precision and 
sensitivity of miRNA target predictions.

Most databases of miRNA target predictions do not incorporate 
information relating to APA, and instead rely on default 3’UTR 
annotations provided by public sequence databases such as Ensembl 

(Birney, et al., 2004; Cunningham, et al., 2018) and RefSeq (Pruitt, et al., 
2013; Pruitt, et al., 2006), when identifying potential miRNA targets. 
Similarly, most prediction algorithms do not easily allow the user to 
generate predictions for multiple 3’UTR isoforms of the same mRNA. An 
exception is TargetScan (v7) (Agarwal, et al., 2015). In this version each 
mRNA transcript is associated with a distinct profile of relative 3’UTR 
isoform abundances. From this profile, each scored target site is weighted 
by the abundance of the 3’UTR segment containing the predicted target 
site relative to all 3’UTRs of that transcript. The caveat of this analysis 
being that 3’UTR profiles are generated from sequencing data obtained 
from only four human cell lines (Nam, et al., 2014), which is subsequently 
treated as being representative for all cell types. Whilst it was shown that 
this approach was superior to not incorporating 3’UTR profile data at all, 
it was sub-optimal in comparison to using 3’UTR profiles specific to each 
cellular context examined (Nam, et al., 2014). Crucially, a miRNA target 
prediction tool which enables the user to predict miRNA targets specific 
to a given tissue or cell line is currently lacking.
Presented in this manuscript is FilTar, a tool which takes RNA-Seq data 
as input, and generates miRNA target predictions tailored to specific 
cellular contexts. Specificity of target prediction is increased by utilising 
information from sequencing data to both filter out poorly or non-
expressed targets and to refine 3’UTR annotations. Analysis demonstrates 
that predicted miRNA targets gained and lost due to 3’UTR reannotation, 
behave like pre-existing predicted miRNA target and non-targets 
respectively, in response to miRNA transfection. The cumulative effect of 
integrating these additional processing steps into conventional miRNA 
target prediction workflows is to increase prediction accuracy and to 
drastically alter the number of miRNA target predictions made between 
different cell types.

2 Methods
All following steps were carried out using the FilTar tool. The workflow 
and parameters are described in detail below.

2.1 Implementation
FilTar is a command line tool for GNU/Linux operating systems written 
predominantly in the python (v3.6.8) and R (v3.5.0) programming 
languages. Users can configure the tool to process available RNA-Seq 
datasets from public repositories such as the European Nucleotide Archive 
(ENA; https://www.ebi.ac.uk/ena) (Harrison, et al., 2018; Leinonen, et al., 
2010) and the Sequence Read Archive (SRA; https://ncbi.nlm.nih.gov/sra) 
(Leinonen, et al., 2010), and also the user’s own private sequencing data. 
All reported parameters are fully configurable within the FilTar tool. 
FilTar utilises Snakemake (v5.4.0) (Köster and Rahmann, 2012) for 
workflow management. Most FilTar dependencies are managed using 
conda (v4.6.6; https://docs.conda.io/en/latest/).

2.2 Data Preprocessing
Reads were trimmed using Trim Galore (v0.5.0) (Krueger, 2015), a 
wrapper around Cutadapt (v1.16) (Martin, 2011), using default parameters 
with the exception of the ‘length’ and ‘stringency’ parameters which were 
set to 35 and 4 respectively.

2.3 3’UTR reannotation
In order to build an index for the alignment of FASTQ reads to the 
genome, unmasked chromosomal reference genome assembly fasta files 
for human (GRCh38.p12) and mouse (GRCm38.p6) (Schneider, et al., 
2017) were downloaded from release 94 of Ensembl 
(www.ensembl.org/index.html) (Cunningham, et al., 2018). All 
subsequent files obtained from the Ensembl resource were for this same 
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release version. Splice-aware mapping of reads to the genome was 
achieved using HISAT2 (v2.1.0) (Kim, et al., 2015): The locations of 
exons and junction sites were determined by running the appropriate 
HISAT2 scripts on the relevant species-specific GTF (gene transfer 
format) annotation file also obtained from Ensembl. The ‘hisat2-build’ 
binary was executed using the ‘ss’ and ‘exon’ flags indicating splice site 
and exon co-ordinates built from the previous step.

The indexed genome was used for FASTQ read alignment using the 
‘hisat2’ command. The ‘rna-strandness’ option was used for strand-aware 
alignment. The strandedness of RNA-seq datasets were determined using 
the ‘quant’ command of the salmon (v0.11.3) (Patro, et al., 2017) RNA-
seq quantification tool, by setting the ‘lib-type’ option to ‘A’ for automatic 
inference of library type. The samtools (v1.8) (Li, et al., 2009) ‘view’ and 
‘sort’ commands were used to sort data from sam to bam format, and to 
sort the resultant bam files respectively.

Sorted bam files were converted to bedgraph format using the 
‘genomeCoverageBed’ command of bedtools (v2.27.1) (Quinlan, 2014; 
Quinlan and Hall, 2010) using the ‘bg’, ‘ibam’ and ‘split’ options. 
Bedgraph files representing biological replicates of the same condition 
were merged using bedtool’s ‘unionbedg’ command. FilTar then 
calculated the mean average coverage value for each record in the merged 
bedgraph file. 

Existing transcript models were produced by converting Ensembl GTF 
annotations files (containing one or zero 3’UTR annotations per protein-
coding transcript) into genePred format using the UCSC ‘gtfToGenePred’ 
binary, and then from genePred format to bed12 format using the UCSC 
‘genePredToBed’ binary (Kent, et al., 2002). APAtrap (Ye, et al., 2018), 
the 3’UTR reannotation tool, was used to refine 3’UTR annotations on a 
transcript-by-transcript basis by integrating information from the bed12 
file and bedgraph files using the ‘identifyDistal3UTR.pl’ perl script with 
default parameters. FilTar then integrated existing transcript 3’UTR 
models with the new models predicted by APAtrap – replacing existing 
3’UTR models for those transcripts in which APAtrap has made a 
reannotation. Only truncations or elongations of single exon 3’UTR 
annotations were integrated into final 3’UTR annotations; novel 3’UTR 
predictions (i.e. prediction of 3’UTRs for transcripts without a previous 
3’UTR annotation) were discarded and alterations of the 3’UTR start site 
were also not permitted, due to the reannotation of 3’UTR start sites by 
the APAtrap dependency as beginning at the start position of the final exon 
in standard Ensembl transcript models.  No alterations to existing 3’UTR 
annotations spanning multiple exons were permitted, as this is not 
intended functionality of the APAtrap tool.

2.4 miRNA Target Prediction
Target prediction for the analyses presented in this study was conducted 
using the TargetScan algorithm (v.7.01) (Agarwal, et al., 2015). Mature 
miRNA sequences were obtained from release 22 of miRBase 
(www.mirbase.org) (Griffiths‐Jones, 2004; Kozomara, et al., 2018). The 
3’UTR sequence data required for target prediction can either be provided 
as multiple sequence alignments or single sequences, with the former 
option enabling the computation of 3’UTR branch lengths and the 
probability of conserved targeting (Pct) for putative miRNA target sites.

Multiple sequence alignments (MSA) are derived from 100-way 
(human reference) and 60-way (mouse reference) whole-genome 
alignments hosted at the UCSC genome browser 
(https://genome.ucsc.edu) (Kent, et al., 2002) generated using the threaded 
blockset-aligner (Blanchette, et al., 2004) stored in MAF (multiple 
alignment format) format. MAF files are indexed, and the relevant 
alignment regions corresponding to 3’UTR co-ordinates extracted using 
‘MafIO’ functions contained within the biopython (v1.72) library (Cock, 

et al., 2009). For human MSAs, during post-processing, distantly related 
species were removed, resulting in 84-way multiple sequence alignments 
(Agarwal, et al., 2015).

If multiple sequence alignments are not used, single sequences are 
extracted from DNA files using relevant 3’UTR co-ordinates in bed 
format using the ‘getfasta’ command of bedtools with the ‘s’ option 
enabled. Individual exon sequences are then merged, creating a single 
contiguous 3’UTR sequence. FilTar then converts miRNA and 3’UTR 
sequence and identifier information to a format which can be parsed by 
TargetScan algorithms.

TargetScan is executed using both Ensembl 3’UTR annotations, and 
updated annotations produced using FilTar for the purposes of the 
differential expression analyses reported in this study.
The FilTar tool is also fully compatible with the miRanda (v3.3a) (Enright, 
et al., 2003; John, et al., 2004) miRNA target prediction algorithm 
allowing users to identify non-canonical miRNA targets, i.e. predicted 
targets without a perfectly complementary seed match to the miRNA.

2.5 Transcript quantification
Human and mouse cDNA files were downloaded from Ensembl. Kallisto 
(v0.44.0) (Bray, et al., 2016) was used to index the cDNA data using the 
‘kallisto index’ command with default parameters. Reads were 
pseudoaligned and relative transcript abundance quantified using the 
‘kallisto quant’ executable, using the ‘bias’ option to correct for sequence-
based biases. When kallisto was used with data derived from single-end 
RNA-sequencing experiments, 180nt and 20nt were used as required 
estimates of the mean average fragment length and standard deviation 
respectively.

2.6 Availability of data and materials
See Supplementary Methods for information regarding the selection and 
analysis of data used in this manuscript. All data analysed in this study are 
publicly available and a table of relevant project accessions are given 
(Table S1), along with relevant QC statistics (Table S2). The FilTar tool 
is publicly and freely accessible for download 
(https://github.com/TBradley27/FilTar) with full supporting 
documentation (https://tbradley27.github.io/FilTar/).

3 Results
In order to benchmark the performance of the FilTar tool in a specific 
cellular context versus general miRNA target prediction we used RNA-
Seq data from miRNA mimic transfection experiments in mouse and 
human cell lines. Fold change values represent changes in relative mRNA 
abundance in samples transfected with a miRNA mimic compared to 
samples transfected with a negative control.

3.1 Expression filtering
Predicted miRNA targets which were filtered according to their 
expression level, at a TPM (transcripts per million) (Li, et al., 2009) 
threshold of 0.1, as a whole, exhibited stronger repression after miRNA 
transfection than the full miRNA target set without expression filtering 
(Figure 1; Figure S1). Predicted miRNA targets removed by FilTar 
generally exhibited low absolute fold change values suggesting that these 
are false positive predictions in these specific cellular contexts (Figure 
S2). Implementing expression filters for a range of different TPM values 
reveals that increasing this threshold results in a stronger filtering effect 
on retained mRNAs (Figure S3a). However, increasing the expression 
threshold beyond a particular point (between 1 – 10 TPM for experiments 
analysed) leads to the removal of a considerable number of mRNA 
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transcripts which are repressed by the transfection of a miRNA mimic 
(Figure S3b).

The number and percentage of annotated protein-coding transcripts 
which are used in FilTar’s 3’UTR reannotation workflow, for each sample 
after expression filtering, is given in the supplementary materials (Table 
S3).  Only those transcripts possessing a pre-existing 3’UTR annotation 
spanning only a single exon are selected (see methods).

Fig. 1.  Implementing an expression threshold on predicted miRNA targets improves 
miRNA target prediction accuracy. Results are derived from miRNA mimic and control 
transfection experiments. Curves show the cumulative log2 fold change distributions of i) 
protein-coding non-target transcripts (black) ii) protein-coding seed target transcripts 
(orange) and iii) expression filtered (TPM ≥ 0.1) protein-coding seed target transcripts 
(green). Numbers in round brackets represent the number of mRNA transcripts contained 
in each distribution. Approximate P-values were computed using one-sided, two-sample, 
Kolmogorov-Smirnov tests between unfiltered and filtered target fold change distributions. 
Data presented for miRNA mimic transfection into A) A549 and B) HeLa cell lines, C) 
normal murine mammary gland (NMuMG) cells and D) mouse embryonic stem cells 
(ESCs).

3.2 3’ UTR extension
Newly gained miRNA target predictions deriving from FilTar’s refined 
3’UTR annotations of protein-coding transcripts (i.e. miRNA targets 
deriving from the elongation of existing 3’UTR annotations), generally 
exhibited similar levels of repression to miRNA target predictions 
deriving from Ensembl 3’UTR annotations (Figure 2; Figure S4). 
Anomalies were results deriving from the transfection of miR-107 and 
miR-10a-5p miRNA mimics into HeLa cells in which newly identified 
miRNA target predictions did not exhibit a log fold change distribution 
commensurate with that exhibited by already existing miRNA target 
predictions (Figure S4). 

3.3 3’ UTR truncation
Conversely, miRNA target transcripts that were removed as a result of 
FilTar truncating 3’UTR annotations relative to standard Ensembl 
annotations, exhibited repression similar to that of annotated non-target 
transcripts (Figure 3; Figure S5). In a minority of datasets analysed, 
removed target transcripts exhibited significantly less repression than 

target transcripts, but nonetheless exhibited greater repression than 
annotated non-target transcripts. In these datasets, the removed target log 
fold change distribution tended to align with the non-target distribution at 
the negative extremity, but not at small negative fold change value ranges 
- indicating that for a minority of datasets, labelled ‘removed targets’ may 
be mildly repressed by targeting miRNAs. Additional analysis 
demonstrated that for these datasets, such targets exhibited significantly 
weaker repression in response to miRNA transfection than 6-mer targets, 
which are the weakest canonical miRNA target site type (Bartel, 2018) 
(Figure S6).

Fig. 2.  3’UTR elongation by FilTar leads to the identification of additional valid 
miRNA targets. Curves show the cumulative log2 fold change distributions of i) protein-
coding non-target transcripts (black). ii) protein-coding seed target transcripts (orange) and 
iii) predicted target transcripts deriving from FilTar 3’UTR annotations but not Ensembl 
3’UTR annotations (blue). Approximate P-values were computed using one-sided, two-
sample, Kolmogorov-Smirnov tests between pre-existing target and newly identified target 
fold change distributions. Otherwise as in figure 1.
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Fig. 3. 3’UTR truncation by FilTar leads to the removal of false positive miRNA 

target predictions. Curves are plotted of the cumulative log fold change distributions of 

expression filtered i) protein-coding non-target transcripts (black). ii) protein-coding seed 

target transcripts (orange) and iii) predicted target transcripts deriving from Ensembl 

3’UTR annotations but not FilTar 3’UTR annotations (red). Approximate P-values were 

computed using one-sided, two-sample, Kolmogorov-Smirnov tests between non-target 

and discarded miRNA target fold change distributions. Otherwise as in figure 1.

3.4 Cumulative effect of filtering and reannotation
When the FilTar reannotation and miRNA target prediction workflow was 
applied transcriptome-wide, to multiple organs and cell lines, using all 
annotated miRBase human miRNAs, there was a mean average gain and 
loss of miRNA target sites corresponding to 0.18% and 1.5% of the total 
original miRNA target sites predicted deriving from Ensembl 3’UTR 
annotations (Figure 4). This corresponds to a gain and loss of total miRNA 
seed sides in the tens and hundreds of thousands respectively (Table S4). 
Whilst a much larger proportion of miRNA seed sites (mean average of 
26.3%) are lost through expression filtering (Figure S7), representing a 
loss of millions of miRNA seed sites (Table S4).  This is commensurate 
with the mean average of 34.0% of 3’UTR bases lost when removing 
lowly expressed transcripts (< 0.1 TPM) from target predictions (Table 
S5), which is greater than the mean average of 2.0% of bases lost through 
3’UTR reannotation (Table S6). When considering the combined effect of 
expression filtering and 3’UTR reannotation, a mean average 36.1% of 
3’UTR bases are lost, affecting a mean average of 53.4% of protein-coding 
3’UTRs (Table S7).

Fig. 4. Total miRNA target site gain and loss when applying FilTar to multiple sample 

types. FilTar is applied to the protein-coding transcriptome for all annotated human 

miRNAs for multiple tissues, organs and cell lines. Gained (blue) and lost (red) miRNA 

target sites is expressed as a percentage of the total number of target sites identified when 

deriving miRNA from Ensembl 3’UTR annotations.

4 Discussion
Results show that FilTar is successfully able to utilise RNA-Seq data to 
reannotate protein-coding 3’UTR sequences and filter based on expression 
data leading to a gain in specificity and sensitivity of target prediction 
evidenced through tests using experimental data.

Expression filtering target transcripts at even a modest expression 
threshold of 0.1 TPM leads to a loss of millions of seed sites in most 
datasets analysed (Table S4), representing a radical reduction in the 
number of false positive predictions associated with miRNA target 
prediction. This is indicative of the importance of considering the 
biological plausibility of candidate miRNA interactions. The positive 
relationship between the expression threshold chosen and the extent of 
repression of retained mRNA transcripts is evidence for the robustness of 
this effect (Figure S3a). The increase in specificity conferred by 
expression filtering does however seem to be accompanied by a 
corresponding loss of sensitivity of miRNA target prediction when large 
expression threshold values are chosen (Figure S3b), indicating that 
sufficient caution ought to be exercised by the user when choosing 
expression threshold values. However, even for larger expression 
thresholds, the reduction in sensitivity is less than the increase in 
specificity conferred by expression filtering (Figure S3a).

The number of newly predicted miRNA target sites deriving from 
FilTar elongated 3’UTR sequences is generally relatively low. For cell 
line datasets analysed, the maximum of number of newly predicted 
miRNA targets made for any single miRNA was 67, with the majority of 
datasets analysed yielding less than 15 newly predicted targets (Figure 2 
and Figure S4). The number of newly identified target transcripts is 
commensurate with the universally low proportion of 3’UTRs extended, 
and the small proportion of bases added to the total of the 3’UTR 
annotation (Table S6), even though this still represents a substantial 
increase in the number of miRNA seed target sites identified. This is in 
contrast to 3’UTR truncation in which the proportion of 3’UTRs truncated 
and bases removed from the 3’UTR annotation total are much greater. 
Analysis shows that there is a strong positive correlation between the 
number of 3’UTR bases reannotated, and the number of predicted miRNA 
target sites gained or lost through reannotation (Figures S8a and S8b). The 
bias in 3’UTR truncation as opposed to elongation can possibly be 
explained by either a pre-existing bias in standard Ensembl 3’UTR 
annotations to generate long 3’UTR models, or rather a bias in the FilTar 
reannotation workflow for 3’UTR truncation rather than elongation. A 
potential bias in the standard Ensembl annotation workflow could 
potentially be explained by the method of transcript annotation, in which, 
although transcript models are built on a tissue-specific basis, transcript 
models incorporated into the final Ensembl gene set typically only derive 
from the merging of RNA-sequencing reads from multiple different tissue 
samples (Aken, et al., 2016), therefore creating a bias towards the 
annotation of longer 3’UTRs. This effect may be exacerbated or 
supplemented by the existence of 3’UTR isoforms within a given sample 
and transcript - creating relatively low abundance isoforms towards the 
distal end of the 3’UTR, making annotation difficult, and likely generating 
a large amount of uncertainty, biases and variability in different methods 
used to model 3’UTRs.

Another possibility, is that the shortening and extension of existing 
3’UTR annotations are qualitatively different problems requiring different 
respective sequencing depths. Within a given sample, a read sampling 
analysis demonstrates that there is a positive relationship, up to a point of 
saturation between sequencing depth and the number of bases used to 
elongate existing 3’UTRs (Figure S9a). In addition, the saturation point 
for the addition of bases to 3’UTRs is still substantially less than the 
proportion of bases removed at 3’UTRs even at relatively low sequencing 
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depths indicating that the discrepancy between proportion of 3’UTR bases 
added or subtracted from the 3’UTRs cannot be explained by insufficient 
sequencing depth. A similar positive relationship is observed between 
sequencing depth and the number of based truncated from existing 
3’UTRs (Figure S9b), although far fewer reads seem to be required for 
saturation to occur, indicating a weaker reliance on sequencing depth for 
3’UTR truncation compared to 3’UTR elongation.

Although as mentioned previously, the sequencing depth does seem to 
influence the extent of 3’UTR reannotation, for a set of different biological 
samples, sequencing depth alone seems to have limited predictive value 
for this variable (Figures S10a and S10b). The likely explanation being 
that as well as sequencing depth, the extent of 3’UTR reannotation is also 
determined by other key variables such as the cell type being analysed, 
read length used for sequencing, library preparation protocol, the use of 
single-end or paired-end sequencing, as well as additional researcher or 
lab-specific batch effects (Leek, et al., 2010). For example, as some cell 
types are biased towards shorter 3’UTRs (Mayr and Bartel, 2009), whilst 
others towards longer 3’UTRs (Miura, et al., 2013), generating radically 
different reannotation statistics irrespective of sequencing depth used.

As mentioned previously, there was generally a much larger number of 
miRNA target sites predicted to be removed than added during 3’UTR 
reannotation. This is despite FilTar permitting 3’UTR truncations only 
occurring on moderately-to-highly expressed transcripts, after discovery 
that the reannotation of the 3’UTRs of lowly expressed transcripts 
generated a relatively large number of what seemed to be false positive 
predictions (Figure S11). The likely cause being that low transcript 
expression leads to sporadic and inconsistent coverage across the 3’UTR, 
in which there is insufficient information to correctly call 3’UTR 
truncation. The default behavior of the FilTar tool therefore is to only 
truncate the 3’UTRs of transcripts which are not poorly expressed (i.e. 
TPM ≥ 5).

When examining 3’UTR truncations further, for a minority of datasets 
analysed, some removed predicted miRNA targets seem to be marginally 
effective, with some transcripts exhibiting low levels of repression upon 
transfection of the miRNA mimic. Further analysis indicates that these 
marginally repressed transcripts exhibit even weaker repression than 6-
mer targeted transcripts (Figure S6), one of the least effective canonical 
miRNA target types (Bartel, 2018), indicating that the efficacy of these 
site types is marginal. A possible explanation for the existence of these 
site types is that, for some transcript annotations for which the 3’UTR was 
truncated, there may exist a small proportion of isoforms with longer 
3’UTRs, which are too low in abundance to be detected by APAtrap, but 
nonetheless still confer a marginal level of repression to the transcript, and 
hence is detectable when analysing experimental data.

Investigations into the effect of utilising expression data when making 
transcriptome-wide miRNA target predictions can be extended by closer 
examination of not only the refinement of 3’UTR annotations across 
different biological contexts, and its effects on miRNA target prediction, 
but more precisely the definition of specific 3’UTR profiles, incorporating 
information about 3’UTR isoforms within a given cellular context 
(Agarwal, et al., 2015). This enables the weighting of miRNA target 
prediction scores on the basis of sequencing data applied by the user 
themselves, enabling even further and extended tailoring of miRNA target 
prediction to the specific biological context being researched. Previous 
analyses indicate that the most effective target predictions occur when 
those predictions are weighted on the basis of 3’UTR isoform ratios (Nam, 
et al., 2014). In addition, the scope of FilTar’s functionality can be 
increased by enabling the annotation of novel 3’UTR sequences for 
transcripts without a current annotated 3’UTR, and also for those 3’UTRs 
which themselves span multiple exons. In addition, both the 

configurability and precision of FilTar can be improved in the future by 
respectively, enabling use of additional tools for 3’UTR reannotation 
(Gruber, et al., 2018; Gruber, et al., 2018) and exploring the greater 
transcriptomic resolutions enabled by nascent single cell sequencing 
technologies. 

5 Conclusion
FilTar utilises RNA-Seq data to increase the accuracy of miRNA target 
predictions in animals by filtering for expressed mRNA transcripts and 
reannotating 3’UTRs for greater specificity to a given cellular context of 
interest to the researcher. FilTar’s compatibility with user-generated 
RNA-Seq data, confers functionality across a wide-range of potential 
biological contexts.
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