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Abstract  16 

Salt marshes attenuate waves and thus have an important function for coastal protection. 17 

Biophysical properties of salt-marsh plants play a key role in the process of wave attenuation 18 

and can be differentiated by morphological properties such as stem density, vegetation height 19 

and aboveground biomass as well as by biomechanical properties related to stem flexibility. 20 

Numerical or physical scale models predicting wave attenuation over vegetated surfaces need 21 

to include biophysical properties. However, only few studies have quantified morphological 22 

and biomechanical properties of salt-marsh plants and fewer have considered seasonal and 23 

within-marsh spatial variability of biomechanical properties. The aim of this study was to 24 

quantify biophysical properties of the common salt-marsh grasses Spartina anglica and Elymus 25 

athericus, including stem flexibility and density as well as aboveground biomass, temporally 26 



2 
 

and spatially. Samples were collected in spring and in summer 2014 at a study site located in 27 

the Northern German Wadden Sea. Aboveground biomass was harvested in plots of 50 x 50 28 

cm, stem density was determined by counting and flexibility of plant stems was determined 29 

with three-point bending tests. Biophysical properties of both species varied significantly 30 

between seasons with plant stem stiffness being 5.0 (S. anglica) and 2.9 times (E. athericus) 31 

higher and aboveground biomass being 2.1 (S. anglica) and 1.3 times (E. athericus) higher in 32 

summer than in spring. Small-scale spatial differences for those biophysical plant properties 33 

were found for S. anglica with plant stem stiffness being 4.0 (spring) and 2.8 times (summer) 34 

higher and aboveground biomass being 1.6 (spring) and 1.5 times (summer) higher in a 35 

landward than in a seaward-located zone. Small-scale spatial differences of biophysical 36 

properties were not found in E. athericus. We conclude that variability in biophysical properties 37 

should be considered in models and experiments especially for S. anglica when predicting and 38 

quantifying marsh wave attenuation capacity. 39 

 40 

Introduction  41 

Vegetation plays a vital role in the form, functioning and ecosystem service delivery of coastal 42 

salt marshes. Many salt-marsh plants act as ecosystem engineers by modifying their physical 43 

environment through the reduction of hydrodynamic energy and the enhancement of sediment 44 

deposition (Bouma et al. 2005, 2010; Peralta et al. 2008). If sufficient sediment is deposited, 45 

marshes can keep pace vertically with rising sea level (Nolte et al. 2013). This ability implies 46 

that vegetated salt-marsh surfaces can be an important component of nature-based coastal 47 

protection schemes especially in times of climate change, accelerated sea-level rise and 48 

increased storm frequency (Koch et al. 2009; Narayan et al. 2016; Sutton-Grier et al. 2018).  49 

Recent studies have shown that biophysical properties of plants, which can be categorized as 50 

morphological (e.g. stem density, vegetation height and aboveground biomass) and 51 
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biomechanical (e.g. stem flexibility), play a key role in the capacity of marshes to dissipate 52 

wave height and energy (Möller et al. 2014; Paul et al. 2016; Rupprecht et al. 2017). Wave 53 

dissipation is a combined effect of bottom friction and vegetation, which form an obstruction 54 

to wave-induced oscillatory flow. Vegetation induced obstruction depends both on standing 55 

biomass or stem density and stem flexibility. Vegetation, in turn, experiences drag and re-56 

orientation by wave forces (Mullarney and Henderson 2010). Flexible plants move with the 57 

surrounding water and show an avoidance strategy to minimize the risk of folding and breakage 58 

under high drag forces. In contrast, stiff plants maximize the resistance to physical damage 59 

(tolerance strategy), thus leading to higher drag forces, higher flow resistance and an increased 60 

risk of breakage compared to flexible plants (Coops et al 1994; Puijalon et al. 2011). Apart from 61 

stem flexibility, aboveground biomass and stem density also play a crucial role in wave 62 

dissipation by vegetation (Bouma et al. 2005, 2010; Widdows et al. 2008; Peralta et al. 2008; 63 

Anderson and Smith 2014). For example, species with contrasting biomechanical plant 64 

properties can lead to a similar wave dissipation when regarded on a biomass basis (Bouma et 65 

al. 2010).  66 

 67 

Salt-marsh plants show a wide variability in biophysical properties both within and among 68 

species, making their canopies structurally complex (Tempest et al. 2015; Rupprecht et al. 69 

2015a). This structural complexity in combination with the unpredictable nature and high 70 

variability of hydrodynamic conditions make field measurements of the interaction between 71 

vegetation and hydrodynamics extremely challenging. Hence, many studies rely on numerical 72 

or physical modelling approaches (Tempest et al. 2015). A high model quality, however, is 73 

often hampered by limited data on biophysical properties of salt-marsh vegetation, especially 74 

regarding stem flexibility (Tempest et al. 2015). The majority of numerical wave dissipation 75 

models capture vegetation effects in a factor that consists of plant stem height, stem density, 76 

stem diameter and an empirical bulk drag coefficient CD. (Mendez and Losada 2004; Paul and 77 
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Amos 2011). Physical models often use plant mimics to simulate the effect of vegetation on 78 

currents and waves (e.g. Stewart 2006; Anderson and Smith 2014). However, insufficient data 79 

on plant biophysical properties lead to problems in reproducing salt-marsh plants realistically 80 

by plant mimics (see Anderson and Smith 2014; Tempest et al. 2015). Consequently, it would 81 

be valuable to assess the spatial and temporal variation in biophysical properties of salt-marsh 82 

species (Rupprecht et al. 2015a).  83 

Morphological properties of salt marsh plants have been examined (e.g. Morris and Haskin 84 

1990; Möller and Spencer 2002; Neumeier 2005; Foster-Martinez 2018), however, those 85 

concerned with biomechanical properties focused predominantly on freshwater plants 86 

(Ostendorp 1995; Coops and van der Velde 1996; Miler et al. 2012; 2014), brackish plants 87 

(Heuner et al. 2015; Carus et al. 2016; Silinski et al. 2015; 2018), macroalgae (Harder et al. 88 

2006; Paul et al. 2014) or seagrass (Patterson et al. 2001; Fonseca et al. 2007; Luhar and Nepf 89 

2011; Paul and Amos 2011). Studies of salt marshes are scarce (but see Rupprecht et al. 2015a). 90 

Biomechanical properties of salt-marsh plants are likely to be affected by seasonal climatic 91 

variation in temperate zones as previously found for helophytes (Coops and van der Velde 92 

1996) or lake and river plants (Miler et al. 2014).  93 

Recently, the importance of considering seasonal variability in vegetative and biomechanical 94 

properties of salt marshes for estimates of wave attenuation over salt marshes was addressed by 95 

van Loon-Steensma et al. (2016). In order to generate reliable predictions of the marsh wave 96 

attenuation capacity and successfully incorporate marshes in coastal protection schemes, both 97 

seasonal and spatial variability in biomechanical and morphological vegetation properties need 98 

to be integrated in numerical and physical scale models (van der Meer 2002; Smith, Bryant and 99 

Wamsley 2016).  100 

The aim of this study is to quantify stem flexibility, stem density and aboveground biomass of 101 

salt-marsh plants seasonally and spatially between seaward and landward-located zones. Data 102 
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were collected for two perennial grasses that are widely spread in salt marshes of NW Europe 103 

(Spartina anglica and Elymus athericus) to answer the following questions: (I) how do 104 

biophysical properties of the salt-marsh grasses Spartina anglica and Elymus athericus differ 105 

between spring and summer?; and (II) how do biophysical properties of Spartina anglica and 106 

Elymus athericus differ between seaward and landward-located zones? 107 

Methods 108 

Species 109 

Spartina anglica 110 

The perennial grass Spartina anglica (hereafter referred to as Spartina) typically occurs in the 111 

salt marsh pioneer zone (below mean high tide level) and the low marsh, where it can form 112 

monospecific stands (Nehring and Adsersen 2006). In late fall, shoots die but largely remain as 113 

dead vegetation canopies while rhizome development increases (Nehring and Adsersen 2006). 114 

Throughout the last century, Spartina has spread from the south coast of the UK to salt marshes 115 

all over Europe, both naturally and by deliberate transplantations (Gray and Benham 1990; 116 

Nehring and Adsersen 2006; Nehring and Hesse 2008). A reason for deliberate transplantations 117 

was its function to act as an ecosystem engineer by enhancing sedimentation through dense 118 

aboveground canopies and a dense root system (Chung 1993; Bouma et al. 2005, 2010; Van 119 

Hulzen et al. 2007).  120 

Elymus athericus  121 

The perennial grass Elymus athericus (hereafter referred to as Elymus) occurs in European salt 122 

marshes from Northern Portugal to Southern Denmark and at the southeastern coast of the 123 

British Isles (Veeneklaas et al. 2013). Elymus is sensitive to grazing and relies on aerated soils 124 

(Bockelmann and Neuhaus, 1999). In salt marshes of the Wadden Sea, it forms monospecific 125 

dense stands mainly in the high marshes, and it is also increasingly establishing at lower 126 

elevations (Bockelmann and Neuhaus 1999; Valéry et al. 2004). In the recent decades, 127 

spreading of Elymus has been observed, which is caused by the abandonment of grazing, an 128 
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increasing marsh age and the ability to reproduce by rhizomes, which survive the winter season 129 

(Rupprecht et al. 2015b). The shoots die off over the winter season but largely remain withered 130 

on the marsh platform.  131 

Study site 132 

Plant samples were obtained from a salt marsh on the mainland coast of Northern Frisia, 133 

German Wadden Sea (54.62°N, 8.84°E; Fig. 1 A). The studied salt marsh developed after the 134 

embankment of the adjacent Sönke-Nissen-Koog (SNK) polder and subsequent constructions 135 

of sedimentation fields in front of the dike (Kunz and Panten 1997; Mueller et al. 2019). As a 136 

salt marsh of anthropogenic origin with a thick clayish sediment layer and a regular system of 137 

creeks and drainage ditches, it can be considered representative for many salt marshes of North-138 

West Europe. The tidal range is 3.4 m, the mean high tide is +1.59 m NHN (Normalhöhennull, 139 

which is comparable to mean sea level). Elevations within the salt marsh range from 0.9 m to 140 

2.6 m NHN with a mean elevation of 2 m NHN (Müller et al. 2013b). The marsh stretches from 141 

the dike over 700 m to the tidal flats (Fig. 1B) and is predominantly covered by Elymus in the 142 

high marsh (Mueller et al. 2017) and by Spartina in the low marsh (according to own 143 

observations and the Trilateral Monitoring and Assessment Program, TMAP; Petersen et al. 144 

2013). 145 



7 
 

 146 

Fig. 1 A) Location of the study site in the Wadden Sea National Park Schleswig-Holstein at the German 147 

North Sea coast. The black rectangle shows the position of the area in Europe. B) Satellite image of the 148 

study site with the sampling zones. Shown are the seaward and landward located Elymus (ESZ, ELZ; 149 

vertically hatched) and Spartina (SSZ, SLZ; diagonally hatched) sampling zones with respective mean 150 

elevations above NHN. The map was created using a base map in ArcGIS © Desktop: Release 10, ESRI 151 

2014, Redlands, CA: Environmental Systems Research Institute 152 

Sampling design  153 

Two sampling zones were chosen in the low marsh (dominated by Spartina) and in the high 154 

marsh (dominated by Elymus). One of the two sampling zones per vegetation type was set closer 155 

to the seaward marsh edge (‘seawards’), and one closer to the landward marsh edge 156 

(‘landwards’; Figure 1B). The seaward-located Spartina zone (hereafter referred to as SSZ; 157 

inundation frequency: 182 times per year; total inundation time: 557.76 hours/year; F. Müller 158 

unpublished data) stretches 40 m perpendicular along the marsh towards the landward-located 159 

zone (hereafter referred to as SLZ; inundation frequency: 156 times per year; total inundation 160 

time: 452.88 hours/year). For Elymus, one zone was chosen towards the low marsh (ESZ; 161 

inundation frequency: 23 times per year; total inundation time: 62.64 hours/year) and one zone 162 
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was chosen closer to the dike (ELZ; inundation frequency: 23 times per year; total inundation 163 

time: 64.32 hours/y). An area-based stratified random design was applied with 40 random 164 

sampling points (20 points for flexibility measurements; 20 points for aboveground biomass 165 

and stem density measurements) generated within each sampling zone of the Spartina and 166 

Elymus vegetation type using a random point tool of QGIS 2.0.1 Dufour (QGIS Development 167 

Team 2014). The elevation of each point was assessed using a Trimble LL500 precision laser 168 

and a Trimble HL 700 receiver as a levelling instrument (2.0 mm accuracy) and a known closely 169 

located benchmark. Data were used to calculate mean elevation per zone (Figure 1B).  170 

 171 

Measurements of plant stem flexibility 172 

Three-point bending tests were performed to quantify plant stem flexibility under bending 173 

forces orthogonal to the plants stem. Plant samples were collected both in mid-March (before 174 

the onset of plant growth) and in late August. In the field, samples were excavated as small 175 

marsh blocks with a dimension of 10x10x10 cm and were packed in plastic bags to conduct 176 

measurements on fresh material. From each marsh block, a single adult and undamaged plant 177 

stem was chosen randomly and the stem length up to the inflorescence was measured and 178 

divided in four equal parts. A test section was defined as the beginning of the second quarter 179 

starting from the bottom end of the stem and was cut out with a razor blade. Test sections were 180 

consistently cylindrical. To minimize the effect of shear stress in bending tests, a stem diameter 181 

to stem length ratio (here stem length means the horizontal span of the tested stem section 182 

between the two metal support bars, see Figure 2) of 1:15 was chosen (see also Miler et al. 183 

2012, 2014; Rupprecht et al. 2015a). The bending tests were performed with a Zwick/Roell 184 

testing machine (Type 1120.25, Nominal Force: max. 1 kN, using a 10 N load cell; initial load 185 

0.01 N; Zwick GmbH & Co. KG, Ulm, Germany). 186 
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 187 

Fig. 2 Three-point bending test with a stem section of Elymus 188 

For the measurements, a metal bar was lowered with a displacement rate of 10 mm min-1. Then, 189 

the vertical deflection of the tested stem section and the applied force were recorded (see also 190 

Miler et al. 2012, 2014; Rupprecht et al. 2015a; Silinski et al. 2015, 2018). The slope was 191 

determined from the most linear part of the force-deflection curve. Furthermore, the diameter 192 

and the span of the stem between the two metal support bars were used to determine the 193 

following mechanical properties following Rupprecht et al. (2015a): (I) the second moment of 194 

area (I given in m4) which describes the effect of stem morphology (considering stem diameter) 195 

on flexibility; (II) the Young’s modulus (E given in Pa) which here describes the flexibility of 196 

the plant stem tissue without considering stem morphology; (III) the flexural rigidity (EI given 197 

in Nm2) which describes the overall stem flexibility considering stem tissue and morphological 198 

parameters. In this study, results on the Young’s modulus and flexural rigidity are presented.  199 

Biomass and stem density measurements  200 

Aboveground biomass (hereafter referred to as biomass) was harvested twice in 2014; in early 201 

April and in mid-August in order to identify differences in morphological properties between 202 

spring and summer. All plants rooting inside a 50x50 cm frame were cut at the soil surface. 203 
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Summer sampling was carried out within 1 m distance of the spring plots. Samples were dried 204 

for 48 hours at 65 °C to determine the dry biomass. Stem density was measured after the 205 

removal of litter by counting only the remaining stems that were still connected to a root. For 206 

Elymus, stem density was quantified on a 20x20 cm subplot due to large numbers of stems per 207 

area.  208 

Statistical analysis 209 

To analyze differences in biophysical parameters between the seasons and zones within one 210 

species, two-way analysis of variance (ANOVA) were performed. If necessary, data were log 211 

transformed prior to ANOVA to meet normality assumptions and to improve homogeneity of 212 

variances. Levene’s test was used to test for homogeneity of variances, while Kolmogorov-213 

Smirnov test was used to test the normal distribution of the data. Equal sample sizes assured 214 

robustness of parametric testing (McGuinness 2002). As a post-hoc test, Tukey’s-HSD (honest 215 

significant difference) test was applied to determine pairwise differences. To assess the 216 

relationship between plant stem diameter and flexural rigidity, linear and non-linear regressions 217 

were used. Statistical analyses were conducted with STATISTICA 10 (StatSoft Inc.). 218 
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Results 219 

Flexural rigidity 220 

Flexural rigidity of Spartina differed significantly between seasons and zones (Fig. 3A; Table 221 

1). However, the interaction between season and zone was also significant. Flexural rigidity 222 

was 5.0 times higher in summer compared to spring. In spring, Spartina stems of the SLZ were 223 

4.0 times more rigid compared to the stems of the SSZ. In summer, stems of the SLZ showed a 224 

2.8 times higher value compared to stems of the SSZ.  225 

 226 

Fig. 3 Flexural rigidity (A), biomass (B) and stem density (C) of Spartina and Elymus in spring and 227 

summer, respectively. Light bars show the zone directed seawards while dark bars show the zone 228 

directed landwards. Each bar represents 20 samples. Presented are mean values ± standard deviations. 229 

Different lowercase letters indicate significant differences among the zones in both seasons. 230 

Interspecific differences have not been assessed 231 

 232 
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Table 1 ANOVA table of all biophysical parameters for Spartina and Elymus in spring and summer 233 

season in the landward and seaward-located zones. Given are F-values and p-values 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

For Elymus, flexural rigidity significantly differed between seasons (Fig. 3A; Table 1). Stems 244 

were 2.9 times more rigid in summer compared to spring. In both seasons, stems of the ESZ 245 

slightly, but not significantly, exceeded the rigidity of stems of the ELZ with a factor of 1.34 in 246 

spring and 1.14 in summer. 247 

For Spartina, a second order polynomial regression was found to best represent the positive 248 

relationship between stem diameter and flexural rigidity. For Elymus, we found a linear 249 

regression to best represent the positive relationship between stem diameter and flexural rigidity 250 

(Fig. 4). 251 

 252 

  Season Zone Season * Zone 

    F p F p F p 

Flexural rigidity Spartina 192.39 < 0.0001 103.65 < 0.001 36.50 < 0.0001 

 Elymus 145.81 < 0.0001 5.01 < 0.05 0.81 0.78 

Biomass Spartina 163.46 < 0.0001 57.30 < 0.0001 4.33 < 0.05 

 Elymus 19.26 < 0.0001 0.02 0.90 1.60 0.21 

Stem density Spartina 120.31 < 0.0001 17.59 < 0.0001 21.58 < 0.0001 

 Elymus 11.63 < 0.005 0.61 0.44 3.04 0.08 

Stem length Spartina 48.39 < 0.0001 54.77 < 0.0001 1.40 0.24 

 Elymus 380.31 < 0.0001 2.06 0.16 0.08 0.78 

Stem diameter Spartina 136.60 < 0.0001 58.19 < 0.0001 0.81 0.37 

 Elymus 65.42 < 0.0001 0.62 0.43 2.42 0.12 

Young's modulus Spartina 2.26 0.14 6.23 < 0.05 0.37 0.54 

  Elymus 1.26 0.27 2.07 0.15 4.54 < 0.05 
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Fig. 4 Best-fit polynomial regression and linear regression between stem diameter and flexural rigidity 253 

of Spartina and Elymus stems of both seasons and zones, respectively. Shown are equations and the 254 

coefficients of determination (R²) 255 

 256 

Aboveground biomass  257 

Biomass of Spartina differed significantly between spring and summer and between SSZ and 258 

SLZ (Fig. 3B; Table 1). Additionally, a significant interaction between season and zone was 259 

found. Compared to spring, biomass was 2.1 times higher in summer. SLZ exhibited 1.6 times 260 

more biomass compared to SSZ in spring and 1.5 times more biomass in summer. For Elymus, 261 

significant differences in biomass were only found between the seasons but not between the 262 

zones (Fig. 3B; Table 1). Elymus biomass was 1.3 times higher in summer compared to spring. 263 

 264 

Stem density 265 

Stem density of Spartina significantly differed both between seasons and zones (Fig. 3C; Table 266 

1). Furthermore, a significant interaction between season and zone was found. Stem density 267 

was 1.7 times higher in summer than in spring. While in spring no difference was detected 268 

between the two zones, in summer stem density was 1.4 times higher in SSZ than in SLZ. Stem 269 

densities in Elymus differed between seasons, but not between zones (Fig. 3C; Table 1). Stem 270 

density in spring was 1.4 times greater than in summer. 271 

Stem length, stem diameter, Young’s Modulus 272 

Spartina and Elymus stems were significantly longer in summer compared to spring in both 273 

zones (Fig. 5; Table 1). Furthermore, Spartina stems were significantly longer in the SLZ than 274 

in the SSZ in either season, whereas for Elymus no spatial differences were detected. Stem 275 

diameters show the same pattern with higher values in summer compared to spring for both 276 

species, and higher values in the landward zone only for Spartina. The least variability between 277 

the seasons and zones was detected for Young’s modulus. Here, only Spartina stems showed 278 

slightly but not significantly higher values in summer compared to spring and in the SLZ 279 
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compared to the SSZ in either season. No differences for Young’s modulus were detected in 280 

Elymus stems. 281 

 282 

Fig. 5 Young’s modulus (A), stem diameter (B) and stem length (C) of Spartina and Elymus in spring 283 

and summer, respectively. Light bars show the zone directed seawards while dark bars show the zone 284 

directed landwards. Each bar represents 20 samples. Presented are mean values ± standard deviations. 285 

Different lowercase letters indicate significant differences among the zones in both seasons. 286 

Interspecific differences have not been assessed 287 

 288 

Discussion 289 

Stem flexibility  290 

Seasonal variability in stem flexibility was detected for both species with significantly higher 291 

values for flexural rigidity during summer. These results indicate the importance of considering 292 
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plant morphology (here diameter) when describing plant stem flexibility. According to the 293 

regression analyses, more than 70% and 80% (R2 values) of the variability in stem flexibility 294 

was explained by the variability in stem diameter of Elymus and Spartina stems, respectively. 295 

The increase of stem diameter by approximately 30% from spring to summer for both species 296 

explains the increase of the flexural rigidity, whereas plant tissue properties (characterized by 297 

the Young’s modulus) did not vary significantly between spring and summer. As flexible stems 298 

avoid high drag forces by reconfiguration and movement with the wave-induced oscillatory 299 

flow (Bouma et al. 2005; Paul et al. 2014), the lower resistance of plant stems to wave forces 300 

in spring should result in a lower wave dissipation capacity of vegetation compared to summer.  301 

The small-scale spatial differences with smaller diameters and hence higher flexibility of 302 

Spartina stems in the SSZ, which stretches 40 m from the seaward marsh edge towards the 303 

SLZ, can be interpreted as a response to physical stress by higher hydrodynamic forcing close 304 

to the seaward marsh edge. Möller and Spencer (2002) found that most wave energy is 305 

attenuated in the first 38 m on a vegetated marsh while Silinski et al. (2018) found high wave 306 

attenuation rates on a 12 m transect and Ysebeart et al. (2011) for a distance up to 50 m. Similar 307 

to our results, Heuner et al. (2015) found a pattern with more flexible plants and lower biomass 308 

amounts at the marsh in the Elbe estuary for Schoenoplectus tabernaemontani. In accordance, 309 

Silinski et al. (2018) found an increase of stiffness in Bolboschoenus maritimus stems from the 310 

marsh edge towards the higher zones of an elevational gradient. 311 

In contrast, Carus et al. (2016) found the opposite pattern for stems of Bolboschoenus 312 

maritimus, a typical species in the pioneer zone of European freshwater and brackish marshes 313 

along shorelines of estuaries where ship and wave induced wave forcing occurs. These findings 314 

suggest that species growing under harsh hydrodynamic conditions may develop different 315 

biomechanical properties to either minimize physical stress (avoidance strategy; i.e. flexible 316 

stems, low flexural rigidity) from waves and currents or to withstand these mechanical forces 317 
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(tolerance strategy; i.e. stiff stems, high flexural rigidity). Our results show an avoidance 318 

strategy of Spartina to increasing hydrodynamic forces and drag forces lower in the elevational 319 

gradient in salt marshes, as individuals in the SSZ were significantly smaller, thinner and more 320 

flexible than in the SLZ in both seasons. These characteristics should minimize the impact of 321 

hydrodynamic forces and the risk of plant breakage. However, it may also be possible that stem 322 

development in the SSZ is inhibited by constant wave action leading to thinner, smaller and 323 

more flexible stems.  324 

Small-scale spatial variability of stem flexibility in Elymus was minor compared to Spartina. 325 

One reason for that may be that Elymus is growing in the high marsh and is exposed to more 326 

stable environmental conditions facing wave forcing only during extreme storm surge events. 327 

Furthermore, inundation frequency and time in the ESZ were similar to those in the ELZ as the 328 

difference in elevation between the two zones was only one centimeter. Therefore, the spatial 329 

signal was comparatively low.  330 

Biomass 331 

For both Spartina and Elymus, seasonal differences with higher biomass in summer than in 332 

spring were found which can be explained with the breakdown of canopies during the winter 333 

season in temperate zones (Bellis and Gaither 1985; Morris and Haskin 1990; Koch et al. 2009). 334 

In Spartina, we found up to two times higher biomass in summer compared to spring. Seasonal 335 

biomass changes in temperate zones have been found to affect wave dissipation in seagrass 336 

beds (Chen et al. 2007; Paul and Amos 2011), brackish marshes (Silinski et al. 2018; Schoutens 337 

et al. 2019) and salt marshes (Möller and Spencer 2002; Möller 2006). Accordingly, seasonal 338 

variability in Spartina biomass, as in our study, can be expected to affect wave dissipation 339 

capacity of the marsh with a higher contribution of vegetation to wave dissipation in summer 340 

than in winter and spring (see Foster-Martinez et al. 2018). Elymus, by contrast, shows minor 341 

although significant seasonal differences in biomass, which suggests a more continuous 342 
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contribution of Elymus biomass to wave dissipation throughout the year. Overall, wave 343 

attenuation and resulting coastal protection should be highest when the biomass of biotic 344 

structures is at its maximum (Coops et al. 1996; Chen et al. 2007; Koch et al. 2009).  345 

 346 

Spatial variability in Spartina biomass between the SSZ and the SLZ shows the same pattern 347 

as for stem flexibility with lower values for the SSZ than the SLZ in both seasons. Coops et al. 348 

(1994) found similar results with lower biomass in an exposed site compared to a sheltered site 349 

for two helophytes. Furthermore, a biomass decrease downwards an elevational gradient was 350 

observed. We assume that higher wave action and higher physiological stress due to salinity 351 

and longer inundation time in the SSZ compared to the SLZ explain the significantly lower 352 

biomass in Spartina (see also Huckle, Potter and Marrs 2000). The lower biomass amounts in 353 

the SSZ zone seem to correlate with a decrease in stem diameter and length accompanied by a 354 

higher flexibility in this zone compared to the SLZ. Stem length of different Spartina 355 

populations were studied previously by Gray and Benham (1990), where plants sampled from 356 

the pioneer populations had significantly smaller inflorescence sizes and vegetative statures in 357 

comparison with plants from higher marsh elevations which is consistent with our results. In 358 

contrast to Spartina, we found no spatial variability in Elymus biomass. This implies a spatially 359 

stable contribution of the Elymus canopy to wave dissipation.  360 

 361 

Stem density 362 

Significant seasonal differences in stem density were found for Spartina and Elymus. Spartina 363 

stem densities were higher in summer than in spring, whereas Elymus showed higher stem 364 

densities in spring compared to summer. The high stem densities in Spartina during summer 365 

correlate with high biomass amounts in summer. This pattern in Spartina biomass and stem 366 

density confirms results of Hill (1984) and Neumeier (2005). Carus et al. (2016) found lower 367 

stem densities at the marsh edge for B. maritimus, which underpins the previously discussed 368 
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strategies of plants in coastal habitats to cope with mechanical stress induced by hydrodynamic 369 

forces. In contrast, high stem densities in Elymus in spring seem to be negatively correlated 370 

with biomass. Similar patterns have been reported by Morris and Haskin (1990) for Spartina 371 

alterniflora. Numerous studies report that variation in plant stem density affects flow velocity 372 

and wave dissipation (Bouma et al. 2005; Widdows et al. 2008; Peralta et al. 2008; Anderson 373 

and Smith 2014). Paul and Amos (2011) found highest wave dissipation in seagrass beds in 374 

summer, when stem density was high. Increasing stem densities in Spartina tussocks with 375 

decreasing elevations, as found in our study, were previously observed for Spartina densiflora 376 

and Spartina anglica (Nieva et al. 2005; Van Hulzen et al. 2007). Variability in stem density 377 

affects hydrodynamic energy within the Spartina canopy (Neumeier and Ciavola 2004; Bouma 378 

et al. 2005). Van Hulzen et al. (2007) suggest that high stem densities at lower elevations may 379 

thus enhance sediment accretion within the canopy. In turn, high accretion rates can enhance 380 

growth of Spartina (Hemminga et al. 1998), but it is still not resolved which factor induces the 381 

increased stem densities at lower elevations (Van Hulzen et al. 2007). 382 

Implications of seasonal and spatial variability in biophysical properties  383 

The data presented here show that biophysical properties of salt-marsh plants may differ 384 

between seasons and change over small spatial scales, which is probably related to the strength 385 

of hydrodynamic forcing, inundation frequency, sedimentation rates and soil properties. Our 386 

results support the assumption of seasonal and spatial non-linearity in the delivery of ecosystem 387 

services such as coastal protection by vegetation (Koch et al. 2009). This finding has to be taken 388 

into account when regarding the coastal protection potential of salt-marsh vegetation. 389 

Furthermore, the data provided can be used to incorporate salt-marsh plants, entire canopies 390 

and plant surrogates more realistically in numerical and physical models describing the 391 

interaction between vegetation and hydrodynamics. Models and flume experiments should 392 

incorporate seasonal variability in plant biophysical properties, especially when simulating 393 

storm surge conditions that occur in the winter season when vegetation is degenerated. Future 394 
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research should provide measurements of biophysical plant properties over the course of the 395 

year to get a better overall picture of the change of these properties. 396 

Furthermore, spatial variability in biophysical properties within the pioneer and low marsh zone 397 

(e.g. lower biomass, lower flexural rigidity but higher stem density in Spartina growing at the 398 

marsh edge compared to Spartina growing more landwards) should be considered and 399 

incorporated in models predicting wave attenuation. High marshes by contrast, show spatially 400 

more homogenous biophysical properties and can therefore be represented as one coherent 401 

zone. When data on stem flexibility are needed, stem diameter can be used as a proxy for 402 

flexibility as bending measurements are often time consuming. Whether this is appropriate for 403 

other species than Spartina and Elymus needs to be tested in further studies. 404 

 405 

Literature 406 

Anderson ME, Smith JM (2014) Wave attenuation by flexible, idealized salt marsh vegetation. 407 

Coast Eng 83:82–92. doi: 10.1016/j.coastaleng.2013.10.004 408 

Bellis VJ, Gaither CA (1985) Seasonality of aboveground and belowground biomass for six 409 

salt marsh plant species. J Elisha Mitchell Sci Soc 101:95–109 410 

Bockelmann AC, Neuhaus R (1999) Competitive exclusion of Elymus athericus from a high-411 

stress habitat in a European salt marsh. J Ecol 87:503–5013. doi: 10.1046/j.1365-412 

2745.1999.00368.x 413 

Bouma TJ, De Vries MB, Herman PMJ (2010) Comparing ecosystem engineering efficiency 414 

of two plant species with contrasting growth strategies. Ecology 91:2696–2704. doi: 415 

10.1890/09-0690.1 416 

Bouma TJ, De Vries MB, Low E, et al (2005) Trade-offs related to ecosystem engineering: A 417 

case study on stiffness of emerging macrophytes. Ecology 86:2187–2199. doi: 418 

10.1890/04-1588 419 



20 
 

Carus J, Paul M, Schröder B (2016) Vegetation as self-adaptive coastal protection: Reduction 420 

of current velocity and morphologic plasticity of a brackish marsh pioneer. Ecol Evol 421 

6:1579–1589. doi: 10.1002/ece3.1904 422 

Chen S-N, Sanford LP, Koch EW, et al (2007) A Nearshore Model to Investigate the Effects of 423 

Seagrass Bed Geometry on Wave Attenuation and Suspended Sediment Transport. 424 

Estuaries and Coasts 30:296–310 425 

Chung C-H (1993) Thirty years of ecological engineering with Spartina plantations in China. 426 

Ecol Eng 2:261–289. doi: 10.1016/0925-8574(93)90019-C 427 

Coops HN, Geilen N, van der Velde G (1994) Distribution and growth of the helophyte species 428 

Phragmites australis and Scirpus lacustris in water depth gradients in relation to wave 429 

exposure. Aquat Bot 48:273–284. doi: 10.1016/0304-3770(94)90020-5 430 

Coops H, Geilen N, Verheij HJ, et al (1996) Interactions between waves, bank erosion and 431 

emergent vegetation: an experimental study in a wave tank. Aquat Bot 53:187–198. doi: 432 

10.1016/0304-3770(96)01027-3 433 

Coops HG, van der Velde G (1996) Effects of waves on helophyte stands: Mechanical 434 

characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat Bot 53:175–435 

185. doi:10.1016/0304-3770(96)01026-1 436 

Feagin RA, Irish JL, Möller I, et al (2011) Short communication: Engineering properties of 437 

wetland plants with application to wave attenuation. Coast Eng 58:251–255. doi: 438 

10.1016/j.coastaleng.2010.10.003 439 

Fonseca MS, Koehl MAR, Kopp BS (2007) Biomechanical factors contributing to self-440 

organization in seagrass landscapes. J Exp Mar Bio Ecol 340:227–246. doi: 441 

10.1016/j.jembe.2006.09.015 442 

Foster-Martinez MR, Lacy JR, Ferner MC, Variano EA (2018) Wave attenuation across a tidal 443 



21 
 

marsh in San Francisco Bay. Coast Eng 136:26-40. doi:10.1016/j.coastaleng.2018.02.001  444 

Gray AJ, Benham PEM (1990) Spartina anglica - a research review 445 

Harder DL, Hurd CL, Speck T (2006) Comparison of mechanical properties of four large, wave-446 

exposed seaweeds. Am J Bot 93:1426–1432. doi: 10.3732/ajb.93.10.1426 447 

Hemminga MA, van Soelen J, Maas YEM (1998) Biomass Production in Pioneer Spartina 448 

anglica Patches: Evidence for the Importance of Seston Particle Deposition. Estuar Coast 449 

Shelf Sci 47:797–805. doi: 10.1006/ecss.1998.0388 450 

Heuner M, Silinski A, Schoelynck J, et al (2015) Ecosystem Engineering by Plants on Wave-451 

Exposed Intertidal Flats Is Governed by Relationships between Effect and Response 452 

Traits. PLoS One 10:e0138086. doi: 10.1371/journal.pone.0138086 453 

Hill MI (1984) Population studies on the Dee estuary. In: Doody, P. (Ed.), Spartina anglica in 454 

Great Britain, report No. 5. Nature Conservancy Council, Peterborough, pp. 53–58. 455 

Huckle JM, Potter JA, Marrs RH (2000) Influence of environmental factors on the growth and 456 

interactions between salt marsh plants: effects of salinity, sediment and waterlogging. J 457 

Ecol 88:492–505. doi: 10.1046/j.1365-2745.2000.00464.x 458 

Koch EW, Barbier EB, Silliman BR, et al (2009) Non-linearity in ecosystem services: temporal 459 

and spatial variability in coastal protection. Front Ecol Environ 7:29–37. doi: 460 

10.1890/080126 461 

Kunz H, Panten A, (1997) Die Köge Nordfrieslands. Nordfriisk Instituut, p. 104. 462 

Luhar M, Nepf HM (2011) Flow-induced reconfiguration of buoyant and flexible aquatic 463 

vegetation. Limnol Oceanogr 56:2003–2017. doi: 10.4319/lo.2011.56.6.2003 464 

McGuinness, KA (2002) Of rowing boats, ocean liners and tests of the ANOVA homogeneity 465 

of variance assumption. Austral Ecology 27:681–688. https://doi.org/10.1046/j.1442-466 



22 
 

9993.2002.01233.x 467 

Mendez FJ, Losada IJ (2004) An empirical model to estimate the propagation of random 468 

breaking and nonbreaking waves over vegetation fields. Coast Eng 51:103–118. doi: 469 

10.1016/j.coastaleng.2003.11.003 470 

Miler O, Albayrak I, Nikora V, O’Hare M (2012) Biomechanical properties of aquatic plants 471 

and their effects on plant–flow interactions in streams and rivers. Aquat Sci 74:31–44. doi: 472 

10.1007/s00027-011-0188-5 473 

Miler O, Albayrak I, Nikora V, O’Hare M (2014) Biomechanical properties and morphological 474 

characteristics of lake and river plants: implications for adaptations to flow conditions. 475 

Aquat Sci 76:465-481. 1–17. doi: 10.1007/s00027-014-0347-6 476 

Möller I (2006) Quantifying saltmarsh vegetation and its effect on wave height dissipation: 477 

Results from a UK East coast saltmarsh. Estuar Coast Shelf Sci 69:337–351. doi: 478 

10.1016/j.ecss.2006.05.003 479 

Möller I, Kudella M, Rupprecht F, et al (2014) Wave attenuation over coastal salt marshes 480 

under storm surge conditions. Nat Geosci 7:727–731. doi: 10.1038/ngeo2251 481 

Möller I, Spencer T (2002) Wave dissipation over macro-tidal saltmarshes: Effects of marsh 482 

edge typology and vegetation change. J Coast Res 36:506–521 483 

Morris JT, Haskin B (1990) A 5-yr Record of Aerial Primary Production and Stand 484 

Characteristics of Spartina alterniflora. Ecology 71:2209–2217 485 

Mueller P, Granse D, Nolte S, et al (2017) Top-down control of carbon sequestration: Grazing 486 

affects microbial structure and function in salt marsh soils: Grazing. Ecol Appl 27:1435–487 

1450. doi: 10.1002/eap.1534 488 

Mueller P, Ladiges N, Jack A, et al (2019) Assessing the long‐term carbon‐sequestration 489 

potential of the semi‐natural salt marshes in the European Wadden Sea. Ecosphere 10(1), 490 



23 
 

e02556. doi: 10.1002/ecs2.2556. 491 

Mullarney JC, Henderson SM (2010) Wave-forced motion of submerged single-stem 492 

vegetation. J Geophys Res Ocean 115:C12061. doi: 10.1029/2010JC006448 493 

Müller F, Struyf E, Hartmann J, et al (2013a) Impact of grazing management on silica export 494 

dynamics of Wadden Sea saltmarshes. Estuar Coast Shelf Sci 127:1–11. doi: 495 

10.1016/j.ecss.2013.03.010 496 

Müller F, Struyf E, Hartmann J, et al (2013b) A Comprehensive Study of Silica Pools and 497 

Fluxes in Wadden Sea Salt Marshes. Estuaries and Coasts 36:1150–1164. doi: 498 

10.1007/s12237-013-9621-4 499 

Narayan S, Beck MW, Reguero BG, et al (2016) The Effectiveness, Costs and Coastal 500 

Protection Benefits of Natural and Nature-Based Defences. PLoS One, 11(5), e0154735. 501 

doi: 10.1371/journal.pone.0154735 502 

Nehring S, Adsersen H (2006) NOBANIS – Invasive Alien Species Fact Sheet -Spartina 503 

anglica-. From Online Database Eur Netw Invasive Alien Species - NOBANIS 504 

www.nobanis.org, Date access 10/01/2015 505 

Nehring S, Hesse K-J (2008) Invasive alien plants in marine protected areas: the Spartina 506 

anglica affair in the European Wadden Sea. Biol Invasions 10:937–950. doi: 507 

10.1007/s10530-008-9244-z 508 

Neumeier U (2005) Quantification of vertical density variations of salt-marsh vegetation. 509 

Estuar Coast Shelf Sci 63:489–496. doi: 10.1016/j.ecss.2004.12.009 510 

Neumeier U, Ciavola P (2004) Flow resistance and associated sedimentary processes in a 511 

Spartina maritima salt-marsh. J Coast Conserv 20:435–447. doi: 10.2112/1551-512 

5036(2004)020[0435:FRAASP]2.0.CO;2 513 

Nieva FJJ, Castellanos EM, Castillo JM, Enrique Figueroa M (2005) Clonal growth and tiller 514 

https://doi.org/10.1371/journal.pone.0154735


24 
 

demography of the invader cordgrass Spartina densiflora Brongn. at two contrasting 515 

habitats in SW European salt marshes. Wetlands 25:122–129. doi: 10.1672/0277-516 

5212(2005)025[0122:CGATDO]2.0.CO;2 517 

Nolte S, Koppenaal EC, Esselink P. et al. (2013a) Measuring sedimentation in tidal marshes: a 518 

review on methods and their applicability in biogeomorphological studies. J Coast 519 

Conserv 17: 301. doi:10.1007/s11852-013-0238-3 520 

Ostendorp W (1995) Estimation of mechanical resistance of lakeside Phragmites stands. Aquat 521 

Bot 51:87–101. doi: 10.1016/0304-3770(95)00470-K 522 

Patterson MR, Harwell MC, Orth LM, Orth RJ (2001) Biomechanical properties of the 523 

reproductive shoots of eelgrass. Aquat Bot 69:27–40 524 

Paul M, Amos CL (2011) Spatial and seasonal variation in wave attenuation over Zostera noltii. 525 

J Geophys Res 116:C08019. doi: 10.1029/2010JC006797 526 

Paul M, Henry P-YT, Thomas RE (2014) Geometrical and mechanical properties of four 527 

species of northern European brown macroalgae. Coast Eng 84:73–80. doi: 528 

10.1016/j.coastaleng.2013.11.007 529 

Paul M, Rupprecht F, Möller I, et al (2016) Plant stiffness and biomass as drivers for drag forces 530 

under extreme wave loading: A flume study on mimics. Coast Eng 117:70–78. doi: 531 

10.1016/j.coastaleng.2016.07.004 532 

Peralta G, van Duren LA, Morris EP, Bouma TJ (2008) Consequences of shoot density and 533 

stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a 534 

hydrodynamic flume study. Mar Ecol Prog Ser 368:103–115. doi: 10.3354/meps07574 535 

Petersen J, Kers B, Stock M (2013) TMAP – typology of Coastal Vegetation in the Wadden 536 

Sea Area. CommonWadden Sea Secretariat,Wilhelmshaven, DE. 537 



25 
 

Puijalon S, Bouma TJ, Douady CJ, et al (2011) Plant resistance to mechanical stress: Evidence 538 

of an avoidance-tolerance trade-off. New Phytol 191:1141–1149. doi: 10.1111/j.1469-539 

8137.2011.03763.x 540 

Rupprecht F, Möller I, Evans B, et al (2015a) Biophysical properties of salt marsh canopies — 541 

Quantifying plant stem flexibility and above ground biomass. Coast Eng 100:48–57. doi: 542 

10.1016/j.coastaleng.2015.03.009 543 

Rupprecht F, Möller I, Paul M, et al (2017) Vegetation-wave interactions in salt marshes under 544 

storm surge conditions. Ecol Eng 100:301–315. doi: 10.1016/j.ecoleng.2016.12.030 545 

Rupprecht F, Wanner A, Stock M, Jensen K (2015b) Succession in salt marshes - large-scale 546 

and long-term patterns after abandonment of grazing and drainage. Appl Veg Sci 18:86–547 

98. doi: 10.1111/avsc.12126 548 

Schoutens K, Heuner M, Minden V, et al (2019) How effective are tidal marshes as nature‐549 

based shoreline protection throughout seasons? Limnol Oceanogr 1–13. doi: 550 

10.1002/lno.11149 551 

Silinski A, Heuner M, Schoelynck J, et al (2015) Effects of Wind Waves versus Ship Waves 552 

on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus. 553 

PLoS One 10:e0118687. doi: 10.1371/journal.pone.0118687 554 

Silinski A, Schoutens K, Puijalon S, et al (2018) Coping with waves: Plasticity in tidal marsh 555 

plants as self-adapting coastal ecosystem engineers. Limnol Oceanogr 63:799–815. doi: 556 

10.1002/lno.10671 557 

Smith JM, Bryant MA, Wamsley T V (2016) Wetland buffers : numerical modeling of wave 558 

dissipation by vegetation. 854:847–854. doi: 10.1002/esp.3904 559 

Stewart HL (2006) Hydrodynamic consequences of flexural stiffness and buoyancy for 560 

seaweeds: a study using physical models. J Exp Biol 209:2170–2181. doi: 561 



26 
 

10.1242/jeb.02254 562 

Sutton-Grier AE, Gittman RK, Arkema KK, et al (2018) Investing in Natural and Nature-Based 563 

Infrastructure: Building Better Along Our Coasts. Sustainability 10(2), 523. doi: 564 

10.3390/su10020523 565 

Tempest JA., Möller I, Spencer T (2015) A review of plant-flow interactions on salt marshes: 566 

the importance of vegetation structure and plant mechanical characteristics: Salt marsh 567 

plant-flow interactions. Wiley Interdisciplinary Reviews: Water 2(6):669-681. 568 

doi:/10.1002/wat2.1103 569 

Valéry L, Bouchard V, Lefeuvre J-C (2004) Impact of the invasive native species Elymus 570 

athericus on carbon pools in a salt marsh. Wetlands 24:268–276 571 

van der Meer JW, (2002) Technisch Rapport Golfoploop en Golfoverslag bij Dijken. Delft, The 572 

Netherlands: Technische Adviescommissie voor de Waterkeringen, 44p. 573 

van Hulzen JB, Van Soelen J, Bouma TJ (2007) Morphological Variation and Habitat 574 

Modification are Strongly Correlated for the Autogenic Ecosystem Engineer Spartina 575 

anglica (Common Cordgrass). Estuaries and Coasts 30:3–11. doi: 10.1007/BF02782962 576 

van Loon-Steensma JM Van, Hu Z, Slim PA (2016) Modelled Impact of Vegetation 577 

Heterogeneity and Salt- Marsh Zonation on Wave Damping. Journal of Coastal Research 578 

32: 241–252. doi: 10.2112/JCOASTRES-D-15-00095.1 579 

Veeneklaas RM, Dijkema KS, Hecker N, Bakker JP (2013) Spatio-temporal dynamics of the 580 

invasive plant species Elytrigia atherica on natural salt marshes. Appl Veg Sci 16:205–581 

216. doi: 10.1111/j.1654-109X.2012.01228.x 582 

Widdows J, Pope ND, Brinsley MD (2008) Effect of Spartina anglica stems on near-bed 583 

hydrodynamics, sediment erodability and morphological changes on an intertidal mudflat. 584 

Mar Ecol Prog Ser 362:45–57. doi: 10.3354/meps07448 585 

https://doi.org/10.3390/su10020523
https://doi.org/10.3390/su10020523


27 
 

Ysebaert T, Yang SL, Zhang L, et al (2011) Wave attenuation by two contrasting ecosystem 586 

engineering salt marsh macrophytes in the intertidal pioneer zone. Wetlands 31:1043–587 

1054. doi: 10.1007/s13157-011-0240-1 588 


