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The human gastrointestinal microbiome contains commensal bacteria and other microbiota that have been gaining increasing 
attention in the context of cancer development and response to treatment. Microbiota play a role in the maintenance of host bar-
rier surfaces that contribute to both local inflammation and other systemic metabolic functions. In the context of prostate cancer, 
the gastrointestinal microbiome may play a role through metabolism of estrogen, an increase of which has been linked to the 
induction of prostatic neoplasia. Specific microbiota such as Bacteroides, Streptococcus, Bacteroides massiliensis , Faecalibacterium 
prausnitzii , Eubacterium rectalie , and Mycoplasma genitalium have been associated with differing risks of prostate cancer develop-
ment or extensiveness of prostate cancer disease. In this Review, we discuss gastrointestinal microbiota’s effects on prostate cancer 
development, the ability of the microbiome to regulate chemotherapy for prostate cancer treatment, and the importance of using 
Next Generation Sequencing to further discern the microbiome’s systemic influence on prostate cancer. 
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INTRODUCTION

The human microbiome describes the bacteria, archaea, 
fungi, and protozoa that reside in the epithelial surfaces of 
the body [1]. The microbiome affects many physiologic func-
tions, such as cognitive abilities, hematopoiesis, inflamma-
tion, and metabolism [2]. There are five main bacterial phyla 
in the gastrointestinal (GI) mucosa: Bacteroides, Proteobac-
teria, Actinobacteria, Verrucomicrobia, and Firmicutes; the 
most common anaerobes are Bacteroides, Eubacteria, Bifido-
bacteria, Peptostreptococci, Clostridia, and Ruminococci [3-5]. 

The host and the GI microbiota share a complex bal-
anced relationship that is symbiotic. The intestinal micro-

biota has 1013 to 1014 microorganisms that have a large role 
in the metabolism of glycans, amino acids, and xenobiotics [6]. 
The composition of intestinal microbiota are dependent on 
various host factors such as colonization at birth, diet, smok-
ing, drinking, and presence of disease [7-9]. This is a bidirec-
tional relationship, as evidenced by the microbiome in turn 
affecting host: gut microorganisms are responsible for edu-
cating the immune system and promoting differentiation of 
regulatory T-cells, which are involved in anti-inflammatory 
processes [10]. 

Germ-free rodents that were fed vitamins that are nor-
mally supplied by commensal intestinal microbiota lived 
significantly longer than their conventionally-raised coun-
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terpart rodents [11]. Studies with axenic (germ-free) rodents 
and those colonized with specific microbiota show that 
commensal microorganisms are required for a fully func-
tioning immune system, and has local and systemic effects. 
When studying a similar hypothesis in humans, antibiotics 
were found to be associated with decreased progression-free 
survival in melanoma patients [12]. When environmental 
changes occur, the microbiome can be thrown into a state of 
dysbiosis which can lead to the promotion of inflammatory 
diseases and cancer through infiltration of the epithelial 
barrier [13]. 

There has been increasing interest in the microbiome’s 
role in cancer development and progression, and studies 
show that distinct microbiota can both promote and inhibit 
tumor development [14-20]. The microbiome can influence 
the development of cancer as well as response to therapies, 
and this could be through both direct promotion of cancer as 
well as indirect mechanisms involving immune modulation, 
metabolic changes, and epithelial damage [21]. Therefore, un-
derstanding the gut microbiome’s effects on cancer is critical 
to potentially manipulating it therapeutically for cancer 
treatment. 

There is still a limited pool of knowledge about prostate 
cancer and GI microbiome. In this review, we will explore 
the relationship between proposed etiologies of  how the 
gastrointestinal microbiome affects prostate cancer develop-
ment, specific bacteria implicated in pathogenesis, and the 
microbiome’s impact on prostate cancer treatments. 

MICROBIOME AND PROSTATE CANCER 
RELATIONSHIP

Prostate cancer is the second leading cause of death in 
the United States and accounts for 1 in 5 new diagnoses in 
the male population [22]. The lifetime risk for prostate can-
cer is about 16%, with 276,000 new cases in 2018 [23]. Typi-
cal treatments for prostate cancer include androgen-based 
therapies; however, this does not take into account other 
risk factors for prostate cancer, such as bacterial infections, 
environmental stimuli, or inflammatory markers. Despite 
prostate cancer’s high prevalence, these alternate risk fac-
tors have not been fully explored [24]. 

The composition of GI microbiome may influence the 
metabolism of certain compounds that may be associated 
with increased prostate risk [25]. Intake of calcium in dairy 
products [26], red meat [27], and fat [28] have been linked to 
increase prostate cancer risk or progression. This may re-
late to the microbiome’s role in phytochemical digestion [29], 
dairy product digestion [30], and the generation of inflam-

matory molecules [31-33], which can influence neoplastic de-
velopment. 

Antibiotics select for certain resistant bacterial survival 
by increasing susceptibility of pathogenic bacterial prolifera-
tion. A reduced diversity profile can lead to an overgrowth 
of bacteria that promote inflammation and neoplasia. Stud-
ies have shown that antibiotic usage increases likelihood 
of bacterial infections from Clostridium difficile and meth-
icillin-resistant Staphylococcus aureus [34]. These bacterial 
species are typically present in the GI microbiome, but are 
able to proliferate under conditions of microbial disruption. 
The association between prostate cancer risk has been inves-
tigated in the context of antibiotic exposure. Tulstrup et al. 
[8] described that antibiotic-induced changes in microbiota 
form changes in intestinal permeability, introducing risk 
of neoplastic changes. Boursi et al. [35] hypothesized that an 
antibiotic would cause a change in the bacterial diversity of 
the GI and induce chronic inflammation. He found that the 
risk of prostate cancer increased moderately with the use of 
penicillins, quinolones, sulphonamides, and tetracyclines. 

When describing how the microbiome affects distant 
carcinogenesis from the GI, as in the case of prostate cancer, 
Plottel and Blaser [36] postulated a functional estrobiome, 
or enteric bacterial genes that are able to metabolize estro-
gen. β-Glucuronidases and β-glucuronides are particularly 
important in the metabolism of estrogen by conjugation and 
deconjugation. Estrogen has been reported to be elevated in 
patients with prostate cancer compared to healthy controls 
[37]. Estrogen promotes carcinogenesis by activating polycy-
clic aromatic hydrocarbons (PAHs) which involve the for-
mation of carcinogenic metabolites, diol epoxides and radical 
cations. Diol epoxides and radical cations react with DNA 
that can lead to cancer-promoting mutations. This estrogen 
mechanism is linked to Plottel’s hypothesis of the estrobi-
ome, or estrogen-metabolizing bacteria, and therefore when 
disturbed would cause an increase in serum estrogen. 

In addition to the estrogen-driven carcinogenesis hypoth-
esis, chronic inflammation has been proposed to create dys-
biosis and subsequently increase cancer risk. Several studies 
have shown that there is an increased risk of prostate can-
cer in men with a history of prostatitis [38-42]. Poutahidis 
et al. [43] confirmed in vivo that GI tract bacterial infection 
is sufficient to enhance prostate intraepithelial neoplasia 
(PIN) and microinvasive carcinoma. Induction of neoplasia 
was abrogated by the prior neutralization of  inflamma-
tory molecules such as tumor necrosis factor α, suggesting 
that GI microbial-based inflammation plays a large role in 
tumor formation and progression. Liss et al. [44] collected 
rectal swabs from men and sequenced their rectal microbi-
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ome profiles prior to transrectal prostate biopsy. There were 
significant increases in proinflammatory Bacteroides and 
Streptococcus species in those diagnosed with prostate can-
cer. Inflammation may be related to neoplasia by inflicting 
cellular and genomic damage, triggering a cascade of cell 
repair, angiogenesis, and tissue repair on a larger level [45]. 
Furthermore, it has been hypothesized that reactive oxygen 
species and reactive nitrogen species are released through 
immune cells during times of inflammation, directly damag-
ing cells and DNA [46]. This oxidative damage and cellular 
death is the cause of proliferative inflammatory atrophy, 
which is identified as a precursor to prostatic neoplasia, PIN 
and potentially adenocarcinoma [47]. 

Probiotics are a potential adjuvant for cancer treatment 
given more knowledge of the gut microbiome. Lactobacillus 
rhamnosus GG (LGG) is often administered as a comple-
ment to traditional colorectal cancer treatment to promote 
symbiosis of the GI microbiome [18]. LGG has been observed 
to be anti-inflammatory and result in increased tumor re-
gression in animal models [18]. Probiotic administration after 
cancer therapy has been shown in multiple trials to alleviate 
GI-related stress and re-populate the commensal microbiota 
[48]. This probiotic has not yet been investigated in the con-
text of prostate cancer. 

There are certain microbes that have shown to increase 
the risk of prostate cancer in vivo. Campylobacter jejuni was 
found to induce cell cycle arrest, chromatin fragmentation, 
and cell death from its toxin termed cytolethal distending 
toxin [17]. Clostridium was found to convert glucocorticoids 
in the gut to androgens by side-chain cleavage, which could 
contribute to prostate cancer development [49]. Escherichia 
coli  is common in the human gut and is typically in sym-
biosis with the host; however, Cuevas-Ramos et al. [50] noted 
that in vivo infection of E. coli induced DNA damage re-
sponse with signs of incomplete DNA repair. In addition, E. 
coli has been found to be associated with prostate inflamma-
tion. Elkahwaji et al. [51] infected mice with E. coli bacteria 
or a control buffer. Each of the E. coli-infected mice devel-
oped bacterial prostatitis and many developed dysplastic 
changes; zero of the control mice developed prostate infec-
tions or inflammation. 

Liss et al. [44] further hypothesized that bacteria related 
to carbohydrate metabolic pathways had a higher relative 
abundance in those diagnosed with prostate cancer com-
pared to healthy controls. However, research in folate and 
prostate cancer has shown inconsistent results; Figueiredo et 
al. [52] found that men randomized to folic acid supplemen-
tation had a 2.6 times risk of being diagnosed with prostate 
cancer compared to their placebo counterparts. However, 

high dietary folate intake was associated with a decreased 
risk of prostate cancer. Liss et al. [44] noted microbiota in-
volved in folate production were increased in men without 
prostate cancer; therefore, there seems to be a difference 
between endogenous folate production and folate supple-
mentation. This could have implications for preventative 
medicine by encouraging men to use probiotics for natural 
folate production and discourage use of folate supplements. 
The complexity of the folate pathway, microbiota, and pros-
tate cancer reveal that larger metatranscriptomic studies 
are needed to further understand their relationship with 
each other. 

SPECIFIC MICROBIAL BACTERIA AND 
PROSTATE CANCER 

With an increasing understanding of microbial effects 
on carcinogenesis, studies have been conducted exploring 
specific GI microbes and prostate cancer outcomes. 

As mentioned previously, Liss et al. [44] found enrich-
ments of Bacteroides and Streptococcus in prostate cancer 
cases as compared to the healthy controls. However, the fecal 
microbiome of the cohort of men undergoing prostate biopsy 
did not have significant differences between prostate and 
non-prostate cancer groups. 

Alanee et al. [53] conducted a prospective study to deter-
mine the association between fecal microbiota and prostate 
cancer diagnosis and found that patients with prostate can-
cer had a higher relative abundance of Bacteroides; however, 
fecal clustering patterns were not significantly associated 
with Gleason score staging of those with prostate cancer. 

Golombos et al. [54] found a higher relative abundance of 
Bacteroides massiliensis in prostate cancer cases compared to 
healthy controls; Faecalibacterium prausnitzii and Eubacte-
rium rectalie were in higher relative abundance in controls. 
F. prausnitzii had shown to be protective in numerous stud-
ies, having anti-inflammatory and symbiotic properties [55,56]. 
F. prausnitzii functions to metabolize acetate into butyrate, 
which is a primary source of energy for colonocytes, and is 
an anti-inflammatory compound [57]. F. prausnitzii demon-
strated other mechanisms of anti-inflammation unrelated 
to butyrate in Crohn disease patients. E. rectalie, the other 
bacteria elevated in controls compared to prostate cancer pa-
tients, also produces anti-inflammatory butyrate [58]. 

Miyake et al. [59] found that the rate of extensive pros-
tate disease was higher in those with Mycoplasma geni-
talium infection compared to those who did not have M. 
genitalium infection. M. genitalium is a clinically important 
sexually transmitted pathogen, which causes diseases that 
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induce inflammation such as chronic prostatitis and urethri-
tis. This inflammation can translate to neoplastic changes in 
the prostate. 

Sfanos et al. [60] reported a greater alpha diversity in 
those without prostate cancer compared to those with pros-
tate cancer. Alpha diversity refers to how divergent the 
species within the microbiome are in a specific landscape. 
A decrease in gut microbiota diversity has been established 
as a risk factor in certain other diseases [61]. This warrants 
further exploration of microbial diversity and risk factor for 
prostate cancer. 

The studies exploring the specific microorganism and 
prostate cancer risk discussed above are summarized in 
Table 1 [44,53,54,59,60]. 

PROSTATE CANCER TREATMENT 

It is well established that the GI microbiota influence 
both the local and systemic immune [14]. Paulos et al. [14] 
found that microbial translocation to the GI increases the 
function of CD8+ T cells via TLR4 signaling. This micro-
bial translocation operates under the notion that particular 
bacteria and their products can activate the innate immune 
system which can trigger tumor regression. Since Paulos’ 
findings, there has been increasing interest in further ex-
ploring the microbiome’s relationship with prostate cancer 
treatment. 

Growing evidence has shown that gut microbiota modu-
lates how the host responds to chemotherapy drugs in a 
systemic fashion, such as in prostate cancer [62-64]. These 
studies have shown that gut microbiota have an intimate 
relationship with certain chemotherapies such as metho-
trexate, 5-fluorouracil, cyclophosphamide, irinotecan, anti-
programmed death-ligand 1 and anti-cytotoxic T-lymphocyte-
associated protein 4. Alexander et al. [65] proposes three main 

clinical outcomes from microbial influence: 1) facilitation of 
drug efficacy, abrogation of anticancer effects, and media-
tion of toxicity. From others’ data, Alexander et al. [65] pro-
posed a framework for how gut microbiota mechanistically 
influence chemotherapeutic pharmacologic effects: “TIMER,” 
which stands for Translocation, Immunomodulation, Me-
tabolism, Enzymatic degradation, and Reduced diversity. For 
translocation, Viaud et al. [62] discussed how a chemotherapy 
drug cyclophosphamide can cause a shortening of the villi in 
the gut intestinal wall, which allows microbes to cross and 
enter secondary lymphoid organs such as lymph nodes, ton-
sils, and the spleen. Viaud et al. [62] therefore hypothesized 
that cyclophosphamide’s efficacy is due in part to their abil-
ity to stimulate antitumor immune responses of gut micro-
biota from lymphoid organ infiltration. For immunomodula-
tion, intestinal microbiota facilitate immunomodulation of 
chemotherapeutic drugs [65]. For metabolism and enzymatic 
degradation, bacteria in the GI engage in metabolic processes 
such as reduction, hydrolysis, dihydroxylation, and dealkyl-
ation, which can be taken into consideration when thinking 
about chemotherapeutics. For reduced diversity, chemother-
apy can cause changes to the microbiome which can lead to 
adverse outcomes such as colitis or diarrhea from prolifera-
tion of pathogenic mirobiota [65]. Montassier et al. [66] found 
that fecal samples collected after chemotherapy contained a 
decreased abundance of Firmicutes, Actinobacteria, and in-
creases in Proteobacteria compared to the patients’ samples 
prior to chemotherapy. 

It has also been reported that Mycoplasma hyorhinis 
can metabolize the prostate cancer drug Gemcitabine into 
an inactive metabolite, therefore decreasing the efficacy of 
the drug [67]. This may be important in the personalizing of 
treatment for those who have an increased relative abun-
dance of M. hyorhinis. 

The microbial composition of the GI is changed by an-

Table 1. Studies discussed about specific gastrointestinal microbiota and prostate cancer 

Study Results Bacteria involved
Liss et al. [44] (2018) Rectal swabs were taken and found an increase in Bacteroides and Streptococcus in 

those with prostate cancer compared to controls. 
Bacteroides, Streptococcus

Alanee et al. [53] (2019) Bacteroides from fecal samples was highly associated with prostate cancer diagnosis. Bacteroides 
Golombos et al. [54] (2018) Bacteroides massiliensis was in higher relative abundance in prostate cancer cases, 

while Faecalibacterium prausnitzii and Eubacterium rectalie was in higher relative 
abundance in controls. 

B. massiliensis, F. prausnitzii, 
   E. rectalie 

Miyake et al. [59] (2019) Men with more extensive prostate cancer disease (T2c-3b) had a higher rate of 
Mycoplasma genitalium infection compared to those who had benign prostate 
hyperplasia. 

M. genitalium 

Sfanos et al. [60] (2018) Alpha diversity of the microbiome was greater in those without prostate cancer as 
compared to those with prostate cancer. 

NA

NA, not applicable.
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drogen receptor axis-targeted therapies (ATT), the most com-
mon line of prostate cancer treatment [13]. Cimadamore et 
al. [13] showed that Ruminococcaceae spp. and Akkermansia 
muciniphila, which are both involved in steroid hormone 
biosynthesis, were linked to a more favorable response to 
anti–programmed death-1 (PD-1) immunotherapy. In pa-
tients who had Ruminococcaceae spp., antibiotic therapy 
was correlated with an increased risk of progressive disease. 
Sfanos found similar results, with a distinct difference in 
the GI microbiota of those on ATT compared to those with-
out prostate cancer. In prostate cancer patients taking ATT, 
there was a higher relative abundance of A. muciniphila 
and Ruminococcaceae spp., which Cimadamore et al. [13] had 
described to be more favorable for anti-PD-1 immunotherapy 
[60]. Oral hormonal therapy for prostate cancer may influ-
ence GI micriobiota and have an effect on clinical responses 
and the antitumor effects of immunotherapy. 

NEXT GENERATION SEQUENCING 

In the past decade, we have seen a revolution of sequenc-
ing technology that has already enabled us to understand 
many concepts in genetics and genome biology [68]. Histori-
cally, genomic sequencing has been used primarily in the 
context of the tumor DNA to determine mutations such as 
BRCA or other somatic mutations [69]. To supplement this, 
Next Generation Sequencing (NGS) has been demonstrated 
in different phase I and II trials to extend our knowledge of 
the GI microbiome. This profile report by NGS contains in-
formation about the commensal and pathogenic GI bacteria 
detected, bacterial load, and resistance to different antibiot-
ics detected. 

This may allow for personalized treatments depending 
on their patient’s unique microbial profile [70]. On a larger 
level, genomic data may shed light on the heterogeneity of 
microbial change of the cancer process to ultimately gener-
ate evidence between neoplasia and microbiota [71]. This can 
elucidate prostate cancer tumor genesis pathways and al-
terations of these pathways by individually distinct microbi-
ome signatures. In addition, the implementation of NGS will 
lead to a decreased consumption of antibiotics by discerning 
microbiomes that are resistant. This will have implications 
for patient side-effects and a preventing growing resistance. 

CONCLUSIONS

The relationship between the GI microbiome and pros-
tate cancer is a small but growing body of knowledge. Cur-
rently, the exact relationship and mechanism of the micro-

biome’s influence on prostate cancer is not known. Based 
on current literature, it seems that those who have prostate 
cancer and those who do not have distinct microbial profiles 
and different relative abundances of certain bacteria. 

The proportion of directionality of the relationship be-
tween prostate cancer and GI microbiome is unclear: on 
one hand, the cancer changes the microbiome and leads to 
dysbiosis, and on the other hand, the dysbiosis itself induces 
neoplastic changes. The bacteria that live in the epithelial 
lining of the GI may influence inflammation and neoplastic 
events both as a local and systemic level. The local microor-
ganism change has been implicated in GI-diseases such as 
inflammatory bowel disease and colitis. 

The estrobiome has been postulated in describing the gut 
microbiome’s role in systemic prostate carcinogenesis. Estro-
gen may promote neoplasia by activating PAHs which form 
carcinogenic metabolites and free radical cations. 

There are certain microorganisms that are associated 
with increased risk of prostate cancer or more extensive 
prostate cancer disease. Microbes such as Bacteroides, Strep-
tococcus, B. massiliensis, and M. genitalium were associated 
with greater risk, whereas F. prausnitzii and E. rectalie were 
higher in control groups. These particular GI bacteria should 
be further explored through NGS in the context of prostate 
cancer. 

The studies presented in this review show that the GI 
microbiome plays a role in the pathogenesis of prostate can-
cer through systemic mechanisms. Understanding the spe-
cifics of gut microbiota in the context of prostate cancer is 
needed for the development of personalized treatments. It is 
critical to further explore and understand the relationships 
between bacteria and prostate cancer pathogenesis, develop-
ment, and progression. 
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