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Abstract. By computing reducibility points of parabolically induced representa-

tions, we construct, to within at most two unramified quadratic characters, the Lang-

lands parameter of an arbitrary depth zero irreducible cuspidal representation π of
a classical group (which may be not-quasi-split) over a nonarchimedean local field of

odd residual characteristic. From this, we can explicitly describe all the irreducible

cuspidal representations in the union of one, two, or four L-packets, containing π.
These results generalize the work of DeBacker–Reeder (in the case of classical groups)

from regular to arbitrary tame Langlands parameters.

1. Introduction

The representation theory of p-adic groups has largely been motivated, over the last
half-century, by the Langlands conjectures, seeking an understanding of the absolute
Galois (or Weil) groups of local and global fields. Many parts of the local conjectures
are now theorems, notably for representations of GLn [20, 21], of SLn [17, 22] and, more
recently, of classical groups [2, 44, 30].

At the same time as having local Langlands correspondences, one would like to be able
to use them to translate fine arithmetical data between representations of p-adic groups
and representations of the local Weil group. To this end, one seeks to make the corre-
spondence explicit/effective. For GLn, this has been the subject of a series of papers by
Bushnell–Henniart [7, 8, 9, 11]; for other groups, work has concentrated on regular depth
zero irreducible cuspidal representations [14, 25, 27] and epipelagic irreducible cuspidal
representations [47, 19, 26, 48, 28, 10], with the most general work by Kaletha [29] on
regular cuspidal representations.

In this spirit, we look here at depth zero irreducible cuspidal representations of a
classical group G – by which we mean a symplectic, (special) orthogonal, or unitary
group, which may be non-quasi-split – over a nonarchimedean locally compact local field
of odd residual characteristic (this is the only restriction on the field). When these
representations are also regular (more precisely, the corresponding Langlands parameter
is tame regular semisimple in general position), these have already been considered, for
more general groups but with some conditions on the field, by DeBacker–Reeder [14]
and Kaletha [25, 27]; however, our approach here is different, and allows us to treat
all depth zero irreducible cuspidal representations. Thus our work, and methods, are
complementary to those of [29].

Given a Langlands parameter for G, the Langlands correspondence should determine
an L-packet of irreducible smooth complex representations of G. These representations
should share many properties; for example, they should have all the same L-functions,
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at least where these have been defined. Since, by the results of Shahidi [49], poles
of L-functions correspond to reducibility points of parabolic induction, we detect repre-
sentations in the same L-packet by computing these reducibility points, and this does
not require, for example, genericity of the representation.

For now, we are not able completely to compute reducibility points, but only up to
twist by a certain unramified character (see below for more details). However, an even-
dimensional irreducible tame representation of the Weil group is symplectic if and only
if this unramified twist is orthogonal; thus, using the Langlands correspondence, for
example for symplectic groups, we can see which of the twists must occur, and the only
ambiguity is in the reducibility points for quadratic characters of GL1. In any case, we
are able to recover the irreducible cuspidal representations in the union of either one,
two or four L-packets.

This paper can be regarded as a first step in a programme to treat all discrete series
representations of classical groups – see [6] for the case of arbitrary irreducible cuspidal
representations of symplectic groups. Depth zero is the base case, since general irreducible
cuspidal representations are built from a “wild part” and a depth zero part (see [52]). In
the depth zero case, we avoid the complication of wild ramification; on the other hand,
the geometric complications arise essentially from the depth zero part so that the results
and techniques here already resolve many difficulties for the general case.

Now let us state our results more carefully; although we have interpreted them above
via the Langlands correspondence, they are in fact results on the automorphic side.
Let F{Fo be an extension of degree at most two of nonarchimedean local fields of odd
residual characteristic, and let G be (the group of rational points of) a symplectic, special
orthogonal or unitary group over Fo, the connected component of the group of isometries
of an F{Fo-hermitian space; this group may be non-quasi-split. We also write WF for

the Weil group of F and pG for the complex dual group of G, acting naturally on a vector
space of dimension N

pG.
In their classification of discrete series representations of (quasi-split) p-adic classical

groups [43, 38, 40], Mœglin–Tadić use the notion of a Jordan set attached to an irreducible
discrete series representation of G. For an irreducible cuspidal representation π of G,
this can be described via the reducibility set Redpπq as follows.

We denote by AσpFq the set of (equivalence classes of) self-dual irreducible cuspidal
representations of some GLnpFq (see Section 3). For ρ P AσpFq there is at most one
real number s “ sπpρq ě 0 such that the normalized parabolically induced representa-
tion Ind ρ|detp¨q|sF b π is reducible, where | ¨ |F is the normalized absolute value on F;
when there is no such real number (which can happen only for even-dimensional special
orthogonal groups and ρ a quadratic character of GL1pFq), we set sπpρq “ 0. Then

Redpπq “ tpρ,mq : ρ P AσpFq, m P N with 2sπpρq “ m` 1u .

Mœglin proves in [39] that, again for π irreducible cuspidal, the Jordan set is

Jordpπq “ tpρ,mq : ρ P AσpFq, m P N with 2sπpρq ´ pm` 1q P 2Zě0u

“ tpρ,mq : pρ,mρq P Redpπq, m P N and mρ ´m P 2Zě0u ,(1.1)

so that Redpπq is the set of maximal elements of Jordpπq.
It is expected (and in at least when G is quasi-split, known – see, for example, [42])

that the Jordan set should precisely predict the Langlands parameter ϕ : WFˆSL2pCq Ñ
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pG¸WF whose L-packet Πϕ contains π, by

ϕ “
à

pρ,mqPJordpπq

ϕρ b stm,

where ϕρ is the (irreducible) representation of the Weil group WF corresponding to ρ via
the Langlands correspondence for general linear groups, and stm is the m-dimensional
irreducible representation of SL2pCq. In particular, writing nρ for the unique natural
number such that ρ is a representation of GLnρpFq, we should have

(1.2)
ÿ

pρ,mqPJordpπq

mnρ “ N
pG.

For a fixed ρ, the integer
ÿ

pρ,mqPJordpπq

m

is the multiplicity of ρ (or of ϕρ) in ϕ|WF . Since, for any integer m1 ě ´1, we have

ÿ

0ďmďm1,
m”m1 pmod 2q

m “

Z

´

m1`1
2

¯2
^

,

where txu denotes the greatest integer not exceeding x, it follows from (1.1) that the
equality (1.2) is equivalent to

(1.3)
ÿ

ρPAσpFq

Y

psπpρqq
2
]

nρ “ N
pG.

Note that almost all terms in this sum are zero since sρpπq ă 1 for all but finitely
many ρ P AσpFq.

Suppose now that the representation π is of depth zero; equivalently, the Langlands
parameter is tame (i.e. trivial on restriction to the wild inertia subgroup of WF). For
clarity of exposition, we specialize temporarily to the case of a symplectic group G, in

which case pG is a special orthogonal group with N
pG odd. On the other hand, by a result

of Blondel [3], there are self-dual irreducible cuspidal representations of GLnpFq only
for n even or n “ 1; in the latter case, we get the pair of unramified characters of order
dividing two, and the pair of (tamely) ramified quadratic characters. Since N

pG is odd,
equation (1.2) implies that there is exactly one pair of characters (either the unramified
pair or the ramified pair) for which the multiplicities of the two characters in ϕ|WF

have
the same parity; we denote by ϕ1 the Langlands parameter obtained from ϕ by exchanging
the multiplicities of the two characters in this pair. (In particular, we have ϕ1 “ ϕ when
the multiplicities are equal.) In this paper, we do the following;

(i) Given a tame Langlands parameter ϕ for a symplectic group as above, we give
an explicit algorithm to describe the cuspidal representations in the union of L-
packets Πϕ YΠϕ1 .

(ii) Conversely, given a depth-zero cuspidal irreducible representation π of a sym-
plectic group as above, there we give an explicit description of the pair tϕ,ϕ1u
of tame Langlands parameters, such that π P Πϕ YΠϕ1 .

We remark that, in the situation of regular depth zero irreducible cuspidal represen-
tations, the multiplicities of the characters are all at most one, so that ϕ1 “ ϕ; thus we
recover the description of the representations in an L-packet consisting solely of cuspidal
representations from [14] in this case.
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We return to the case of depth zero representations of a general classical group G and
describe the result here, which is a reinterpretation of the theorem above in terms of the
set Redpπq. More precisely, denote by rρs the inertial equivalence class of ρ P AσpFq, that
is, the set of unramified twists of ρ; note that rρs X AσpFq “ tρ, ρ1u consists of exactly
two (inequivalent) representations. We have ρ1 “ ρχ, for χ an unramified character
with ρχ2 “ ρ; since ρ has depth zero, the character χ has order 2nρ.

Here, we compute the inertial reducibility multiset

IRedpπq “ ttprρs,mq : pρ,mq P Redpπquu.

This is often in fact a set: since π has depth zero, the only inertial classes rρs which can
occur with multiplicity are the quadratic characters of GL1pFq. Indeed, for ρ P AσpFq
of depth zero with nρ ą 1 and ρ1 its self-dual unramified twist, the exterior square L-
function of exactly one of ρ, ρ1 has a pole at s “ 0, while for the other representation it
is the symmetric square L-function which has a pole (the same comments apply to the
Asai and twisted Asai L-functions when F{Fo is quadratic); thus the parity of m, such
that pρ,mq P Redpπq should be independent of π (i.e. depend only on ρ), and the parity
will be the opposite of that for ρ1. Moreover, this means that by computing IRedpπq, we
in fact know all elements of Redpπq apart from those associated to characters of GL1pFq
of order at most two, where an ambiguity may remain.

The results we prove here can be described by the following: Let π be a depth zero
irreducible cuspidal representation of G.

(i) We have

(1.4)
ÿ

ρPAσpFq

Y

psπpρqq
2
]

nρ ě N
pG.

(See also Section 8 for a discussion of the opposite inequality, which is already
known in many cases by results of Mœglin.)

(ii) We give an explicit description of the multiset IRedpπq in terms of the local data
defining π as a compactly induced representation.

(iii) We give an explicit description of the set of irreducible cuspidal representa-
tions π1 of G with IRedpπq “ IRedpπ1q in terms of the local data defining π.
Moreover, the number of such representations is the expected number in one,
two or four L-packets, this number depending again on the local data.

For a discussion of the expected number of irreducible cuspidal representations in an L-
packet, see the beginning of Section 9. One also needs to take care with this in the case
of even orthogonal groups (see Example 9.6).

Structure of the algorithm. We now give a description of the algorithm alluded to
above. Let G be a classical group, acting naturally on a nondegenerateN -dimensional F{Fo-
ε-hermitian space V. The standard maximal parahoric subgroups Jo

N1,N2
of G are in-

dexed by non-negative integers N1, N2 with N1 ` N2 “ N , and have reductive quo-

tient Gp1qN1
ˆ Gp2qN2

a product of two classical groups over finite fields (see Section 2).
Then, from results of Morris, any irreducible cuspidal depth zero representation of G
has the form π “ c-IndG

Jπ λπ, with Jπ the normalizer of a (unique) standard maxi-
mal parahoric subgroup Jo

N1,N2
and λπ an irreducible representation such that λπ|Jo

N1,N2

contains an irreducible representation λoπ inflated from an irreducible cuspidal repre-

sentation τπ » τ
p1q
π b τ

p2q
π of the reductive quotient Gp1qN1

ˆ Gp2qN2
(see Section 3). From

Lusztig’s Jordan decomposition, for i “ 1, 2, there is a unique conjugacy class psiq in
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the dual group Gpiq,˚Ni
such that τ

piq
π is in the Lusztig series E pGpiqNi , siq, and we denote the

characteristic polynomial of si by
ź

P

P pXqa
piq
P ,

where the product runs over irreducible kF{ko-self-dual monic polynomials in kFrXs (see

Section 7). Results of Lusztig imply that there are integers m
piq
P ě 0 such that:

‚ if kF ‰ ko or P pXq ‰ pX ˘ 1q then a
piq
P “ 1

2m
piq
P pm

piq
P ` 1q;

‚ if kF “ ko and P pXq “ pX˘1q then we write m
piq
` “ m

piq
pX´1q and m

piq
´ “ m

piq
pX`1q,

and these satisfy additional conditions below in (7.2).

Now, for each irreducible kF{ko-self-dual monic polynomial P of degree nP in kFrXs,
there is a unique irreducible cuspidal representation τP of GLnP pkFq which lies in the
Lusztig series E pGLnP pkFq, sP q, where sP has characteristic polynomial P . Inflating
this to an irreducible representation λP of JP “ GLnP poFq, extending trivially on a
uniformizer and inducing, we obtain an irreducible self-dual cuspidal representation ρP
of GLnP pFq. Then, when nP ą 1, we have

prρP s,m
p1q
P `m

p2q
P q, prρP s, |m

p1q
P ´m

p2q
P | ´ 1q P IRedpπq,

where we understand that terms prρP s,mq are ignored when the multiplicity m is non-
positive. For P pXq “ X˘1, the multiplicities depend on the type of group (see Section 8);
for example in the case of symplectic groups we have the following elements of IRedpπq:

pr1s, 2pm
p1q
` `m

p2q
` q ` 1q, pr1s, 2|m

p1q
` ´m

p2q
` | ´ 1q,

prω1s, 2pm
p1q
´ `m

p2q
´ q ´ 1q, prω1s, 2|m

p1q
´ `m

p2q
´ | ´ 1q,

where 1 is the trivial character and ω1 is a ramified quadratic character of GL1pFq, and
again we ignore terms with non-positive multiplicity.

Now, to describe the other cuspidal representations with the same inertial reducibility
set, we set

Qpπq “
!

irreducible self-dual monic P P kFrXs : m
p1q
P pπq ‰ m

p2q
P pπq

)

and put qpπq :“ #Qpπq. The irreducible cuspidals π1 with IRedpπ1q “ IRedpπq are
parametrized by certain maps ε : Qpπq Ñ t1, 2u, with conditions depending on the
type of group. (See Section 9 for the detail of these conditions; there are, for example,
no conditions in the symplectic case.) Given a suitable map ε, we extend it to all
irreducible kF{ko-self-dual monic polynomials by setting εpP q “ 1 for P R Qpπq. Then

we can find, for i “ 1, 2, a semisimple element s
piq
ε in a suitable classical group with

characteristic polynomial
ź

P

P pXqa
piq
P pεq,

where the integers a
piq
P pεq are related to integers m

piq
P pεq as above, with

m
piq
P pεq “ m

pi¨εpP qq
P ,

where the index is understood modulo 3. Correspondingly, we have irreducible cuspidal

representations τε “ τ
p1q
ε b τ

p2q
ε of the reductive quotient Gp1qN 11 ˆ Gp2qN 12 of a standard

parahoric; note that, for each ε, there may be several representations τε, depending on the
number of cuspidal representations in each Lusztig series, but this number is independent
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of the choice of ε. Inflating each τε to the maximal parahoric subgroup JN 11,N 12 , extending
to its normalizer and inducing to G, we get an irreducible cuspidal representation, and
this gives all the irreducible cuspidal representations π1 with IRedpπ1q “ IRedpπq.

Structure of the proof. Finally, we describe the ideas behind the proof. The com-
putation of reducibility points required is achieved using Bushnell–Kutzko’s theory of
covers [12], together with results of Blondel [4], which translate the problem to the com-
putation of parameters in the Hecke algebra of a cover (see Sections 5–6).

Given π, ρP as in the description of the algorithm, we can consider ρP b π as a
cuspidal representation of a Levi subgroup GLnP pFqˆG of a larger classical group. The
type pJP ˆ Jπ, λP b λπq admits a cover pJ, λq constructed by Morris (see also [37]) and
the corresponding spherical Hecke algebra is an algebra on an infinite dihedral group,
generated by two elements satisfying quadratic relations. The recipe of Blondel allows
one to translate the knowledge of these quadratic relations into the pair of reducibility
points sπpρP q, sπpρ

1
P q, where ρ1P is the self-dual unramified twist of ρP inequivalent to ρP .

To compute these quadratic relations, the results of [37] first reduce to the calcula-

tion of quadratic relations in finite Hecke algebras for τP b τ
piq
π , for i “ 1, 2, which are

described by Howlett–Lehrer [23]. To compute these values, we use results of Lusztig
on representations of finite reductive groups (recalled in Section 7), which reduce the
computation to unipotent cuspidal representations, in which case Lusztig has performed
the computation [35]. Note, however, that care must be taken since the finite reductive
groups which occur do not, in general, have connected centre. There is particular dif-
ficulty for (even-dimensional) special orthogonal groups and the results we obtain here
may be of independent interest; in particular, we compute when an irreducible cuspidal
representation of an even-dimensional special orthogonal group over a finite field extends
to the full orthogonal group (see Proposition 7.10), generalizing results of Lusztig and
Waldspurger.

Having computed these parameters, we can then put all the ingredients together to
prove the main results in Sections 8 and 9; the latter includes some illustrative examples.
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and EP/H00534X/1. He would like to thank Meinolf Geck, and particularly Marc Ca-
banes for his patience in explaining Deligne–Lusztig theory – any remaining mistakes are
entirely the authors’. He would also like to thank Corinne Blondel and Guy Henniart for
their patience in waiting for this paper to get written up. We also thank the referee for
their careful reading of the paper and very useful comments.

2. Notation and background

We fix some notation for the rest of the paper (with the exception of Section 7, whose
notation is independent). Let Fo be a locally compact nonarchimedean local field of odd
residual characteristic p, and let F{Fo be an extension of degree at most 2. We write σ :
λ ÞÑ λ for the generator of the Galois group of F{Fo. For E any field containing Fo, we
write oE for its ring of integers, pE for its maximal ideal, and kE “ oE{pE for its residue
field, of cardinality qE; in particular we abbreviate q “ qF. We also abbreviate oo “ oFo

etc. We also fix a uniformizer $F of F such that $F “ ´$F if F {Fo is quadratic ramified,
and $F “ $F otherwise, and write NF{Fo

: Fˆ Ñ Fˆo for the norm map, which is given

by λ ÞÑ λλ if rF : Fos “ 2.
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We fix a sign ε “ ˘1, and let pV, hq be a nondegenerate F{Fo-ε-hermitian space of
Witt index N and dimension 2N `N an; thus V is an F-vector space, the form h satisfies

hpλv, µwq “ λµhpv, wq “ ελµhpw, vq, for v, w P V, λ, µ P F,

and we have a Witt decomposition

V “ V´ ‘Van ‘V`,

with dimF V˘ “ N and dimF Van “ N an, such that the restriction of h to V˘ is totally
isotropic, while its restriction han to Van is anisotropic. We denote by H “ H´ ‘H` the
hyperbolic plane; that is, H˘ is a 1-dimensional F-vector space with basis e˘ and H is
equipped with the form hH given by

hHpλ´e´ ` λ`e`, µ´e´ ` µ`e`q “ λ´µ` ` ελ`µ´, for λ˘, µ˘ P F.

Thus the restriction of h to V´ ‘ V` is (isometric to) an orthogonal direct sum of N
copies of H. We choose a Witt basis for V, that is: e`1 , . . . , e

`
N a basis for V`, with

dual basis e´1 , . . . , e
´
N for V´, and ean1 , . . . , e

an
Nan a basis Van with respect to which han has

diagonal Gram matrix. We order this basis

e´N , . . . , e
´
1 , e

an
1 , . . . , e

an
Nan , e`1 , . . . , e

`
N .

For n ě 0, we denote by nH the orthogonal direct sum of n copies of H, and put

Vn “ V ‘ nH

with the form hn “ h ‘ hH ‘ ¨ ¨ ¨ ‘ hH, so that the decomposition above is orthogonal
and we have a Witt decomposition

Vn “ V´n ‘Van ‘V`n , with V˘n “ V˘ ‘ nH˘.

Thus pVn : n ě 0q is a Witt tower over V0 “ V. Writing e˘N`i for the image in Vn of e˘
in the ith copy of H, the space Vn has the ordered Witt basis

e´N`n, . . . , e
´
1 , e

an
1 , . . . , e

an
Nan , e`1 , . . . , e

`
N`n.

For n ě 0, we put G`n “ UpVnq, the group of Fo-rational points of the reductive
algebraic group over Fo determined by pVn, hnq, so that

G`n “ tg P AutFpVnq : hnpgv, gwq “ hnpv, wq for all v, w, P Vu;

thus G`n is (the group of points of) a unitary, symplectic or (full) orthogonal group. We
also put Gn “ UpVnq

o, the group of Fo-rational points of the connected component, so
that

Gn “ tg P G`n : NF{Fo
detFpgq “ 1u;

thus Gn “ G`n unless G`n is an orthogonal group (so F “ Fo and ε “ 1), in which
case Gn is the special orthogonal group, of index 2 in G`n . We will abbreviate G “ G0

and G` “ G`0 .
The stabilizer in Gn of the decomposition

Vn “ nH´ ‘V ‘ nH`

is a Levi subgroup Mn of Gn, which is standard with respect to the chosen Witt basis,
and we have an isomorphism Mn » GLnpFq ˆ G given by g ÞÑ pg|nH´ , g|Vq; moreover,
the stabilizer of the subspace nH´ is a standard parabolic subgroup Pn of Gn, with Levi
component Mn. Thus, writing elements of Gn as matrices with respect to the Witt basis,
the group Pn is block upper triangular and Mn is block diagonal.
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We end this section with a description of the maximal parahoric subgroups of G and
of their reductive quotients (see also [45]). For L an oF-lattice in V, we denote by L#

the dual lattice

L# “ tv P L : hpv,Lq Ď pFu.

We say that L is almost self-dual if

L Ě L# Ě pFL;

in that case, the stabilizer J “ JL in G of L is a maximal compact subgroup of G,
and every maximal compact subgroup arises in this way for a unique self-dual lat-
tice L. We write J1 for the pro-unipotent radical of J, that is the subgroup consisting of
those elements g which induce the identity map on the kF-vector spaces Vp1q :“ L{L#

and Vp2q :“ L#{pFL.

The form h induces nondegenerate kF{ko-forms on Vp1q and Vp2q by
$

&

%

hVpv ` L#, w ` L#q :“ hpv, wq ` pF, for v, w P L,

h
V

#pv1 ` pFL, w1 ` pFLq :“ $´1
F hpv1, w1q ` pF , for v1, w1 P L#.

The form hVp1q is ε-hermitian, while the form hVp2q is p´εq-hermitian if F{Fo is quadratic

ramified, and ε-hermitian otherwise, by our choice of uniformizer. Thus we get an induced
map

J Ñ UpVp1qq ˆUpVp2qq,

with kernel J1, and hence the quotient G “ GL “ J{J1 is naturally a subgroup of the
finite reductive group UpVp1qq ˆUpVp2qq. In fact, G identifies with the subgroup

 

pg1, g2q P UpVp1qq ˆUpVp2qq : NkF{kopdetkFpg1qdetkFpg2qq “ 1
(

,

which has connected component Go “ UpVp1qq
o ˆ UpVp2qq

o. We denote by Jo “ Jo
L the

inverse image in J of Go; this is a parahoric subgroup of G and J is its normalizer in G.
It is not always a maximal parahoric subgroup of G (it is so if and only if neither fac-
tor UpVpiqq

o is a two-dimensional special orthogonal group) but every maximal parahoric
subgroup does arise in this way. If either F{Fo is quadratic ramified and the orthogonal
space among Vp1q,Vp2q is non-zero, or F “ Fo, ε “ 1 and both Vp1q,Vp2q are non-zero,
then Jo has index 2 in J; otherwise we have J “ Jo.

Restricting first to the case of the hermitian space pVan, hanq, there is a unique almost
self-dual lattice Lan in Van, and the corresponding group Gan “ UpVanqo is compact
and normalizes the unique (maximal) parahoric subgroup Jo

an “ Jo
Lan

, with connected
component Go

an. We set

V
an
p1q “ Lan{L

#
an, V

an
p2q “ L#

an{pFLan,

and N an
i “ dimkF V

an
piq, so that N an “ N an

1 `N
an
2 . Then we have the following possibilities

for Go
an “ UpV

an
p1qq

oˆUpV
an
p2qq

o, where we write SOpM1,M2, kFq for the special orthogonal
group with form of Witt index M2 and anisotropic part of dimension M1 ´M2 ď 2:

‚ If F “ Fo and ε “ ´1 then N an “ 0 so Go
an is trivial.

‚ If F “ Fo and ε “ 1 then Go
an » SOpN an

1 , 0, kFq ˆ SOpN an
2 , 0, kFq, with N an

i ď 2.
‚ If F{Fo is unramified quadratic, then Go

an » UpN an
1 , kF{kFoq ˆ UpN an

2 , kF{kFoq,
the product of two unitary groups with N an

i ď 1.
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‚ If F{Fo is ramified quadratic then

Go
an »

#

SOpN an
1 , 0, kFq if ε “ `1,

SOpN an
2 , 0, kFq if ε “ ´1,

with N an
i ď 2 and only one N an

i non-zero.

Returning to the general case of the space pV, hq, the standard almost self-dual lattices
are those of the following form: for 0 ď N1, N2 with N1 `N2 “ N , set

LN1,N2
:“ oFe´N ‘ ¨ ¨ ¨ ‘ oFe´1 ‘ Lan ‘ oFe`1 ‘ ¨ ¨ ¨ ‘ oFe`N1

‘ pFe`N1`1 ‘ ¨ ¨ ¨ ‘ pFe`N ,

where Lan is the unique almost self-dual lattice in Van. We write JN1,N2
for the stabilizer

of LN1,N2
and Jo

N1,N2
for the corresponding parahoric subgroup. Every almost self-dual

lattice has the form gLN1,N2
, for some g P G and a unique standard lattice LN1,N2

; thus
every maximal compact (respectively, maximal parahoric) subgroup is conjugate to a
unique standard one JN1,N2

(respectively, Jo
N1,N2

). The choice of Witt basis and the

forms on Vp1q,Vp2q then give us the following identifications for the connected reductive

quotients Go
N1,N2

“ Jo
N1,N2

{J1
N1,N2

:

‚ If F “ Fo and ε “ ´1 then

Go
N1,N2

» Spp2N1, kFq ˆ Spp2N2, kFq.

‚ If F “ Fo and ε “ 1 then

Go
N1,N2

» SOpN1 `N
an
1 , N1, kFq ˆ SOpN2 `N

an
2 , N2, kFq.

‚ If F{Fo is quadratic unramified then

Go
N1,N2

» Up2N1 `N
an
1 , kF{koq ˆUp2N2 `N

an
2 , kF{koq.

‚ If F{Fo is quadratic ramified then

Go
N1,N2

»

#

SOpN1 `N
an
1 , N1, kFq ˆ Spp2N2, kFq if ε “ `1,

Spp2N1, kFq ˆ SOpN2 `N
an
2 , N2, kFq if ε “ ´1.

Writing H for hyperbolic space over kF, we can unify these by writing

Go
N1,N2

» Gp1qN1
ˆ Gp2qN2

,

with GpiqNi “ UpNiH‘V
an
piqq

o, for i “ 1, 2.
We note that Jo

N1,N2
is a maximal parahoric subgroup except where one of the factors

here is SOp1, 1, kFq but G is not itself a 2-dimensional special orthogonal group; that is,
in the following cases:

‚ F “ Fo, ε “ 1, pN,N anq ‰ p1, 0q, with pNi, N
an
i q “ p1, 0q, for i “ 1 or 2;

‚ F{Fo is quadratic ramified, N an “ 0 and pε,N1q “ p1, 1q or pε,N2q “ p´1, 1q.

3. Depth zero cuspidal representations

In this section, we recall the classification of the depth zero irreducible cuspidal rep-
resentations of GLnpFq and of the classical group G, beginning with the former.

We write AnpFq for the set of equivalence classes of irreducible cuspidal representations
of GLnpFq and put ApFq “

Ť

ně1 AnpFq. We will abuse notation by writing ρ P ApFq
to mean ρ is an irreducible cuspidal representation of some GLnpFq, where n “ nρ is of
course uniquely determined by ρ. For ρ P AnpFq, we denote by ρσ the representation

ρσpgq “ ρpσpg´1qTq, for g P GLnpFq,
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where σpgq denotes the matrix obtained by applying the generator σ of GalpF{Foq to
each entry, and gT denotes the transpose matrix. We say that ρ is self-dual if ρσ »
ρ, and write Aσ

npFq for the set of equivalence classes of self-dual irreducible cuspidal
representations of GLnpFq, and AσpFq “

Ť

ně1 Aσ
npFq for the set of equivalence classes

of self-dual representations in ApFq.
We do not recall here the general notion of depth, only that a representation ρ P ApFq

is said to be of depth zero if it has fixed vectors under the pro-unipotent radical of
the maximal parahoric subgroup GLnρpoFq of GLnρpFq. We denote by Ar0spFq the set
of equivalence classes of depth zero representations in ApFq, and by Aσ

r0spFq the set of

equivalence classes of self-dual depth zero representations in ApFq.
Any depth zero representation ρ P AnpFq can be written

ρ “ c-Ind
GLnpFq
Jρ

Λρ,

where Jρ “ FˆGLnpoFq is the normalizer of the maximal parahoric subgroup Jρ “
GLnpoFq of GLnpFq, and Λρ is an irreducible representation of Jρ whose restriction λρ “
Λρ|Jρ is the inflation of an irreducible cuspidal representation τρ of the reductive quo-

tient Jρ{J
1
ρ » GLnpkFq. Moreover, the (equivalence class of the) representation τ “ τρ

is uniquely determined by ρ. Further, ρ is self-dual if and only if τ is self-dual; that is,
denoting again by σ the generator of GalpkF{koq and by τσ the representation τσpgq “
τρpσpg

´1qTq, for g P GLnpkFq, we have τσ » τ .
The (equivalence classes of) irreducible cuspidal representations τ of GLnpkFq were

first classified by Green [18], and are parametrized by regular characters of the multi-
plicative group of the degree n extension of kF, or, equivalently (after making choices),
by monic irreducible degree n polynomials P “ Pτ P kFrXs with P p0q ‰ 0. Writing σpP q
for the polynomial obtained by applying σ to the coefficients of P , the representation τσ

then corresponds to the polynomial PσpXq :“ σpP p0qq´1XdegpP qσpP qp1{Xq. Thus τ is
self-dual if and only if Pτ “ Pστ . If kF “ ko, such polynomials exist if and only if n “ 1
or n is even (see [1]); if kF{ko is quadratic, then such polynomials exist if and only if n
is odd (see [31, §5.4]).

Similarly, we write ApGq for the set of equivalence classes of irreducible cuspidal
representations of G, and Ar0spGq for the subset of equivalence classes of depth zero
representations. Then, for π P Ar0spGq, we can write

π “ c-IndG
Jπ λπ,

where Jπ “ JN1,N2
is the (compact open) normalizer of a standard maximal parahoric

subgroup Jo
π and λπ is an irreducible representation of Jπ whose restriction λoπ “ λπ|Jo

π

is a sum of conjugates (under Jπ) of the inflation of an irreducible cuspidal representa-
tion τπ of the reductive quotient Go

N1,N2
. By [46, 53], the standard maximal parahoric

subgroup Jo
π is uniquely determined by π, so that N1, N2 here are determined by π, and

the representation τπ is determined up to conjugacy by an element of GN1,N2 . Since the

group Go
N1,N2

decomposes as Gp1qN1
ˆ Gp2qN2

, we can also write τπ “ τ
p1q
π b τ

p2q
π , with τ

piq
π an

irreducible cuspidal representation of GpiqNi .
The irreducible cuspidal representations τ of the groups Go

N1,N2
were classified by

Lusztig [33, 34], in terms of semisimple elements s of the dual group and unipotent
irreducible cuspidal representations of the centralizer of s, generalizing the classification
of Green. (The only unipotent irreducible cuspidal representation of GLnpkFq is the
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trivial representation of GL1pkFq.) We will recall this later, in Section 7, when we require
it.

4. Reducibility of parabolic induction

In this section, we recall some basic results, in particular due to Silberger, on reducibil-
ity of parabolic induction. We continue with the same notation, so that G “ UpVqo is
our classical group. We recall that we have the group Gn “ UpVnq

o, with Levi sub-
group Mn » GLnpFq ˆ G (with the isomorphism determined by the chosen Witt basis)
and standard parabolic subgroup Pn “ MnNn. Let ρ P AnpFq and π P ApGq, so that we
can consider ρb π as a representation of Mn.

We are interested in the (ir)reducibility of the normalized parabolically induced rep-
resentation

Ipρ, π, sq “ IndGn
Pn

ρ|detp¨q|sF b π,

for s P C, where | ¨ |F is the normalized absolute value on F (with image qZ) and det is
the determinant on GLnpFq. We note that replacing ρ by an unramified twist just has
the effect of translating the parameter s; that is

Ipρ|detp¨q|s0F , π, sq “ Ipρ, π, s` s0q.

Thus we lose no information if we replace our base-point ρ with any unramified twist.
We have the following fundamental result of Silberger: the first part comes from [50,
Corollaries 5.4.2.2–3] and the second from [51, Theorem 1.6].

Theorem 4.1. (i) If Ipρ, π, sq is reducible for some s P R, then there exists s0 P R
such that ρ|detp¨q|s0F is self-dual.

(ii) If ρ is self-dual and Ipρ, π, sq is reducible for some s P R, then there is a (unique)
real number sπpρq ě 0 such that, for s P R,

Ipρ, π, sq is reducible if and only if s “ ˘sπpρq.

Remark 4.2. In the situation of Theorem 4.1, it is almost true that, if ρ is self-dual
then Ipρ, π, sq is reducible for some s P R. The only exception comes from even special
orthogonal groups, where we have an extra subtlety (see [24] for more details): if π is an
irreducible cuspidal representation of G which is not normalized by the full orthogonal
group G` and n “ 1 (so that ρ is a trivial or quadratic character of Fˆ) then Ipρ, π, sq

is irreducible for all s P R. On the other hand, in this situation, putting π` “ IndG`

G π,
which is an irreducible cuspidal representation of G`, then Ipρ, π`, sq does have re-
ducibility, at s “ 0.

From Theorem 4.1, for a fixed π P ApGq, we get a map

sπ : AσpFq Ñ Rě0,

where we define sπpρq “ 0 if Ipρ, π, sq is irreducible for all s P R. Part of the well-known
“Basic Assumption” made in [43] is that the image of this map is in fact in 1

2Z (indeed,
this is now known in many cases – at least when G is quasi-split – through the work of
Arthur, Mœglin, Waldspurger). We will prove here (independently) that this is indeed
the case for depth zero representations π.

Silberger’s results in fact give a little more than stated here, since we have stated them
only for real values of s. Indeed, if ρ P AσpFq then there are (up to equivalence) exactly
two unramified twists of ρ which are self-dual: ρ and another one ρ1. If, moreover, ρ
is a depth zero representation then this second representation is easy to describe: it
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is ρ1 :“ ρ| detp¨q|
πi{n log q
F . Thus Silberger’s result in fact gives a qualitative description of

all complex s for which Ipρ, π, sq is reducible.
In general, we will here only be able to compute the pair of numbers tsπpρq, sπpρ

1qu,
rather than distinguishing them individually. However, this is sufficient to prove the
equality (1.4).

5. Covers and Hecke algebras

The theory of types and covers was developed by Bushnell–Kutzko to give a strategy
and framework to describe the structure of the category of smooth representations of
a connected reductive group. Here we are interested only in a rather special case (in
particular, we have only maximal proper Levi subgroups and depth zero representations
for classical groups) so we do not give definitions and results in their full generality. In
particular, we are specializing to depth zero the results of [4, §3.2].

We continue in the notation of the previous section but restrict to depth zero. Thus
we have ρ P Aσ

r0spFq, a representation of GLnpFq, and π P Ar0spGq, giving us a represen-

tation ρbπ of the Levi subgroup Mn » GLnpFqˆG of Gn. We write ρ “ c-Ind
GLnpFq
Jρ

Λρ

and π “ c-IndG
Jπ λπ, as in Section 3, and use all the associated notation from there. We

write Pn “ MnNn and denote by P´n “ MnN´n the opposite parabolic subgroup.
We put JM “ Jρ ˆ Jπ, a compact open subgroup of Mn, and λM “ λρ b λπ, an irre-

ducible representation of JM. From [37, Theorem 1.1], there is a cover pJ, λq of pJM, λMq,
that is

‚ J is a compact open subgroup of Gn which has an Iwahori decomposition with
respect to pMn,Pnq and such that JXMn “ JM;

‚ λ is an irreducible representation of J whose restriction to JM is λM and whose
restriction to JXN˘n is a multiple of the trivial representation;

‚ the Hecke algebra H pGn, λq contains an invertible element whose support is
the pJ, Jq-double coset of a strongly positive element of the centre of Mn.

Moreover, we have a description of the Hecke algebra H pGn, λq given by [37, Theo-
rem 1.2]:

(i) If there is some g P GnzMn which normalizes Mn and such that the conjugate
by g of ρ b π is equivalent to an unramified twist of ρ b π, then H pGn, λq is
a generic Hecke algebra on an infinite dihedral group; that is, it is generated
by T1, T2, each supported on a single pJ, Jq-double coset, with relations

pTi ´ q
fiqpTi ` 1q “ 0,

for some half-integers fi ě 0. Moreover, there is a recipe to compute the fi,
which we revisit in Section 6 below.

(ii) Otherwise, H pGn, λq is abelian, isomorphic to C
“

Z˘1
‰

.

In the second case, the induced representation Ipρ, π, sq is irreducible for any s P C so
we restrict our interest to the first case. Since ρ is self-dual, the condition in (i) is always
satisfied, unless G is an even-dimensional special orthogonal group, the representation π
is not normalized by the full orthogonal group G`, and n “ 1. (See Remark 4.2.)

We write Rrρ,πspMnq for the full subcategory of (smooth complex) representations
of Mn all of whose irreducible subquotients are unramified twists of ρbπ, and Rrρ,πspGnq

for the full subcategory of representations of Gn all of whose irreducible subquotients
have supercuspidal support an unramified twist of ρ b π. Then, since pJ, λq is a cover
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of pJM, λMq which is a type, we have a normalized embedding of Hecke algebras t :
H pMn, λMq ãÑ H pGn, λq giving us a commutative diagram

Rrρ,πspGnq
h // Mod- H pGn, λq

Rrρ,πspMnq

IndGn
Pn

OO

hM // Mod- H pMn, λMq

t˚

OO

Here, the functor t˚ maps a right H pMn, λMq-moduleX to HomH pMn,λMqpH pGn, λq, Xq,
where the H pMn, λMq-module structure on H pGn, λq is given by t. The horizontal ar-
rows are equivalences of categories: the functor hM is given by ξ ÞÑ HomJM

pλM , ξq, and
similarly for h.

The Hecke algebra H pMn, λMq is isomorphic to CrZ˘1s, where Z is supported on ζJM

and ζ is the element of the centre of Mn which acts on Vn “ nH´ ‘V‘ nH` as 1 on V
and as $F on nH`. The element T2T1 P H pGn, λq is supported on the double coset JζJ
and, since tpZq is supported on the same double coset, we may (and do) normalize Z so
that tpZq “ T2T1.

Now, from [4, Proposition 3.12], we get that, if Ipρ, π, sq is reducible, then the real
part of s belongs to the set

(5.1)

"

˘
pf1 ˘ f2q

2n

*

.

We will see these values are always half-integers. Thus, in the notation of Section 4, we
have

tsπpρq, sπpρ
1qu “

"

|f1 ˘ f2|

2n

*

,

where | ¨ | is the usual (real) absolute value, and we recall that ρ1 is the unique self-dual
unramified twist of ρ which is not equivalent to ρ.

6. Reduction to the finite case

We now describe how to relate the parameters fi of the previous section to a problem
in the representation theory of finite reductive groups, and rephrase the equality (1.3) in
these terms. The recipe for computing these parameters is described in [37, §6.3], which
is considerably simplified by only treating depth zero representations; in particular, the
character χ0 of loc. cit. is trivial. Thus the content of this section is all proved in loc. cit.
and here we just explicate it in our special case.

We recall that π “ c-IndG
Jπ λπ, where Jπ is the normalizer of a standard maximal

parahoric subgroup Jo
N1,N2

, with N1, N2 uniquely determined, and λπ|Jo
N1,N2

contains an

irreducible representation λoπ inflated from an irreducible cuspidal representation τπ »

τ
p1q
π b τ

p2q
π of the (connected) reductive quotient Go

N1,N2
» Gp1qN1

ˆ Gp2qN2
. More explicitly,

as in Section 2, we write

GpiqNi “ UpNiH‘V
an
piqq

o, for i “ 1, 2.

We will also write Gpiq`Ni
for the full finite classical group of which GpiqNi is the connected

component. We will need to distinguish the cases when τ
piq
π is normalized by Gpiq`Ni

from
those where it is not.

By construction, the group J in Gn has reductive quotient isomorphic to GLnpkFq ˆ
GN1,N2

, and we denote by Jo the inverse image of its connected component. The parahoric
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subgroup Jo is contained in precisely two maximal compact subgroups of Gn, namely the
standard maximal compact J2 :“ JN1,N2`n and a maximal compact group J1 conjugate
to JN1`n,N2 . More precisely, both J1, J2 would be standard with respect to the ordered
Witt basis

e´N , . . . , e
´
N1`1, e

´
N`n, . . . e

´
N`1, e

´
N1
, . . . , e´1 , e

an
1 , . . . , e

an
Nan ,

e`1 , . . . , e
`
N1
, e`N`1, . . . , e

`
N`n, e

`
N1`1, . . . , e

`
N .

These maximal compact subgroups have reductive quotients G1,G2 isomorphic to GN1`n,N2

and GN1,N2`n respectively, and the image of Jo in each of these is a parabolic subgroup
with Levi component isomorphic to GLnpkFq ˆ Go

N1,N2
. More explicitly, the Gi have

connected components

Go
1 » UppN1 ` nqH‘V

an
p1qq

o ˆ Gp2qN2
Ě

´

GLnpkFq ˆ Gp1qN1

¯

ˆ Gp2qN2
,

Go
2 » Gp1qN1

ˆUppN2 ` nqH‘V
an
p2qq

o Ě Gp1qN1
ˆ

´

GLnpkFq ˆ Gp2qN2

¯

.

Moreover, we have certain Weyl group elements si P Ji, defined in [37, §5.6]. (See
also [52, §6.2] where, in most cases, they are denoted s$1 , s1 respectively, though there is
an added complication when n “ 1 and G is a special orthogonal group, explained in [37,
§5.6].) More explicitly, both s1, s2 exchange (up to scalars) the vectors e`N`j and e´N`j ,
for 1 ď j ď n and preserve the subspace V of Vn.

Now let pJ, λq be the cover of pJρ ˆ Jπ, λρb, λπq from Section 5. The proof of the
existence of this cover, in [37], goes via first constructing a cover pJo, λoq of pJρˆJo

π, λρb
λoπq. The Hecke algebras H pGn, λ

oq and H pGn, λq are not in general isomorphic, but
they are closely related, as we now describe.

The Hecke algebra H pGn, λq is generated by two elements T1, T2, with Ti supported
on JsiJ and satisfying a quadratic relation pTi ´ q

fiqpTi ` 1q “ 0. Then:

(i) If n “ 1, and either Gpiq`Ni
is the trivial orthogonal group (i.e. the orthogonal

group on a trivial space) or the irreducible cuspidal representation τ
piq
π of GpiqNi

is not normalized by Gpiq`Ni
, then we always have fi “ 0; that is, T 2

i “ 1. Note
that our assumption that we have reducibility implies that this can be the case
for at most one value of i, and this is never the case if G is either symplectic or
unramified unitary.

(ii) Otherwise, there is a corresponding element T o
i P H pGn, λ

oq with support JosiJ
o

and satisfying the same quadratic relation as Ti (with the same parameter fi).

It remains to describe the parameter fi in the latter case and we assume from now on
that we are in that situation.

By inflation, we have a support-preserving algebra injection

H pGo
i , τρ b τ

o
πq ãÑ H pGn, λ

oq,

and T o
i is in the image of this map. We also have isomorphisms

H pGo
i , τρ b τ

o
πq »H pUppNi ` nqH‘V

an
piqq

o, τρ b τ
piq
π q,

and the algebra on the right is described (at least in the case that the ambient finite
classical group has connected centre) in [36, Theorem 8.6]: they are two-dimensional,
generated by an element satisfying the same quadratic relation, with qfi the quotient of
the dimensions of the two irreducible factors of the representation parabolically induced

from τρb τ
piq
π . Moreover, one can compute this by using Lusztig’s Jordan decomposition

of characters, as we describe in the next section.
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7. Computation of parameters

In this section, we undertake the computation of the parameters in the finite Hecke
algebras from above. When the finite reductive group arising has connected centre, this
can more-or-less be read off from the Jordan decomposition of characters and the case of
unipotent irreducible cuspidals, for which there are tables in [35]. In general, one must
first embed the group into one with connected centre, and then make the comparison. A
special case is already carried out in [32], where they look at the Hecke algebra coming
from inducing a self-dual irreducible cuspidal representation of the Siegel parabolic of a
classical group.

In order to fit with the usual notations for finite reductive groups, the notation in
this section is independent of that in the rest of the paper. We will not recall here
the definitions of geometric and rational Lusztig series, both of which give partitions of
the set of irreducible representations of a connected finite reductive group coming from
Deligne–Lusztig induction; we refer the reader instead, for example, to [13] or [15].

7.1. Self-dual polynomials. We begin with a brief section on irreducible self-dual poly-
nomials over finite fields, since these will be used to parametrize the irreducible cuspidal
representations of our finite reductive groups. We fix Fq a finite field of odd cardinal-
ity q and let Fqo be a subfield of index at most 2. We denote by σ the automorphism
generating GalpFq{Fqoq, and use the same notation for the induced automorphism of the
polynomial ring FqrXs, obtained by applying σ to all coefficients.

For P P FqrXs, we put

PσpXq :“ σpP p0qq´1XdegpP qσpP qp1{Xq.

We say that a monic polynomial P P FqrXs is Fq{Fqo-self-dual if P “ Pσ; thus P is
Fq{Fqo -self-dual if and only if:

(i) when Fq “ Fqo , for each root ζ of P (in some algebraic closure of Fq), the
element ζ´1 is also a root of P ;

(ii) when Fq ‰ Fqo , for each root ζ of P , the element ζ´qo is also a root of P .

When Fq “ Fqo , we will just speak of self-dual polynomials; these might more often
elsewhere be called reciprocal.

If we now restrict to irreducible Fq{Fqo-self-dual monic polynomials P , the possibilities
are somewhat constrained:

(i) when Fq “ Fqo , either P pXq “ X ˘ 1 or else degpP q is even;
(ii) when Fq ‰ Fqo , we must have that degpP q is odd.

7.2. Connected centre. We now turn to the problem at hand, excluding for now the
case of unitary groups, whose treatment is postponed to Section 7.7. We begin with the
case of a group with connected centre, so that the centralizer of any semisimple element
of the dual group is connected. Let G be a connected reductive group of classical type,
over a finite field Fq of odd characteristic p, with connected centre and with Frobenius
map F . By classical type here we mean that G is one of:

(i) an odd-dimensional special orthogonal group SO2N`1;
(ii) a group of symplectic similitudes GSp2N ;
(iii) a group of orthogonal similitudes GSO`2N or GSO´2N , of Witt index N , N ´ 1

respectively. (Note that we mean here that GSO˘2N is the connected component
of the full group of orthogonal similitudes GO˘2N .) In this case we do not allow
the group GSO`2 .
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In each case, the Frobenius map F is the standard one. We denote by G˚ the dual group
and write F again for the (dual) Frobenius on it. The dual group acts naturally on
an Fq-vector space V, with an Fq-structure and a form, of dimension 2N, 2N ` 1, 2N
respectively in the three cases above. In case (iii), we say that V is of type `1 if it has
Witt index N , and of type ´1 otherwise; we say that the zero space has type `1.

Write E pGF q for the set of equivalence classes of irreducible (complex) representations
of GF . Then (see for example [33, §7.6]) there is a partition into geometric Lusztig series

E pGF q “
ď

s

E pGF , sq,

where s runs over the conjugacy classes of semisimple elements of G˚,F . (Note that
rational and geometric conjugacy classes coincide as the centre of G is connected.) The
partition is given as follows: for any F-stable maximal torus T of G˚ containing s, we
have the Deligne–Lusztig representation RG

T s; then an irreducible representation π of GF

lies in E pGF , sq if and only if there is such a torus T with

xπ,RG
T sy ‰ 0.

(Here, x¨, ¨y denotes the natural G-invariant inner product on class functions, and we
identify (equivalence classes of) representations with their characters.)

Given a semisimple element s P G˚,F , the centralizer G˚s is a connected reductive group
of the same rank as G, though in general it is not a Levi subgroup. Then the Jordan
decomposition of characters [33, Corollary 7.10] (see also [13, Theorem 15.8]) gives a
bijection

ψG
s : E pGF , sq Ñ E pG˚,Fs , 1q

with the following properties (see [33, §7.8]):

‚ for any irreducible representation π in E pGF , sq and any F-stable maximal
torus T containing s,

(7.1) εGxπ,R
G
T sy “ εGsxψ

G
s pπq,R

G˚s
T 1y,

where εG “ p´1qFq -rankpGq (see [15, Definition 8.3]);
‚ there is a uniform constant cs such that

dimπ “ cs dimψG
s pπq,

for all π in E pGF , sq; explicitly, writing dp1 for the maximal divisor of d coprime

to p, for any positive integer d, we have cs “ |G˚,F |p1 |G˚,Fs |
´1
p1 ;

‚ if the identity components of the centres of G˚ and G˚s have the same Fq-rank
then π in E pGF , sq is cuspidal if and only if ψG

s pπq is cuspidal; otherwise, no
representation in E pGF , sq is cuspidal.

(We remark that all the results so far extend to the case of disconnected centre once we
replace the geometric Lusztig series with the rational series – see below in section 7.3 for
the notion of rational Lusztig series, which coincides with the geometric one for groups
with connected centre.)

Thus we get a classification of the irreducible cuspidal representations of GF from a
classification of pairs ps, τq, with s a semisimple element of G˚,F (up to conjugacy) such
that the identity components of the centres of G˚ and G˚s have the same Fq-rank, and τ
an irreducible cuspidal unipotent representation of G˚,Fs (up to equivalence). Lusztig
classified the irreducible cuspidal unipotent representations of classical groups – in par-
ticular, there is at most one irreducible cuspidal unipotent representation for each such
group – and we find (see [33, p172]) the following.
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For s P G˚,F semisimple, we denote by Ps P FqrXs its characteristic polynomial (as an
automorphism of the space V on which G˚ acts naturally), by V` the p`1q-eigenspace and
by V´ the p´1q-eigenspace. Then there is a bijection between the (equivalence classes of)
irreducible cuspidal representations of GF and the set of conjugacy classes of semisimple
elements s P G˚,F such that

PspXq “
ź

P

P pXqaP ,

where the product runs over all irreducible self-dual monic polynomials over Fq and the
integers aP satisfy:

(7.2). ‚
ÿ

P

aP degpP q “ dimV;

‚ for P pXq ‰ pX ˘ 1q, we have aP “
1
2 pm

2
P `mP q, for some integer mP ě 0;

‚ writing a` :“ apX´1q and a´ :“ apX`1q, there are integers m`,m´ ě 0 such
that

(i) if G “ SO2N`1 then a` “ 2pm2
` `m`q and a´ “ 2pm2

´ `m´q,
(ii) if G “ GSp2N then a` “ 2pm2

` `m`q ` 1 and a´ “ 2m2
´,

(iii) if G “ GSO˘2N then a` “ 2m2
` and a´ “ 2m2

´,
where, in case (iii), V˘ is an even-dimensional orthogonal space of type p´1qm˘ ,
and the same in case (ii) for V´ only.

Let s be a semisimple element of G˚,F and suppose that we have an F-stable Levi
subgroup L˚, which is the Levi component of an F-stable parabolic subgroup P˚ of G˚,
such that s P L˚. Correspondingly, we have an F-stable Levi subgroup L, which is the
Levi component of an F-stable parabolic subgroup P of G. Then L˚s is an F-stable
Levi subgroup of G˚s (though it need not be a proper Levi subgroup), and is the Levi
component of the F-stable parabolic P˚s . Then we have a diagram

ZE pGF , sq
ψG
s // ZE pG˚,Fs , 1q

E pLF , sq
ψL
s //

IndG
L,P

OO

E pL˚,Fs , 1q

Ind
G˚s
L˚s ,P

˚
s

OO

(The vertical arrows here are parabolic induction – i.e. Harish-Chandra induction – and

we have abbreviated from IndGF

LF ,PF since the notation is already heavy.) This diagram

commutes (this is a result of Shoji, which can be extracted from the appendix to [16]);
in the cases that interest us here it can be seen fairly directly:

‚ If G˚s Ď L˚ then the vertical arrows preserve irreducibility (this is a special case
of [33, (7.9.1)]) and the diagram commutes by (7.1). In fact, this also generalizes

to the case where the parabolic P is not F-stable, replacing IndG
L,P by the

Deligne–Lusztig map εGεLRG
LĂP ; indeed, in that case the diagram commutes by

definition of the map ψG
s (see the proof of [33, Proposition 7.9]).

‚ Suppose L is a maximal proper Levi subgroup and τ P E pL, sq is cuspidal.

Then NGpLq{L has order 1 or 2. We are interested in the case where IndG
L τ is

reducible; equivalently, NGpLq{L has order 2 and, writing w for a representative
of the nontrivial coset, w normalizes τ . In this case the induced representation
decomposes as

IndG
L,P τ “ π1 ‘ π2, dimpπ1q ą dimpπ2q,
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(the inequality is strict by [36, Theorem 8.6]) and EndGF pIndG
L,P τq is a two-

dimensional algebra with a quadratic generator T satisfying a relation of the
form

pT ` 1qpT ´ qfτ q “ 0, qfτ “
dimpπ1q

dimpπ2q
.

Moreover, the same is true for Ind
G˚s
L˚s ,P˚s

ψL
s pτq and the recipe given in [36,

§8] (see op. cit. Theorem 8.6 and (8.2.3)) to calculate fτ depends only on
the Weyl group NG˚s pL

˚
s q

F{L˚,Fs (see, op. cit. (8.5.7)) which is identical for
the two induced representations. (Indeed, this matching is the idea behind
the inductive proof of the Jordan decomposition of characters.) The recipe is
somewhat complicated but fortunately, on the side of the centralizer G˚s , we
have unipotent representations and the parameter qfτ can be read off from [35,
Table II, page 33]. (In the special case that s2 “ 1 (to which one could reduce)
one can also read off the parameter from [33, Proposition 8.3].)

7.3. Disconnected centre. We now consider the case which really interests us here.
So we suppose that G is a classical group over a finite field Fq of odd characteristic p,
with Frobenius map F . By classical group here, we mean that G is one of:

(i) an odd-dimensional special orthogonal group SO2N`1;
(ii) a symplectic group Sp2N ;
(iii) an even-dimensional special orthogonal group SO`2N or SO´2N , of Witt indexN ,N´

1 respectively, where again we do not allow the group SO`2 .

In each case, the Frobenius map F is again the standard one. Case (i) has already been
treated above, so we only consider cases (ii),(iii) here.

In each case, we embed G in a group rG with connected centre of the type considered

in Section 7.2. Then we get a map rG˚ Ñ G˚ which maps conjugacy classes of semisimple

elements in rG˚,F to G˚,F -conjugacy classes of semisimple elements in G˚,F . (Recall that

the map rG Ñ G remains surjective on Frobenius-fixed points.)
The geometric conjugacy class of a semisimple element s in G˚,F splits into two G˚,F -

conjugacy classes if and only if its centralizer G˚s is disconnected, which happens if and
only both 1 and ´1 are eigenvalues of s. Here we also have a partition (into rational
Lusztig series) of the set of equivalence classes of irreducible representations of GF ,

E pGF q “
ď

s

E pGF , sq,

where s runs over the G˚,F -conjugacy classes of semisimple elements of G˚,F . Each
geometric Lusztig series is the union of at most two rational Lusztig series, corresponding

to the rational conjugacy classes in a geometric conjugacy class. Moreover, if s̃ P rG˚,F
maps to s P G˚,F , then the rational series E pGF , sq is precisely the set of irreducible

components of the restriction to GF of the representations in the Lusztig series E prGF , s̃q
(see [13, Proposition 15.6]).

We begin by considering the irreducible cuspidal representations of GF . An irreducible
representation of GF is cuspidal if and only if it is a component of the restriction of an irre-

ducible cuspidal representation of rGF . In general, an irreducible cuspidal representation

of rGF will decompose as a sum of at most two pieces on restriction to GF , inequivalent
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but of the same dimension when there are two (since they are conjugate by rGF ). Pre-
cisely what happens is essentially determined by the following lemma of Lusztig, which
treats the special case of quadratic unipotent representations.

Lemma 7.3 ([33, Lemma 8.9]). Let s̃ P rG˚,F be such that its image s P G˚,F is an involu-

tion and such that E prGF , s̃q contains an irreducible cuspidal representation π; then π|GF

is irreducible if and only if s “ ˘1.

(Note that s “ ´1 is in fact not possible when G “ Sp2n.)
This is enough to deal with the general case because of the following (see [13, Theo-

rem 8.27]). Suppose L is an F-stable Levi subgroup of G and P is a parabolic subgroup
(not necessarily F-stable) with Levi component L, and let L˚, P˚ be the corresponding
subgroups of G˚. Suppose s P G˚,F is a semisimple element such that G˚,os G˚,Fs Ď L˚,
where G˚,o denotes the connected component of G˚. Then Deligne–Lusztig twisted in-
duction RG

LĂP gives a bijection

εGεLRG
LĂP : E pLF , sq Ñ E pGF , sq.

Moreover (cf. [33, §7.9]), there is a constant cL,G “
ˇ

ˇGF
ˇ

ˇ

p1

ˇ

ˇLF
ˇ

ˇ

´1

p1
such that, for any π P

E pLF , sq,
dim

`

εGεLRG
LĂPpπq

˘

“ cL,G dimpπq.

Finally, this map respects cuspidality when the connected centres of G˚ and L˚ have
the same Fq-rank: i.e. in that case, π P E pLF , sq is cuspidal if and only if εGεLRG

LĂPπ
in E pGF , sq is cuspidal.

Now, suppose we are given a semisimple element s̃ of rG˚,F , mapping to s P G˚,F ,

such that E prGF , s̃q contains a cuspidal representation. Denote by L˚ the minimal F-
stable Levi subgroup containing the centralizer of s; if we set V0 “ Kerps2 ´ 1q then
in fact L˚ “ G˚s whenever s|V0

“ ˘1. The connected centres of L˚ and G˚ have the
same Fq-rank so we have a bijection between the irreducible cuspidal representations

in E pGF , sq and in E pLF , sq. Moreover, denoting by rL, rP the inverse images of L,P in rG
respectively, we have (see [13, (15.5)]) a commutative diagram

E p rLF , s̃q
R

rG
rLĂĂP //

Res
rL
L

��

E prGF , s̃q

Res
rG
G

��
ZE pLF , sq

RG
LĂP // ZE pGF , sq,

where we have omitted the superscripts F in the functors, for ease of notation.

Finally, we put this together. Note that rL is a product of general linear groups

(with twisted Frobenius) and a single classical group rG0 with connected centre, whose

dual group rG˚0 acts naturally on V0; then any irreducible representation π
rL P E p rLF , s̃q

decomposes as a product of irreducible representations of unitary group and an irre-

ducible π0 P E prGF
0 , s̃|V0

q. Similarly, L is a product of general linear groups and a classi-
cal group G0 and then the (ir)reducibility of π

rL|LF is determined by the (ir)reducibility
of π0|GF

0
.

Thus, for π “ R
rG
rLĂ rP

pπ
rLq an irreducible cuspidal representation in E prGF , s̃q, the re-

striction π|GF is irreducible if and only if π
rL|LF is irreducible (from the commutative

diagram), which happens if and only if π0|GF
0

is irreducible, in the notation of the previ-
ous paragraph. Moreover, it follows from Lemma 7.3 that this occurs if and only if the
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restriction s|V0
“ ˘1. Thus, in fact, the restriction remains irreducible if and only if the

centralizer G˚s is connected. We have proved:

Lemma 7.4. Let π P E pGF , sq be an irreducible cuspidal representation and let s̃ P rG˚,F
be a semisimple element mapping to s. The following are equivalent:

(i) π extends to an irreducible representation in E prGF , s̃q;
(ii) the centralizer G˚s is connected;
(iii) at most one of ˘1 is an eigenvalue of s.

Now we turn to the computation of the parameter. Thus, as in Section 7.2, we have s
a semisimple element of G˚,F and we suppose that L˚ is a maximal proper F-stable Levi
subgroup, which is the Levi component of an F-stable parabolic subgroup P˚ of G˚, such
that G˚s Ď L˚. Correspondingly, we have F-stable Levi and parabolic subgroups L,P
in G. We lift s to s̃ P rG˚ and likewise have lifts rL˚ and rP˚, with rG˚s̃ Ď rL˚, and

corresponding subgroups rL, rP in rG into which L,P respectively embed.
We are given a cuspidal representation τ in E pLF , sq, so that τ appears (with multi-

plicity one) in the restriction of a cuspidal representation τ̃ in E pLF , s̃q, with s̃ P rL˚,F
mapping to s. Let w be any representative for the non-trivial element of NGpLq{L. We
will eventually be interested in the case where w normalizes τ (so that the parabolically
induced representation from τ is reducible) but, in that case, it is not immediately clear
whether or not w normalizes τ̃ . We will need to know exactly when this is the case but
we can already say something about the parameters in the Hecke algebras. For ease of
notation, we again omit the superscripts F in the following.

Lemma 7.5. (i) Suppose w normalizes τ̃ . Then w also normalizes τ and we have

an isomorphism of Hecke algebras EndGpIndG
L,P τq » End

rGpInd
rG
rL, rP τ̃q which pre-

serves support: that is, it maps any element supported on the double-coset PwP
to an element supported on the double-coset rPw rP.

(ii) Suppose w does not normalize τ̃ but does normalize τ . Then EndGpIndG
L,P τq has

generator T supported on the double-coset PwP, satisfying pT ` 1qpT ´ 1q “ 0.

Proof. We write

IndG
L,P τ “

à̀

i“1

πi, where ` “

#

2, if w normalizes τ ,

1, otherwise.

If ` “ 2 then we order the terms so that dimpπ1q ě dimpπ2q, and EndGpIndG
L,P τq is a

two-dimensional algebra with a quadratic generator T satisfying a relation of the form

pT ` 1qpT ´ qfτ q “ 0, qfτ “
dimpπ1q

dimpπ2q
.

In either case, from Mackey we also have

(7.6) Res
rG
G Ind

rG
rL, rP τ̃ “

à

γP rL{N
rLpτq

IndG
L,P τ

γ “
à

γP rL{N
rLpτq

à̀

i“1

πγi .

(i) Suppose w normalizes τ̃ , in which case

Ind
rG
rL, rP τ̃ “ π̃1 ‘ π̃2, dimpπ̃1q ą dimpπ̃2q.
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Since the dimensions are distinct they do not form a single rL-orbit so, comparing
with (7.6), we must have ` “ 2 and

Res
rG
G π̃i “

à

γP rL{N
rLpτq

πγi ;

in particular we get dimpπ1q{dimpπ2q “ dimpπ̃1q{dimpπ̃2q so that, by [23, Theorem 4.14]

(see also op. cit. Definition 3.19), the relations of the quadratic generators in EndGpIndG
L,P τq

and End
rGpInd

rG
rL, rP τ̃q are the same.

(ii) Suppose now that w does not normalize τ̃ but does normalize τ (so that ` “ 2).

Then Ind
rG
rL, rP τ̃ is irreducible so the two pieces of IndG

L,P τ are conjugate under rGF so of

the same dimension; in particular we get fτ “ 0, as required. �

It remains now to compute when the representation τ̃ in E pLF , s̃q containing τ is
normalized by w. Ultimately, the answer depends on the family of groups in question,
but we can already make a preliminary reduction. We assume from now on that w does
indeed normalize τ .

We write LF » GLF
n ˆGF

0 , where G0 is a (possibly trivial) classical group in the same
family as G, and τ “ τ1 b τ0, so that τ1 is a self-dual irreducible cuspidal representation

of GLF
n . We write rG0 for the similitude group into which G0 embeds; if G0 is a trivial

group (i.e. acts on a trivial space) then rG0 is the multiplicative group.

We also have an isomorphism rLF » GLF
n ˆ

rGF
0 , which can be seen as follows. We

choose a Witt basis e´N , . . . , e
´
1 , e

`
1 , . . . , e

`
N for the space on which GF acts, with respect

to which LF is standard (so it is the stabilizer of the subspace xe´N , . . . , e
´
N´n`1y), where

we have changed from our usual notation in the case of a non-split special orthogonal

group, with e´1 , e
`
1 a basis for the anisotropic part of the space. We write µ : rGF

0 Ñ Fˆq
for the similitude map, which is the identity map when G0 is trivial. Then we get an

isomorphism GLF
n ˆ

rGF
0 Ñ

rL from the map

pg, hq ÞÑ diagpg, h, µphqwnpg
´1qTw´1

n q, for g P GLF
n , h P

rGF
0 ,

where wn is the antidiagonal element of GLF
n with all non-zero entries equal to 1 (a

representative for the longest element of the Weyl group), gT denotes the transpose
matrix, and the matrix on the right hand side is block diagonal. (Note that, when G0 is
trivial, the central term h in the block diagonal matrix is acting on a trivial space, so is
not really present.) Thus we can write τ̃ “ τ1 b τ̃0, where τ̃0 is an irreducible cuspidal

representation of rGF
0 whose restriction to GF

0 contains τ0.
We denote by ε the sign such that G preserves an ε-symmetric form. Then, if either G

is a symplectic group or n is even, we can take the representative w given by

wpe˘i q “

#

e˘i if 1 ď i ď N ´ n,

εe¯i if N ´ n ă i ď N ;

thus w is block antidiagonal (for the block sizes corresponding to L), and the conjugation

action of w on rL, transported back to GLF
n ˆ

rGF
0 , is given by

(7.7) pg, hq ÞÑ pµphqpg´1qT, hq.

Since τ1 is self-dual, if its central character is also trivial then the map (7.7) clearly
intertwines τ1 b τ̃0 with itself. The only case when the central character is non-trivial is
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when τ1 is the quadratic character, where we see that (7.7) intertwines τ1b τ̃0 with itself
if and only if τ̃0 » τ̃0 b pτ1 ˝ µq.

This leaves the case of even special orthogonal groups with n “ 1, where we need
a different representative w. Note that, in this case, we do not have that G0 is the
trivial group, since we have excluded the case G “ SO`2 . We have an identification G0 »

SO˘2pN´1q, from the action on xe´N´1, . . . , e
`
N´1y, and we pick c0 P O˘2pN´1qzSO˘2pN´1q.

Then we can take w to be the element given by
#

wpe˘N q “ e¯N ,

w|
xe´N´1,...,e

`
N´1y

“ c0.

The action of w on rL is given by

pg, hq ÞÑ pµphqg, c0hc
´1
0 q

and we see that τ̃ is normalized by w if and only if τ̃0 » τ̃ c00 b pτ1 ˝ µq.
If we set c0 “ 1 in the case of symplectic groups, we can unify the discussion above

into the following statement.

Lemma 7.8. (i) If n ą 1 then τ̃ is normalized by w.
(ii) If n “ 1 then τ̃ is normalized by w if and only if τ̃0 » τ̃ c00 b pτ1 ˝ µq.

In the following subsections, we analyze precisely when the conditions in Lemma 7.8(ii)
are satisfied, in terms of the eigenvalues of the semisimple element s such that τ P
E pLF , sq.

7.4. Symplectic groups. We begin with the case of symplectic groups, so that we are
in case (ii) of Section 7.3. Thus we have a cuspidal representation τ in E pLF , sq, for

some maximal proper Levi subgroup L of G, and a cuspidal representation τ̃ in E p rLF , s̃q
whose restriction to L contains τ . We denote by w a representative for the non-trivial
element of NGpLq{L, which we assume normalizes τ .

We write LF » GLF
n ˆGF

0 , where G0 is a (possibly trivial) symplectic group, and τ “

τ1 b τ0, so that τ1 is a self-dual irreducible cuspidal representation of GLF
n . Then τ1 P

E pGLF
n , s1q and τ0 P E pGF

0 , s0q, for some semisimple elements s0, s1 of the respective
dual groups. Note that, if G0 is the trivial symplectic group then its dual group is SO1

so that s0 “ 1.

Lemma 7.9. The representation τ̃ is normalized by w unless τ1 is the non-trivial qua-
dratic character of GLF

1 and ´1 is not an eigenvalue of s0.

We remark that, since 1 is always an eigenvalue of s0 in the case of symplectic groups,
the condition that ´1 not be an eigenvalue of s0 is equivalent to the condition that τ0
extend to the similitude group rGF

0 , by Lemma 7.4.

Proof. By Lemma 7.8, we only need to consider the case that τ1 is the non-trivial qua-
dratic character; in that case, w normalizes τ̃ if and only if τ̃0 » τ̃0 b χ, where we recall

that τ̃0 is an irreducible cuspidal representation of the similitude group rGF
0 “ GSpF

2pN´1q

containing τ0, and χ “ τ1 ˝ µ is the non-trivial quadratic character of rGF
0 . Denote

by Z prGF
0 q the centre of rGF

0 ; then τ̃0 b χ » τ̃0 if and only if the restriction of τ̃0 to the

index two subgroup Z prGF
0 qGF

0 is reducible, i.e. τ̃0 restricts reducibly to GF
0 . Thus τ̃w » τ̃

if and only if τ0 does not extend to G̃F
0 , and we are done. �
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7.5. Even special orthogonal groups. Now we turn to the case of even-dimensional
orthogonal groups, so that we are in case (iii) of Section 7.3. Here, as well as proving
the analogue of Lemma 7.9, we need to consider the cases, seen in Section 6, where the
parameter in the affine Hecke algebra is zero, rather than matching the parameter in the
finite Hecke algebra for the connected reductive quotient. This happens precisely when
either we have a “trivial orthogonal group” or an irreducible cuspidal representation of an
even-dimensional special orthogonal group which is not normalized by the full orthogonal
group. Thus we must also identify when this happens, in the language of the previous
sections. We begin with this question, since the answer is also needed for the proof of
the analogue of Lemma 7.9.

Proposition 7.10. Let τ P E pSO˘,F2N , sq be an irreducible cuspidal representation, and

let τ̃ P E pGSO˘,F2N , s̃q be an irreducible cuspidal representations, where s̃ is a semisimple
element mapping to s.

(i) τ̃ extends to a representation of GO˘,F2N if and only if 1 is an eigenvalue of s.

(ii) τ extends to a representation of O˘,F2N if and only if at least one of ˘1 is an
eigenvalue of s.

We remark that in the case that s2 “ 1 (that is, τ is a quadratic unipotent represen-
tation), (i) is proved in [33, Lemma 8.9], while (ii) is proved in [54] (see the proof of op.
cit. Proposition 4.3). Our proofs in the general case are similar.

Proof. In order to prove this, we need to recall a little about the dual group of GSO˘2N .
This dual group is the special Clifford group C0pVq, which sits in an exact sequence

1 Ñ Gm Ñ C0pVq Ñ SOpVq Ñ 1,

which is exact on points by Hilbert’s Theorem 90. It is the connected component of
the full Clifford group CpVq, which sits in a similar exact sequence, mapping onto the
full orthogonal group OpVq. The Clifford group is a subgroup of the group of invert-
ible elements of the Clifford algebra A “ ApVq, which is Z{2Z-graded A “ A0 ‘ A1;
then CpVq “ C0pVq \ C1pVq, with CipVq “ CpVq X Ai, and the special Clifford group is
a subgroup of index two in the full Clifford group.

We will need to know when the semisimple element s̃ P C0pVq of the special Clifford
group is centralized by some element of C1pVq. If 1 is an eigenvalue of s then it has an
anisotropic eigenvector v with eigenvalue 1 and one checks that v P C1pVq is centralized
by s̃. If 1 is not an eigenvalue of s, then the elements of A1 which commute with s̃ are
linear combinations of elements of the form

v1 ¨ ¨ ¨ vr,

with vi linearly independent eigenvectors of s with eigenvalue ζi, such that
śr
i“1 ζi “ 1

and r is odd. However, any two such elements anti-commute (since r is odd) and any
such element squares to 0, since the vi are isotropic unless ζi “ ´1 and we cannot
have all ζi “ ´1, since their product is 1 and r is odd. Thus any element of a P A1

which commutes with s satisfies a2 “ 0 so is non-invertible. Thus no element of C1pVq
commutes with s̃.

Finally, we pick c P O˘,F2N zSO˘,F2N and we are ready to begin the proof.

(i) The representation τ̃ extends to GO˘,F2N if and only if it is normalized by c. Now τ̃ c P

E pGSO˘,F2N , c̃´1s̃c̃q, for some c̃ P C1pVq. On the other, hand, these Lusztig series contain
only one cuspidal representation each, so τ̃ » τ̃ c if and only if s̃ is conjugate in C0pVq
to c̃´1s̃c̃, that is, if and only if the centralizer in CpVq of s̃ is not contained in the special
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Clifford group C0pVq. However, we have seen above that this happens if and only if 1 is
an eigenvalue of s.

(ii) The proof begins in a similar way. The representation τ extends to O˘,F2N if and

only if it is normalized by c. In this case, τ c P E pSO˘,F2N , c´1scq and, if this Lusztig
series contains only one cuspidal representation, then τ » τ c if and only if s is conjugate

in SO˘,F2N to c´1sc, that is, if and only if the centralizer in O˘,F2N of s is not contained
in the special orthogonal group. On the other hand, we already know that the Lusztig
series contains only one cuspidal representation if and only if at most one of ˘1 is an

eigenvalue of s, while the centralizer of s is contained in SO˘,F2N if and only if neither ˘1
is an eigenvalue of s.

This leaves the case when both ˘1 are eigenvalues of s. Let τ̃ be an irreducible

cuspidal representation in E pGSO˘,F2N , s̃q whose restriction to SO˘,F2N contains τ . By (i),
this representation is normalized by c.

Now we consider the representation 1 b τ of LF “ GLF
1 ˆSO˘,F2N , a Levi subgroup

of SO˘,F2pN`1q. As at the end of Section 7.3, we choose a Witt basis e´N`1, . . . , e
`
N`1 with

respect to which LF is standard and denote by w the element of SO˘,F2pN`1q given by
#

wpe˘N`1q “ e¯N`1,

w|
xe´N ,...,e

`
N y
“ c.

Similarly, we have the representation 1b τ̃ of rLF “ GLF
1 ˆGSO˘,F2N , which is normalized

by w, by Lemma 7.8(ii). But then Lemma 7.5(i) implies that w also normalizes 1 b τ ,

whence τ is normalized by c. Thus τ extends to O˘,F2N , as required. �

Now we return to the notation at the end of section 7.3. Thus, with G “ SO˘2N and rG “
GSO˘2N , we have a cuspidal representation τ in E pLF , sq, for some maximal proper Levi

subgroup L of G, and a cuspidal representation τ̃ in E p rLF , s̃q whose restriction to L
contains τ . We denote by w a representative for the non-trivial element of NGpLq{L,
which we assume normalizes τ .

We write LF » GLF
n ˆGF

0 , where G0 is a (possibly trivial) special orthogonal group,

and τ “ τ1 b τ0, so that τ1 is a self-dual irreducible cuspidal representation of GLF
n .

Then τ1 P E pGLF
n , s1q and τ0 P E pGF

0 , s0q, for some semisimple elements s0, s1 of the
respective dual groups. Note that, if G0 is the trivial special orthogonal group then its
dual group is the trivial group so that s0 has no eigenvalues.

Corollary 7.11. The representation τ̃ is normalized by w in all but the following cases:

(i) τ1 is the trivial character of GLF
1 and 1 is not an eigenvalue of s0;

(ii) τ1 is the quadratic character of GLF
1 and ´1 is not an eigenvalue of s0.

We remark that, among the exceptional cases, we cannot have that G0 is the trivial
group, since otherwise we would have G “ SO`2 , which we have excluded.

Proof. By Lemma 7.8, we need only consider the case n “ 1, so that τ1 is a trivial or
quadratic character; then τ̃ is normalized by w if and only if τ̃0 » τ̃ c00 b pτ1 ˝ µq, where

we recall that τ̃0 is an irreducible cuspidal representation of the similitude group rGF
0 “

GSO˘,F2pN´1q containing τ0, and c0 P O˘,F2pN´1qzSO˘,F2pN´1q.

Suppose first that τ1 is trivial. Then τ̃ is normalized by w if and only if τ̃0 is nor-
malized by c0, which happens if and only if τ̃0 extends to the full similitude group; by
Proposition 7.10, this happens if and only if 1 is an eigenvalue of s0, and we are done.
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Now suppose that τ1 is the non-trivial quadratic character and put χ1 “ τ1 ˝ µ. We

also denote by c1 an element of GSO˘,F2pN´1q which is not in Z pGSO˘,F2pN´1qqSO˘,F2pN´1q;

thus τ̃0 is an extension of τ0 if and only if τ0 is normalized by c1, if and only if τ̃0 fi τ̃0bχ1.
On the other hand, we already know from Lemma 7.4 that τ0 extends to an irreducible

representation of GSO˘,F2pN´1q if and only if at most one of ˘1 is an eigenvalue of s0.

If both ˘1 are eigenvalues of s0, then τ̃0 » τ̃0 b χ1, while τ̃0 extends to GO˘,F2pN´1q, by

Proposition 7.10(i). Thus τ̃ c00 b χ1 » τ̃0 b χ1 » τ̃0.
If neither ˘1 is an eigenvalue of s0, then τ̃ c00 b χ1 is an extension of τ c00 , which is not

equivalent to τ0 by Proposition 7.10(ii). Thus τ̃ c00 b χ1 fi τ̃0.
Finally, if exactly one of ˘1 is an eigenvalue of s0, then τ c00 » τ0, by Proposi-

tion 7.10(ii). Then τ̃ c00 contains τ0 on restriction, so is equivalent either to τ̃0 or to τ̃0bχ1,

since it agrees with τ̃0 on the index two subgroup Z pGSO˘,F2pN´1qqSO˘,F2pN´1q of GSO˘,F2pN´1q.

By Proposition 7.10(i), the former happens if and only if 1 is an eigenvalue of s0, in which
case τ̃ c00 bχ1 » τ̃0bχ1 fi τ̃0. Thus the latter happens if and only if ´1 is an eigenvalue s0,
in which case τ̃ c00 b χ1 » τ̃0. �

7.6. Summary. We summarize the results of all these calculations, including looking up
parameters in Lusztig’s tables in [35], in the following table. We are given an irreducible
cuspidal representation τ in E pLF , sq, for some maximal proper Levi subgroup L of G,

which is normalized by NGpLq. If w P NGpLqzL, then the Hecke algebra EndGpIndG
L,P τq

is two-dimensional and is generated by an element T supported on PwP and satisfying
a quadratic relation

pT ` 1qpT ´ qfτ q “ 0.

By Lemma 7.5, the parameter qfτ is either 1 or else coincides with a similar parameter
in the case of connected centre, and which of these occurs is determined by Lemma 7.8
and the results of Sections 7.4–7.5. Moreover, the parameter in the case of connected
centre can be read from [35, Table II, page 33], as described at the end of Section 7.2

We write LF » GLF
n ˆGF

0 , where G0 is a (possibly trivial) classical group of the same
type as G, and τ “ τ1 b τ0, so that τ1 is a self-dual irreducible cuspidal representation
of GLF

n . Then τ1 P E pGLF
n , s1q and τ0 P E pGF

0 , s0q, for some semisimple elements s0, s1
of the respective dual groups.

We write

Ps0pXq “
ź

P

P pXqaP pX ´ 1qa`pX ` 1qa´

for the characteristic polynomial of s0, where the product is over all irreducible self-
dual monic polynomials over Fq of even degree, and the integers aP , a˘ are related to
integers mP ,m˘ as in the description in (7.2). We also write Q for the characteristic

polynomial of s1 P GL˚,Fn ; thus either QpXq “ pX ˘ 1q or Q is an irreducible self-dual
monic polynomial of even degree n “ nQ. In the table, the cases (i)–(iii) refer to the
different possible classical groups, as in Section 7.3.

degree n polynomial Q case fτ

1 X ´ 1
(i),(ii)
(iii)

2m` ` 1
2m`

1 X ` 1
(i)

(ii),(iii)
2m´ ` 1

2m´

nQ even Q (i),(ii),(iii) p2mQ ` 1q
nQ
2
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7.7. Unitary groups. Finally, we consider the case of unitary groups. We could have
included this in the cases of Sections 7.2–7.6 above but it would have further complicated
the notation. Instead, we indicate here the differences with the previous cases and
summarize the final results.

Let q “ q2o be an even power of an odd prime p, take G “ GLn over the finite field Fqo ,
and let F be the twisted Frobenius map, so that GF is a unitary group (which we can
think of as a subgroup of GLnpFqq). Then G˚ “ GLn act naturally on an n-dimensional
vector space V with an Fq{Fqo-hermitian form. For s P G˚,F semisimple, we denote
by PspXq P FqrXs its characteristic polynomial as an automorphism of V.

From [33, §9], the equivalence classes of irreducible cuspidal representations of GF are
in bijection with the set of conjugacy classes of semisimple elements s in G˚,F whose
characteristic polynomial is of the form

PspXq “
ź

P

P pXqaP ,

where the product runs over all irreducible Fq{Fqo -self-dual monic polynomials in FqrXs
(see Section 7.1), and aP “

1
2 pm

2
P `mP q, for some integer mP ě 0.

Now suppose L is a maximal proper F-stable Levi subgroup of G, which is the Levi
component of an F-stable parabolic subgroup P. We write LF » GLmpFqqˆGF

0 , with GF
0

again a unitary group. Let τ be an irreducible cuspidal representation of LF with the
property that any representative w for the non-trivial element of NGpLq{L normalizes τ .
Thus we may decompose τ “ τ1b τ0, with τ1 a (conjugate)-self-dual irreducible cuspidal
representation of GLmpFqq and τ0 an irreducible cuspidal representation of GF

0 .

In this situation, the induced representation IndG
L,P τ decomposes again as π1 ‘ π2,

with dimpπ1q ą dimpπ2q, and EndGF pIndG
L,P τq is a two-dimensional algebra with a

quadratic generator T satisfying a relation of the form

pT ` 1qpT ´ qfτ q “ 0, qfτ “
dimpπ1q

dimpπ2q
ą 1.

As in the connected case above, the parameter may be computed via the Jordan de-
composition of characters and Lusztig’s tables, as follows. For s0 a semisimple element

of G˚,F0 such that τ0 P E pGF
0 , s0q, we write its characteristic polynomial

Ps0pXq “
ź

P

P pXqaP ,

for integers aP “
1
2 pm

2
P ` mP q as above. We also write Q for the irreducible charac-

teristic polynomial of an element s1 P GL˚,Fm such that τ1 P E pGLF
m, s1q; thus Q is an

irreducible Fq{Fqo -self-dual monic polynomial, of some odd degree n “ nQ. Then we get

fτ “ p2mQ ` 1q
nQ
2
.

8. Synthesis

In this section, we put together the previous results to verify the inequality (1.4), for π
a depth zero irreducible cuspidal representation of the classical group G. Recall that N

pG

is the dimension of the vector space on which the complex dual group pG acts naturally.
In fact we prove that, in (1.4), the sum over depth zero self-dual irreducible cuspidal
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representations already gives us N
pG, that is:

(8.1)
ÿ

ρPAσ
r0s
pFq

Y

psπpρqq
2
]

nρ “ N
pG,

Remark 8.2. In many cases, the opposite inequality to (1.4) was already proved by
Mœglin in [39] (so that (1.3) follows); alternatively, the techniques used here, together
with the results in [37], easily show that, for ρ a positive depth self-dual irreducible
cuspidal representation we have sπpρq P

 

0,˘ 1
2

(

, so that these do not contribute to the
sum. (See also [6], where this is carried out in a more general situation.) The details are
left as an exercise.

Thus we return to the notation of Sections 2–6: we have π “ c-IndG
Jπ λπ an irreducible

cuspidal depth zero representation of a classical group G, with Jπ the normalizer of
a standard maximal parahoric subgroup Jo

N1,N2
, and λπ|Jo

N1,N2
contains an irreducible

representation λoπ inflated from an irreducible cuspidal representation τπ » τ
p1q
π b τ

p2q
π of

the reductive quotient Go
N1,N2

» Gp1qN1
ˆ Gp2qN2

. For i “ 1, 2, there is a unique conjugacy

class psiq in Gpiq,˚Ni
such that τ

piq
π is in the Lusztig series E pGpiqNi , siq, and we denote the

characteristic polynomial of si by
ź

P

P pXqa
piq
P ,

where the product runs over irreducible kF{ko-self-dual monic polynomials in kFrXs, and

the powers a
piq
P satisfy the conditions of (7.2); in particular, there are integers m

piq
P ě 0

such that:

‚ if kF ‰ ko or P pXq ‰ pX ˘ 1q then a
piq
P “ 1

2m
piq
P pm

piq
P ` 1q;

‚ if kF “ ko and P pXq “ pX˘1q then we write m
piq
` “ m

piq
pX´1q and m

piq
´ “ m

piq
pX`1q,

to match the notation of Section 7, and these satisfy the conditions in (7.2).

Remark 8.3. It may be that Ni “ N an
i “ 0, for i “ 1 or 2; in this case the group GpiqNi is

trivial, but we must interpret it as the “right” trivial group. That is, if G is symplectic
then the group is a trivial symplectic group; if G is special orthogonal it is a trivial
special orthogonal group; if G is unramified unitary it is a trivial unitary group; and if G
is ramified unitary then it is a trivial symplectic group if ε “ p´1qi, and a trivial special
orthogonal group otherwise. In particular, if the group is trivial symplectic then the
characteristic polynomial of si is X ´ 1; in the other cases, the characteristic polynomial
of si is the constant polynomial 1.

Now, for ρ a self-dual irreducible cuspidal depth zero representation of some GLnpFq,
we have a unique self-dual irreducible cuspidal representation τρ of GLnpkFq such that ρ
contains the representation λρ of GLnpoFq obtained from τρ by inflation. Then τρ is in the
Lusztig series associated to some conjugacy class in GLnpkFq with irreducible self-dual
characteristic polynomial Q “ Qρ of degree n.

We suppose first that kF ‰ ko or QpXq ‰ pX ˘ 1q; thus either n ą 1 or G is
an unramified unitary group, and the parameters qfi of the Hecke algebra are always
computed from the Hecke algebra in the finite group. Then the formulae in Sections 7.6–
7.7 give

fi “ f
τρbτ

piq
π
“ p2m

piq
Q ` 1q

n

2
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and, from (5.1) we get reducibility points

 

˘sπpρq,˘sπpρ
1q
(

“

#

˘
pm

p1q
Q `m

p2q
Q ` 1q

2
,˘
pm

p1q
Q ´m

p2q
Q q

2

+

.

Since one of these is an integer and the other a half-integer, we get

tsπpρq
2u` tsπpρ

1q2u “

˜

pm
p1q
Q `m

p2q
Q ` 1q

2

¸2

`

˜

pm
p1q
Q ´m

p2q
Q q

2

¸2

´
1

4
“ a

p1q
Q ` a

p2q
Q .

Thus we are already done in the case of unramified unitary groups: summing, we get

ÿ

ρPAσ
r0s
pFq

tsπpρq
2unρ “

ÿ

P

pa
p1q
P ` a

p2q
P qdegpP q “ p2N1 `N

an
1 q ` p2N2 `N

an
2 q “ 2N `N an,

as required.
For the cases kF “ ko and QpXq “ pX ˘ 1q, we will split according to the type of

group G, since the values for the parameters do not admit such a uniform description.

8.1. Symplectic groups. We suppose first that QpXq “ X ´ 1, so that ρ, ρ1 are the

trivial character and the unramified character of order 2, and write m
piq
Q “ m

piq
` . Since

both GpiqNi are symplectic groups, we get

fi “ p2m
piq
` ` 1q,

with reducibility points

 

˘sπpρq,˘sπpρ
1q
(

“

!

˘pm
p1q
` `m

p2q
` ` 1q,˘pm

p1q
` ´m

p2q
` q

)

.

Thus

tsπpρq
2u` tsπpρ

1q2u “ pm
p1q
` `m

p2q
` ` 1q2 ` pm

p1q
` ´m

p2q
` q

2 “ a
p1q
` ` a

p2q
` ´ 1.

Now suppose that QpXq “ X ` 1, so that ρ, ρ1 are (tamely) ramified characters of

order 2, and write m
piq
Q “ m

piq
´ . Then we get

fi “ 2m
piq
´ ,

with reducibility points

 

˘sπpρq,˘sπpρ
1q
(

“

!

˘pm
p1q
´ ˘m

p2q
´ q

)

.

Thus

tsπpρq
2u` tsπpρ

1q2u “ pm
p1q
´ `m

p2q
´ q

2 ` pm
p1q
´ ´m

p2q
´ q

2 “ a
p1q
´ ` a

p2q
´ .

Finally, summing we get

ÿ

ρPAσ
r0s
pFq

tsπpρq
2unρ “

ÿ

P

pa
p1q
P ` a

p2q
P qdegpP q ´ 1 “ p2N1 ` 1q ` p2N2 ` 1q ´ 1 “ 2N ` 1.
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8.2. Ramified unitary groups. In this case, the groups GpiqNi are one symplectic and

one orthogonal; for ease of exposition, we will assume that Gp1qN1
is symplectic (otherwise

exchange 1 and 2).

We begin again with the case QpXq “ X ´ 1 and write m
piq
` in place of m

piq
Q . Thus we

get

f1 “ 2m
p1q
` ` 1, f2 “

#

2m
p2q
` ` 1, if N an

2 “ 1,

2m
p2q
` , otherwise.

Thus we get reducibility points

 

˘sπpρq,˘sπpρ
1q
(

“

$

&

%

!

˘pm
p1q
` `m

p2q
` ` 1q,˘pm

p1q
` ´m

p2q
` q

)

, if N an
2 “ 1,

!

˘

´

m
p1q
` `m

p2q
` ` 1

2

¯

,˘
´

m
p1q
` ´m

p2q
` ` 1

2

¯)

, otherwise.

Thus, if N an
2 “ 1, we get

tsπpρq
2u` tsπpρ

1q2u “ pm
p1q
` `m

p2q
` ` 1q2 ` pm

p1q
` ´m

p2q
` q

2 “ a
p1q
` ` a

p2q
` ;

and otherwise, since both reducibility points are half-integers, we get

tsπpρq
2u` tsπpρ

1q2u “

´

m
p1q
` `m

p2q
` ` 1

2

¯2

`

´

m
p1q
` ´m

p2q
` ` 1

2

¯2

´ 1
2 “ a

p1q
` ` a

p2q
` ´ 1.

The case QpXq “ X ` 1 is similar, the main difference being that f1 “ 2m
p1q
´ . Then

we get reducibility points

 

˘sπpρq,˘sπpρ
1q
(

“

$

&

%

!

˘pm
p1q
´ `m

p2q
´ ` 1

2 q,˘pm
p1q
´ ´m

p2q
´ ´ 1

2 q

)

, if N an
2 “ 1,

!

˘

´

m
p1q
´ ˘m

p2q
´

¯)

, otherwise.

Now in both cases we get

tsπpρq
2u` tsπpρ

1q2u “ a
p1q
´ ` a

p2q
´ .

Noting that we have

ÿ

P

a
p1q
P degpP q “ 2N1 ` 1,

ÿ

P

a
p2q
P degpP q “

#

2N2, if N an
2 “ 1,

2N2 `N
an
2 , otherwise,

we once again see that, summing over all depth zero self-dual irreducible cuspidal repre-
sentations of all GLnpFq, equation 8.1 is satisfied.

8.3. Special orthogonal groups. The case of special orthogonal groups is exactly anal-
ogous and we do not give the details. One can check the equality in (8.1) by working
through the cases according to the parities of N an

1 , N
an
2 . For example, if both are odd,

then with QpXq “ X ˘ 1 we get

tsπpρq
2u` tsπpρ

1q2u “ a
p1q
˘ ` a

p2q
˘ ` 1.

The additions of the extra 1 here exactly compensate for the fact that the dual groups

of GpiqNi have dimension 2Ni “ 2Ni `N
an
i ´ 1.

8.4. Summary. In all cases, we have now checked that the equality (8.1) holds. We
have also seen that sπpρq P

1
2Z in all cases.
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9. L-packets and Examples

In this final section, we examine the implications of the results here for the computation
of L-packets and give some examples. Firstly, we recall some facts about the (expected)
sizes of discrete series L-packets containing an irreducible cuspidal representation, and
the (expected) number of cuspidal representations in them.

Let ϕ : WF ˆ SL2pCq Ñ pG¸WF be a Langlands parameter for G whose L-packet Πϕ

contains an irreducible cuspidal representation π of G. Then, as recalled in the intro-
duction, we should have

ϕ “
à

pρ,mqPJordpπq

ϕρ b stm,

where ϕρ is the (irreducible) representation of the Weil group WF corresponding to ρ via
the Langlands correspondence for general linear groups, and stm is the m-dimensional
irreducible representation of SL2pCq. Putting `pπq “ # Jordpπq, the number of repre-
sentations one expects in the packet Πϕ is 2`pπq´1, since this is the number of characters

of the component group of Cent
pGpImpϕqq trivial on the centre of pG. We also set

Epπq “ tρ P AσpFq : sπpρq P Nu

and epπq “ #Epπq; this is the number of ρ P AσpFq such that pρ,mq P Jordpπq for some
odd integer m. Finally, put

e0pπq “

#

1 if there is ρ P AσpFq such that sπpρq P 1` 2N,

0 otherwise.

Then the number of irreducible cuspidal representations one expects in the L-packet Πϕ

is 2epπq´e0pπq, since this is the number of characters of the component group of Cent
pGpImpϕqq

which are trivial on the centre of pG and alternating, in the sense of, for example, [41,
Section 8].

Remark 9.1. The reference to the work of Mœglin in [41, Section 8] is in fact only
for unitary groups, though it also holds when G is a quasi-split unitary, orthogonal,
symplectic or GSpin group (see [40]) and it seems reasonable to expect it to hold in
more generality. Although our results here on the representations with given inertial
reducibility set do not require it, for the purposes of discussion, from now on we make
the following assumption:

(A) The description of the number of irreducible cuspidal representation in an L-
packet above is valid for the group G.

However, extra care must be taken when G is an even-dimensional special orthogonal
group – see Example 9.6.

Now we describe how our results allow us to find all irreducible cuspidal representations
with the same inertial reducibility set, hence all irreducible cuspidal representations in
a union of one, two or four L-packets (assuming (A)). We suppose we are in the general
situation of the previous section, with π an irreducible cuspidal depth zero representation
of G. Recall that

IRedpπq “ ttprρs,mq : ρ P AσpFq, m P N with 2sπpρq “ m` 1uu ,

where rρs denotes the inertial equivalence class of ρ.
Our representation π is induced from a representation containing the inflation of an

irreducible cuspidal representation τπ » τ
p1q
π bτ

p2q
π of the reductive quotient Gp1qN1

ˆGp2qN2
of



ON DEPTH ZERO L-PACKETS FOR CLASSICAL GROUPS 31

a maximal parahoric subgroup. For i “ 1, 2 and P an irreducible kF{ko-self-dual monic

polynomial in kFrXs, we denote by m
piq
P the associated non-negative integer as in (7.2).

The formulae obtained above show that, for each irreducible kF{ko-self-dual monic

polynomial P in kFrXs, the pair of integers tm
p1q
P ,m

p2q
P u can be recovered from the

reducibility points tsπpρq, sπpρ
1qu, for ρ “ ρP a representation in Aσ

r0spFq with associated

characteristic polynomial P , and ρ1 its self-dual unramified twist. Indeed, one gets the
following, where we write | ¨ |8 for the usual (archimedean) absolute value on R:

‚ if P pXq ‰ X ˘ 1 or kF ‰ ko then
!

m
p1q
P ,m

p2q
P

)

“
 X
ˇ

ˇsπpρq ˘ sπpρ
1q
ˇ

ˇ

8

\(

;

‚ if P pXq “ X ˘ 1 and kF “ ko, so that ρ is a character of GL1pFq of order at
most 2, then

!

m
p1q
P ,m

p2q
P

)

“

"Z

|sπpρq ˘ sπpρ
1q|8

2

^*

.

Thus one obtains the same inertial reducibility set as for π only for irreducible cus-

pidal representations π1 with tm
p1q
P pπq,m

p2q
P pπqu “ tm

p1q
P pπ

1q,m
p2q
P pπ

1qu, for every irre-
ducible kF{ko-self-dual monic polynomial P in kFrXs. Hence, in order to obtain other
representations with the same inertial reducibility set, it is enough to exchange (some of)

the integers m
p1q
P pπq,m

p2q
P pπq. Note, however, that it is not always possible to do this,

for parity reasons. We set

Qpπq “
!

irreducible self-dual monic P P kFrXs : m
p1q
P pπq ‰ m

p2q
P pπq

)

and put qpπq :“ #Qpπq.

Remark 9.2. If P P kFrXs is an irreducible kF{ko-self-dual monic polynomial, with P pXq ‰
X˘1 or kF ‰ ko, and ρP , ρ

1
P are the corresponding self-dual irreducible cuspidal represen-

tations of some GLnpFq, then one of sπpρP q, sπpρ
1
P q is integral and the other non-integral.

In particular, we see that (exactly) one of ρP , ρ
1
P is in Epπq if and only if P P Qpπq.

A similar analysis can be done for P pXq “ X ˘ 1 and kF “ ko, but it depends on the
type of group. We summarize the results in the separate cases below.

We will parametrize the irreducible cuspidals π1 with IRedpπ1q “ IRedpπq by maps ε :
Qpπq Ñ t1, 2u, noting that not all such maps are permissible, and that each map may
give rise to more than one representation. We split again according to the type of group.

9.1. Symplectic groups. We begin with the case that G “ Sp2N pFq is a symplectic
group, in which case there are no restrictions on the maps ε : Qpπq Ñ t1, 2u. We put

δpπq “ #
!

i : m
piq
X`1pπq ‰ 0

)

.

Now suppose we have ε : Qpπq Ñ t1, 2u and, for irreducible self-dual monic P R Qpπq,

we set εpP q “ 1. Then we can find, for i “ 1, 2, a semisimple element s
piq
ε in a suitable

odd special orthogonal group SO2N 1i`1pkFq with characteristic polynomial

ź

P

P pXqa
piq
P pεq,
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where the product is taken over all irreducible self-dual monic polynomials in kFrXs and

the integers a
piq
P pεq are related to integers m

piq
P pεq as in (7.2), with

m
piq
P pεq “ m

pi¨εpP qq
P ,

where the index is understood modulo 3. Correspondingly, we have irreducible cuspidal

representations τε “ τ
p1q
ε bτ

p2q
ε of GN 11,N 12 “ Sp2N 11

pkFqˆSp2N 12
pkFq; note that, for each ε,

the number of such representations is 2δpπq. Inflating each τε to the maximal parahoric
subgroup JN 11,N 12 and inducing to G, we get an irreducible cuspidal representation. Thus

we get 2qpπq`δpπq irreducible cuspidal representations of G.
The analysis of Remark 9.2, along with that for the cases P pXq “ X ˘ 1, shows that

epπq “

#

qpπq ` δpπq ` 1 if δpπq ď 1;

qpπq ` δpπq if δpπq “ 2.

On the other hand, we always have e0pπq “ 1, since either sπp1q or sπpω0q is an odd
integer, where 1 is the trivial character of GL1pFq and ω0 is the unramified character of
order two. Hence we have constructed the irreducible cuspidal representations in a union
of two L-packets if δpπq “ 2, or in a single L-packet otherwise.

Thus, in some cases we are able to identify all the representations in a single L-packet,
but in others we cannot distinguish between the representations in two L-packets without
further work. We give some examples to illustrate these phenomena. In the following,
we write ω1, ω2 “ ω0ω1 for the (tamely) ramified characters of GL1pFq of order two.

Example 9.3. We begin with an example where we are able to recover all the cuspidal
representations in a single L-packet. We take G “ Sp6pFq and begin with the parahoric
subgroup J2,1, which has reductive quotient G2,1 » Sp4pkFq ˆ SL2pkFq.

We take the representation θ10 of Sp4pkFq, that is the unique cuspidal representation in
the Lusztig series E pSp4pkFq, 1q (so that the associated characteristic polynomial is pX´
1q5). We also take an irreducible cuspidal representation τ of SL2pkFq in a Lusztig series
with associated characteristic polynomial pX ´ 1qpX ` 1q2. Thus τ is a representation
of dimension q´1

2 , of which there are two. We denote by λπ the representation of J2,1

inflated from θ10 b τ and put π “ c-IndG
J2,1

λπ, an irreducible cuspidal representation
of G.

Following the recipe in Section 8, we find that sρpπq P
 

0,˘ 1
2

(

unless ρ is a character
of GL1pFq. On the other hand, we get

m
p1q
X´1 “ 1, m

p2q
X´1 “ 0, m

p1q
X`1 “ 0, m

p2q
X`1 “ 1,

and hence

tsπp1q, sπpω0qu “ t2, 1u, tsπpω1q, sπpω2qu “ t1u;

thus IRedpπq is the multiset ttpr1s, 2q, pr1s, 1q, prω1s, 1q, prω1s, 1quu. In this case we know
more since the Langlands parameter ϕπ corresponding to π has image in SO7pCq so, in
particular, has determinant 1; thus it must be

ϕπ “ 1b pst3‘ st1q ‘ ω0 ‘ ω1 ‘ ω2,

since exchanging 1 and ω0 would give a representation with determinant ω0.
In the notation above, we have Epπq “ t1, ω0, ω1, ω2u so that epπq “ 4. Thus the L-

packet containing π consists of 16 irreducible representations, 8 of which are cuspidal.
On the other hand, we have Qpπq “ tX ` 1, X ´ 1u so that qpπq “ 2, and δpπq “ 1, so
that we can construct exactly the cuspidal representations in the L-packet, as follows:
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(i) There is one rational conjugacy class psq in SO3pkFq such that its characteristic
polynomial is pX´1qpX`1q2 and the corresponding Lusztig series E pSL2pkFq, sq
contains two irreducible cuspidal representations τ, τ 1.

Now we can inflate the representations θ10bτ and θ10bτ
1 of Sp4pkFqˆSL2pkFq

to either J2,1 or J1,2 and then induce to G. This gives us four inequivalent
irreducible cuspidal representations of G (one of which is π).

(ii) There is one rational conjugacy class ps1q in SO7pkFq such that its charac-
teristic polynomial is pX ´ 1q5pX ` 1q2 and the corresponding Lusztig se-
ries E pSp6pkFq, s1q contains two irreducible cuspidal representation τ1, τ

1
1.

We inflate these representations to either J3,0 or J0,3 and induce to G, giv-
ing us another four inequivalent irreducible cuspidal representations of G, also
inequivalent to those in (i).

Example 9.4. Now we look at the simplest example where the information we have so
far is only sufficient to recover the cuspidal representations in a union of two L-packets.
We take G “ Sp4pFq and begin with the parahoric subgroup J1,1, which has reductive
quotient G1,1 » SL2pkFq ˆ SL2pkFq.

We take irreducible cuspidal representations τ1, τ2 of SL2pkFq each in a Lusztig series
with associated characteristic polynomial pX ´ 1qpX ` 1q2, as in the previous example.

We denote by λπ the representation of J1,1 inflated from τ1bτ2 and put π “ c-IndG
J1,1

λπ,
an irreducible cuspidal representation of G. Following the recipe, this time we obtain

IRedpπq “ ttpr1s, 1q, prω1s, 2quu

and, using the fact that the corresponding Langlands parameter ϕπ has determinant 1,
we have

(9.5) ϕπ “ 1‘ ω b pst3‘ st1q,

where ω is either ω1 or ω2. However, without further work, we cannot distinguish which

ramified quadratic character occurs here. This reflects the fact that m
p1q
X`1 “ m

p2q
X`1 “ 1

so that δpπq “ 2.
Thus, at this stage, we can only identify the 4 cuspidal representations occurring in

the union of the two L-packets corresponding to ω “ ω1, ω2 in (9.5): they are given by
independently choosing the τi to be one of the two irreducible cuspidal representations
of SL2pkFq of dimension q´1

2 .
Distinguishing these two L-packets (and identifying the two discrete series representa-

tion in each of them) requires further analysis: for this particular example, this is carried
out in [5].

In general, distinguishing the representations when we have two L-packets as in Ex-
ample 9.4 will probably require, as a first step, the classification of quadratic-unipotent
irreducible cuspidal representations of finite classical groups, and the compatibility of
this classification with Deligne–Lusztig induction, which is done by Waldspurger in [54].

9.2. Unramified unitary groups. Suppose now that G is an unramified unitary group
of dimension 2N `N an. On the one hand this case is simpler, and we will see that the
set of representations with given inertial reducibility (multi)set is a single L-packet. On

the other hand, we cannot arbitrarily exchange the integers m
p1q
P ,m

p2q
P as above, due to

parity constraints – swapping would sometimes lead to representations of the isometry
group of a non-isometric hermitian space.
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Recall that π is induced from the inflation of an irreducible cuspidal representa-

tion τ
p1q
π b τ

p2q
π of Gp1qN1

ˆ Gp2qN2
, where GpiqNi “ UpVpiqq, with Vpiq a hermitian space of

dimension 2Ni `N
an
i . Moreover, if Gp1qN 11 ˆ Gp2qN 12 is the reductive quotient of another max-

imal parahoric subgroup of G then, for i “ 1, 2, the corresponding space V
1

piq must have

dimension of the same parity as that of Vpiq.

Recall also that we have a semisimple element si of the dual group of GpiqNi , such

that τ
piq
π is the (unique) irreducible cuspidal representation in the corresponding Lusztig

series, and that si has characteristic polynomial
ź

P

P pXqa
piq
P ,

where the product runs over all irreducible kF{ko-self-dual monic polynomials in kFrXs,

and a
piq
P “ 1

2m
piq
P pm

piq
P ` 1q. Since the degree of each such polynomial P is odd, we have

deg
´

P pXqa
piq
P

¯

is

#

odd if m
piq
P ” 1, 2 pmod 4q,

even if m
piq
P ” 0, 3 pmod 4q.

Thus, if one m
piq
P is 1, 2 pmod 4q and the other is 0, 3 pmod 4q, then m

p1q
P cannot be

exchanged with m
p2q
P independently of other changes. This is exactly reflected in the

(expected) size of the L-packet as follows.
We put

Q0pπq “
!

P P Qpπq
ˇ

ˇ

ˇ

Q

m
p1q
P {2

U

ı

Q

m
p2q
P {2

U

pmod 2q
)

.

We saw in Remark 9.2 that, in this case, we have qpπq “ epπq. Moreover, the formula
for the reducibility points shows that P P Q0pπq if and only if one of sπpρP q, sπpρ

1
P q is

an odd integer; thus Q0pπq is empty if and only if e0pπq “ 0.
Now suppose we are given a map ε : Qpπq Ñ t1, 2u such that #tP P Q0pπq : εpP q “ 2u

is even; for irreducible kF{ko-self-dual monic P R Qpπq, we set εpP q “ 1. Then we can

find, for i “ 1, 2, a semisimple element s
piq
ε in a suitable unitary group Up2N 1i `N

an
i , kFq

with characteristic polynomial
ź

P

P pXqa
piq
P pεq,

where a
piq
P pεq “

1
2m

piq
P pεqpm

piq
P pεq ` 1q and

m
piq
P pεq “ m

pi¨εpP qq
P ,

with the index understood modulo 3. Correspondingly, we have a unique irreducible

cuspidal representation τε “ τ
p1q
ε bτ

p2q
ε of GN 11,N 12 and, by inflation and compact induction,

a unique irreducible cuspidal representation of G.
In this way, we construct 2qpπq´e0pπq inequivalent irreducible cuspidal representations

of G with the same inertial reducibility set as π, which is exactly the number of cuspidal
representations in the L-packet of π.

9.3. Special orthogonal and ramified unitary groups. A similar analysis can be
made in the cases of special orthogonal and unitary groups G. The constraints for the
maps ε are like those in the unramified case, since the anisotropic dimensions of the

groups GpiqNi are determined by the group G, as is the sum of the dimensions of the spaces
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on which GpiqNi act. Since the details are rather similar to the cases above, we only sketch
them.

We are given an irreducible cuspidal representation π of G. For P a self-dual monic

polynomial in kFrXs, as in previous cases, we get integers m
piq
P , for i “ 1, 2. We modify

slightly the definition of Qpπq, replacing it with
$

’

&

’

%

QpπqztX ´ 1u if G is even-dimensional ramified unitary;

QpπqztX ` 1u if G is odd-dimensional ramified unitary;

QpπqztX ´ 1, X ` 1u if G is odd-dimensional orthogonal.

We also put

Q1pπq “

#

Qpπq if G is even-dimensional orthogonal;

QpπqztX ´ 1, X ` 1u otherwise.

For P a self-dual monic polynomial in kFrXs, we set

fP “

#

1 if degpP q “ 1,

2 otherwise,

and then define

Q0pπq “
!

P P Q1pπq
ˇ

ˇ

ˇ

Q

m
p1q
P {fP

U

ı

Q

m
p2q
P {fP

U

pmod 2q
)

.

Then we again constrain our map ε : Qpπq Ñ t1, 2u such that #tP P Q0pπq : εpP q “ 2u is
even. For each such ε we can construct a finite set of irreducible cuspidal representations
of G. The total number of cuspidal representations obtained in this way is one, two or
four times the expected number of cuspidal representations in the packet, or half this
number ; the latter can occur only in the case of even orthogonal groups.

We illustrate this, in particular the last case, with examples, using the same notation
for the quadratic characters of GL1pFq as in Examples 9.3 and 9.4.

Example 9.6. Let G “ SOpVq be the (split) special orthogonal group of an 8-dimensional
orthogonal space V with Witt index 4. Denote by J4,0, J0,4 the maximal compact sub-
groups whose reductive quotients are SO`8 pkFq. Denote by τ the unipotent irreducible
cuspidal representation of SO`8 pkFq, which we may inflate to either J4,0 or J0,4, and thus

obtain irreducible cuspidal representations π “ c-IndG
J4,0

τ and π1 “ c-IndG
J0,4

τ . We have

IRedpπq “ IRedpπ1q “ ttpr1s, 2q, pr1s, 2quu

and the corresponding Galois parameter has the form

ϕπ “ ϕπ1 “ 1b pst3‘ st1q ‘ ω0 b pst3‘ st1q.

According to the discussion at the beginning of the section, the packet should contain
four cuspidal representations, but π, π1 are the only two cuspidal representations with this
inertial reducibility set. This disparity comes from the difference between the group G
and the full orthogonal group G` “ OpVq. By Proposition 7.10(ii), the representation τ
extends to a representation of O`8 pkFq, in two ways, and inducing the inflation of these
two representations from J`4,0 and J`0,4 to G`, we obtain four inequivalent irreducible

cuspidal representations, two restricting to π and the other two to π1.
This example illustrates that, for even orthogonal groups, the expected number of

cuspidal representations in a packet should be interpreted for the full orthogonal group,
rather than for the special orthogonal group.
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Example 9.7. Let G “ SOpVq be the special orthogonal group of a 5-dimensional
orthogonal space V with Witt index 2, and denote by J2,0 the maximal compact subgroup
whose reductive quotient G2,0 has connected component Go

2,0 » SO`4 pkFq ˆ SO1pkFq.

In the dual of the finite group SO`4 pkFq there is an element s with characteristic
polynomial pX ´ 1q2pX ` 1q2 such that the Lusztig series E pSO`4 pkFq, sq contains a
cuspidal representation τ (in fact, two such representations). The inflation of τ has
two extensions to G2,0 and we denote by λπ the inflation to J2,0 of one such extension.

Then π “ c-IndG
J2,0

λπ is an irreducible cuspidal representation of G, for which

IRedpπq “ ttpr1s, 2q, pr1s, 1q, prω1s, 2q, prω1s, 1quu,

and the corresponding Galois parameter ϕπ has the form

ϕπ “ ω b st2‘ω
1ω1 b st2,

for some unramified characters ω, ω1 of order at most 2. For each choice of ω, ω1, the
corresponding packet should contain a unique cuspidal representation, while we have con-
structed four such representations. Thus we have the irreducible cuspidal representations
in a union of four L-packets.

Example 9.8. Let G “ SOpVq be the special orthogonal group of a 20-dimensional
orthogonal space V with Witt index 8 and anisotropic part of dimension 4. Denote
by J4,4 the maximal compact subgroup whose reductive quotient G4,4 has connected
component Go

4,4 » SO´10pkFq ˆ SO´10pkFq.

In the dual of the finite group SO´10pkFq there are elements s1, s2 with characteristic
polynomials pX ´ 1q8pX ` 1q2 and pX ´ 1q2pX ` 1q8 respectively, and such that the
corresponding Lusztig series E pSO´10pkFq, siq contains a cuspidal representation τi (in
fact, two such representations). The representation τ1 b τ2 has two extensions to G4,4

and we denote by λπ the inflation to J4,4 of one such extension. Then π “ c-IndG
J4,4

λπ
is an irreducible cuspidal representation of G, for which

IRedpπq “ ttpr1s, 3q, pr1s, 1q, prω1s, 3q, prω1s, 1quu.

The corresponding Galois parameter ϕπ has the form

ϕπ “ ω b pst5‘ st3‘ st1q ‘ ωω0 ‘ ω
1ω1 b pst5‘ st3‘ st1q ‘ ω

1ω2,

for some unramified characters ω, ω1 of order at most 2. For each choice of ω, ω1, the
corresponding packet should contain 8 irreducible cuspidal representations.

From the two choices for each of τ1, τ2 above, and the two choices of extension to G4,4,
we get 8 representations. However, we also get 8 more by exchanging the roles of τ1, τ2,
and these also have the same inertial reducibility (multi)set. However, each of these
irreducible cuspidal representations has two extensions to the full orthogonal group G`.
Thus we in fact have the irreducible cuspidal representations in the union of four L-
packets for the full orthogonal group G`.

In this case, there are also 16 other representations of the split special orthogonal
group H “ SOpV1q, where V1 is a 20-dimensional orthogonal space with Witt index 10,
with the same inertial reducibility set, obtained as follows. We denote by J8,2 a maximal
compact subgroup of H whose reductive quotient has connected component SO`16pkFq ˆ
SO`4 pkFq. In the duals of the isotropic finite groups SO`16pkFq and SO`4 pkFq there are
elements s1, s2 respectively, with characteristic polynomials pX ´ 1q8pX ` 1q8 and pX ´
1q2pX ` 1q2 respectively, such that the corresponding Lusztig series contain cuspidal
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representations τ1, τ2 respectively (two such representations in each series). The repre-
sentation τ1 b τ2 has two extensions to the reductive quotient of J8,2 and, inflating and
then inducing to G, we obtain an irreducible cuspidal representation. Since we can also
inflate to J2,8, we obtain 16 inequivalent representations in this way. Again, each of these
representations extends in two ways to the full orthogonal group H`.

Example 9.9. Let F{Fo be a ramified quadratic extension and let G “ UpVq be the
unitary group of a 14-dimensional hermitian space V with Witt index 6 and anisotropic
part of dimension 2. Denote by J0,6 the maximal compact subgroup whose reductive
quotient G0,6 has connected component Go

0,6 » SO´2 pkFq ˆ Sp12pkFq.
We fix an irreducible self-dual monic polynomial P P kFrXs of degree two. Then there

are semisimple elements s1, s2 in the dual groups of SO´2 pkFq, Sp12pkFq respectively,
with characteristic polynomials P pXq, P pXq6 respectively, such that the correspond-
ing Lusztig series contain unique irreducible cuspidal representations τ1, τ2 respectively.
Then there is a unique irreducible representation λπ of J0,6 inflated from a representation

of G0,6 containing τ1 b τ2 (since τ1 does not extend to O´2 pkFq), and π “ c-IndG
J0,6

λπ is
irreducible and cuspidal. We have

IRedpπq “ ttprρP s, 5{2q, prρP s, 1quu,

where ρP , ρ
1
P are the self-dual irreducible cuspidal representations of GL2pFq correspond-

ing to P , and the corresponding Galois parameter has the form

ϕπ “ ϕP b pst4‘ st2q ‘ ϕ
1
P ,

where ϕP , ϕ
1
P are the Galois parameters corresponding to ρP , ρ

1
P respectively. The cor-

responding packet should contain a unique irreducible cuspidal representation, which
is π.

As in Example 9.8, we also find an irreducible cuspidal representation of the 14-
dimensional quasi-split ramified unitary group with the same inertial irreducibility (multi)set,
by exchanging the characteristic polynomials of s1, s2.
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