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Abstract

Background: High-quality plant phenotyping and climate data lay the foundation for phenotypic analysis and
genotype-environment interaction, providing important evidence not only for plant scientists to understand the dynamics
between crop performance, genotypes, and environmental factors but also for agronomists and farmers to closely monitor
crops in fluctuating agricultural conditions. With the rise of Internet of Things technologies (IoT) in recent years, many
IoT-based remote sensing devices have been applied to plant phenotyping and crop monitoring, which are generating
terabytes of biological datasets every day. However, it is still technically challenging to calibrate, annotate, and aggregate
the big data effectively, especially when they were produced in multiple locations and at different scales. Findings:
CropSight is a PHP Hypertext Pre-processor and structured query language-based server platform that provides automated
data collation, storage, and information management through distributed IoT sensors and phenotyping workstations. It
provides a two-component solution to monitor biological experiments through networked sensing devices, with interfaces
specifically designed for distributed plant phenotyping and centralized data management. Data transfer and annotation are
accomplished automatically through an hypertext transfer protocol-accessible RESTful API installed on both device side
and server side of the CropSight system, which synchronize daily representative crop growth images for visual-based crop
assessment and hourly microclimate readings for GxE studies. CropSight also supports the comparison of historical and
ongoing crop performance while different experiments are being conducted. Conclusions: As a scalable and open-source
information management system, CropSight can be used to maintain and collate important crop performance and
microclimate datasets captured by IoT sensors and distributed phenotyping installations. It provides near real-time
environmental and crop growth monitoring in addition to historical and current experiment comparison through an
integrated cloud-ready server system. Accessible both locally in the field through smart devices and remotely in an office
using a personal computer, CropSight has been applied to field experiments of bread wheat prebreeding since 2016 and
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speed breeding since 2017. We believe that the CropSight system could have a significant impact on scalable plant
phenotyping and IoT-style crop management to enable smart agricultural practices in the near future.
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Automated phenotyping technology has the potential to enable
continuous and precise measurement of dynamic phenotypes
that are key to today’s plant research [1, 2]. Quantitative pheno-
typic traits collected through crop development are not only im-
portant evidence for plant scientists to understand the dynam-
ics between plant performance, genotypes, and environmental
factors (i.e., genotype-environment interaction [GxE]), they are
critical for agronomists and farmers to closely monitor crops
in fluctuating agricultural conditions [3-5]. High-quality pheno-
typing and climate datasets lay the foundation for meaning-
ful phenotypic analysis, which is likely to produce an accurate
delineation of the genotype-to-phenotype pathway for the as-
sessment of yield potential and environmental adaptation [6,
7]. Presently, although many automated phenotyping platforms
are capable of generating large plant-environment data [8], it is
still technically challenging to collect, calibrate, annotate, and
aggregate these datasets effectively, especially for experiments
carried out in multiple locations and at different scales [9, 10].

IWith the rise of Internet of Things (IoT) technologies and
their applications in plant phenotyping [11], a number of com-
mercial data and experiment management solutions have been
developed on the basis of customized hardware and propri-
etary software. For example, LemnaTec’s Field Scanalyzer plat-
form [12] employs a simple hypertext transfer protocol (HTTP)
server with an SQLite database to facilitate crop monitoring
and deep phenotyping using LemnaControl and LemnaBase sys-
tems [13, 14]. Integrated Analysis Platform (LemnaTec) [15] to-
gether with LemnaGrid analysis software form an automated
data processing platform that combines raw image collec-
tion, metadata association, and phenotypic analysis for indoor
plant phenotyping. Phenospex’s FieldScan system uses an in-
field WiFi network to connect PlantEye three-dimensional laser
scanners, climate sensors, and a gantry system with a Post-
greSQL database to realize the scanner-to-plant phenotyping
[16]. Furthermore, the PlantScreen system (Photon Systems In-
struments) manages fluorescence images through computer vi-
sion techniques via dedicated networks and databases [17].
However, the above-mentioned commercial systems require on-
going licensing maintenance and additional costs for developing
new functions. It is therefore challenging for a broader plant re-
search community to adopt and extend them easily in order to
meet the growing needs of today’s plant research [10].

Recently, some research-based systems have also been in-
troduced to the scientific community. For example, by combin-
inglocal and global management subsystems, a cloud-based re-
mote control system has been developed to monitor environ-
mental conditions in tropical horticulture cultivation as well as
remotely control drip irrigation for tomato plants based on soil
moisture content [18]. The framework has been tested under un-
stable network connections in rural areas, which has demon-
strated its potential and usefulness. However, it requires long-
term outdoor verification and still has compatibility issues when
integrating with different sensing devices. PhotosynQ software
manages data collection and storage through a handheld de-
vice called MultispeQ [19]. It uses Bluetooth to retrieve leaf sur-
face images, environmental and geolocational data collected by

the handheld device, which are then stored in a mobile phone
or a laptop for centralized analysis. The system requires man-
ual interference for data synchronization and onsite worksta-
tions or cloud-based servers for data analysis. Hence, it is tai-
lored for small-scale and qualitative phenotyping tasks. Breed-
Vision is another system that gathers data through a network-
based HTTP server [20]. Mounting multiple sensors on a trac-
tor, BreedVision is used to carry out field phenotyping for wheat
breeding. Sensors communicate to a structured query language
(SQL) database running in an embedded system. However, sim-
ilar to the above-mentioned commercial systems, this platform
is designed for bespoke hardware and has not provided an open
application programming interface (API) that allows external
hardware and software to connect. Solely for collecting climate
datasets, the PANGEA architecture [21] was successfully estab-
lished to network large numbers of connections (e.g., wireless
sensor networks [WSNs]) for agricultural practices [22]. This sys-
tem has been used to integrate large-scale WSN installations
through open and distributed smart device interfaces. However,
it cannot handle image-based datasets and thus limits its ap-
plications in image-based plant research. Recently, a compre-
hensive and open-source phenotyping hybrid information sys-
tem (PHIS) has been developed by INRA [23]. The PHIS aims to
provide a platform to enable data tracing and reanalysis of phe-
nomic data (for both sensor- and image-based data) collected
on thousands of plants, sensors, and events. It can identify and
retrieve objects, traits, and relations via ontologies and seman-
tics. Because the PHIS needs to incorporate many external phe-
notyping and modeling systems, it is heavyweight and suitable
for post-experimental data integration and analysis.

The above-mentioned industrial and academic efforts iden-
tify the need to develop a scalable and openly available informa-
tion management system to deal with our growing experimental
needs and biological datasets. It needs to handle different types
of datasets acquired in plant phenotyping experiments. To inte-
grate data transfer, calibration, annotation, and aggregation ef-
fectively, such a system should be flexible for changeable exper-
imental designs and expandable with third-party hardware and
external software. More importantly, the system needs to enable
users to closely monitor experiments conducted in different lo-
cations while experiments are being carried out.

With these design requirements in mind, we developed Crop-
Sight, a scalable IoT-based information management system
that is easy to use and flexible to deploy in diverse experimen-
tal scenarios. CropSight is an open-source software system that
provides a range of interfacing options for the community to
adopt and extend. We followed a distributed systems design dur-
ing the development so that experimental, phenotypic, and en-
vironmental data collected from infield and indoor experiments
could be integrated efficiently. The system provides a unified
web interface for users to oversee data collection, calibration,
and storage on a regular basis. Through our three-year wheat
prebreeding field experiments (2016-2018) [24] and the speed
breeding project [25], a powerful visualization component and a
flexible data/experiment management solution has been estab-
lished. Equipped with CropSight, users can now closely monitor
different experiments, both ongoing and historic, running in dif-
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ferent locations. Furthermore, the modulated software architec-
ture has made it possible to change scale and performance for
growing experimental needs. To our knowledge, the research-
based CropSight system has the potential to significantly con-
tribute toward dynamic data collation and scalable experimen-
tal management for both plant phenotyping and crop GxE stud-
ies.

IoT is a fast-growing field. IoT-based sensors are generating ter-
abytes of data for plant research and agriculture services ev-
ery day [26]. Since the existing data/experiment management
solutions heavily rely on bespoke data collection approaches,
they cannot be easily adopted and extended. Also, most of the
present solutions require the construction of a centralized man-
agement system, which could not resolve the problem of scal-
ability and accessibility because the distributed nature of IoT
technologies and the centralized data administration infrastruc-
ture are likely to confound each other. Instead, we developed a
two-component solution. The first part of this is a device-side
system that is lightweight and capable of interacting directly
with distributed IoT sensing devices, which can ensure onboard
data standardization and data collection. The second compo-
nent is a server-side system that collates and stores image- and
sensor-based data, with SQL as the back-end. This server-side
system is more comprehensive and responsible for managing
and visualizing dynamic crop-environment data collected dur-
ing experiments. Combining both parts, the open-source Crop-
Sight system is capable of bringing scalability and flexibility to
users.

The two-component systems design of CropSight is shown in
Fig. 1. We used a Python-based web framework, Flask [27, 28],
as the base for the device-side services. The main reason for
this choice is that Python, a high-level programming language
widely used by the scientific community, can interact with many
single-board computers (e.g., a Raspberry Pi computer) com-
monly embedded in distributed IoT sensors and/or phenotyp-
ing devices. This framework administers onboard data flow and
storage together with a lightweight server for web-based inter-
actions (Fig. 1A). As Flask is hardware independent, the approach
can be applied to any hardware that supports Python. Additional
services such as Linux crontab scheduling system, dynamic host
configuration protocol (used for establishing self-operating WiFi
network), and virtual network computing (VNC) services can
also be easily added or removed to maintain the simplicity of
the device-side system.

Powered by Hypertext Pre-processor (PHP) 5+ [29] and MySQL
[30], the device-side system can facilitate real-time interactions
between smart devices (e.g., smartphones and tablets) and IoT
devices. The graphic user interface (GUI) was developed using
PHP and JavaScript, which can be opened in a web browser such
as Chrome and Firefox on any smart device. A PHP-based REST-
ful API [31] was adopted to regulate hourly client-server com-
munications. A lightweight SQL server, MariaDB [32], was used
for collecting and storing different formats of datasets, includ-
ing images, climate sensors, and experimental settings. The
device-side system can give access to each phenotyping device
so that live video streaming and remote system configuration
can be initiated by users to deploy phenotyping devices (Sup-
plementary Fig. S1) as well as to establish indoor or infield ex-

periments just using a smartphone or a tablet. Also, the GUI al-
lows users to enter metadata including trials, experiments (e.g.,
genotypes, treatments and biological replicates), and brief de-
scriptions, while phenotyping devices are being installed. The
distributed IoT-based design has massively improved the mo-
bility and flexibility of phenotyping tasks.

The server-side system bridges the connection between data
aggregation and cloud-based interfacing (Fig. 1B). This approach
facilitates biological data acquired at different locations to be
synchronized with a centralized server for data management,
detailed traits analyses, and decision making in crop manage-
ment. PHP5+ was used to develop the system that supports
Apache and an SQL server such as MySQL [30]. The server-side
system initiates regular updates of the status of each distributed
IoT device via server user interface, with information such as
online or offline status of the device, operational mode, repre-
sentative daily images, micro-climate readings, and the usage
of computing resources (i.e., central processing unit and mem-
ory). Between 2016 and 2018, the two-component CropSight sys-
tem has been successfully applied to monitor wheat prebreeding
experiments in the field and indoor wheat speed breeding (i.e.,
growth chamber and greenhouse) simultaneously (Supplemen-
tary Fig. S2).

While CropSight is designed to allow use by individuals with
no technical background, the installation of the system still re-
quires an IT technician to complete (see Additional File 1 for de-
tailed instructions). To install the system, a functioning PHP and
SQL server is required. Also, as it needs to run on a network-
enabled web server, a network infrastructure is therefore re-
quired to operate CropSight (Fig. 2). Due to the rural location
of many crop research experiments, it is often expensive and
unfeasible to install wired or wireless networks in some ex-
perimental sites. Hence, our solution is to establish an ad hoc
and self-operating network through universal serial bus (USB)
WiFi dongles mounted on IoT devices, e.g., a CropQuant phe-
notyping workstation [24], so CropSight can manage data trans-
fer between distributed devices (distributed nodes) and a cen-
tral server (a server node). The self-operating network can be
either a Star or a Mesh network topology (Supplementary Fig.
S3). In our case, we have established a Star network typology
in field experiments of bread wheat. The device-side CropSight
system administers the self-operating network, enabling peer-
to-peer HTTP accessing points to network distributed nodes for
data calibration and synchronization (Fig. 2A) or to establish a
direct link between a smart device and a server node (Fig. 2B).
After correlating and collecting all data from the device side,
the system will then transfer the data to the server-side system,
where users could oversee different experiments at near real
time (Fig. 2C). The self-operating networking approach enables
flexible WiFi coverage over experiment sites. It is important to
point out that the effective radius of one Star network in our ex-
periments is around 1,000-1,200 m?, which is determined by the
effective 25-meter range of the USB WiFi dongles installed in our
CropQuant phenotyping workstations. A normal Star network
includes eight low-cost distributed nodes and one server node,
which costs approximate $4,200 to build in-house. For an indi-
vidual phenotyping workstation (i.e., a distributed node), around
20 GB sensor- and image-based data could be generated in a
growing season.

When implementing the CropSight system, we followed Model-
view-controller (MVC) software architecture, dividing the sys-
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Figure 1: A deployment diagram of the CropSight system in biological experiments. (A) CropSight facilitates users to interact with distributed infield or indoor pheno-
typing devices using wired (i.e., ethernet cables) or wireless connection (e.g., WiFi network). The CropSight client running on distributed workstations supports remote
control and onboard data management. (B) Users can connect, monitor, and administer experiments through the centralized CropSight server in near real time.
Through dedicated networks, the CropSight back-end server collates and integrates large-scale image- and sensor-based phenotyping datasets in an SQL database.

tem into three interconnected parts to separate internal infor-
mation flows based on how they are presented to the user [33].
Using the MVC pattern to interface different parts of the Crop-
Sight system, not only source code can be reused for both device-
side and server-side software implementation, we could also en-
able modulated parallel software development to add new func-
tions, while biological experiments were still ongoing (Fig. 2D).

To enable data standardization and integration, a RESTful
API was implemented that accepts image- and sensor-based
datasets and IoT device status updates in JavaScript object no-
tation (JSON) format. All interactions between devices and the
server are authenticated using a pre-shared key pair to ensure
that data collection is accomplished from a trusted source. The
RESTful design allows all data requested for transaction to be
contained within a single request, which compiles all informa-
tion into one JSON object and then transmits through an HTTP
POST request. The Model implementation allows us to determine
dynamic data structures, as well as to manage logic and rules
of the CropSight system. The entity-relationship model (ER dia-
gram) used for establishing the database, including entity types
and specifies relationships between the entity types, can be seen
in Supplementary Fig. S4.

Based on the PHP server (Apache tested) and the SQL server
(MySQL and MariaDB tested), the Controller component responds
to user input and internal interactions on the data model. The
controller receives image, sensor and system status as the input
data flows, validates them, and then passes them to the model
component, first on a distributed device-side server and then
transmitted to a globally accessible server-side server, which
mirrors the input data. Internet connections are required, if the

input datasets need to be transferred from a field experiment
site to onsite servers. The form of data transmission can be ei-
ther wired ethernet or WiFi network. The Controller administers
data collation between device-side and server-side by mimick-
ing the device API call to the higher-level server API at the time
that device request is programmed.

The View component presents the data model and user in-
teractions in two formats. First, through an active HTTP connec-
tion and D3.js graphing engine [33], users can access distributed
IoT devices via web browsers (Chrome and Firefox tested) in-
stalled on any smart device in the field or in greenhouses. The
device-side CropSight provides a tailored GUI window, within
which users can deploy (see Additional File 1), monitor, assess,
and download captured data on demand. Second, the device-
side system synchronizes with the server at regular intervals,
based on which CropSight provides a more comprehensive GUI
to present both experimental and technical status (i.e., system
status) of ongoing experiments. The device-side system is de-
signed to be distributed. So, if a given IoT device cannot make a
direct Internet connection for any reasons, the device-side sys-
tem will enable local data storage as a server node. After the
networking is re-established, the system can then forward col-
lected data automatically (the onboard USB memory stick can
store up to 60 days’ of image and sensor data).

Experiment and data management

Monitoring dynamic plant phenotypes such as height, growth
rate, growth stages, and associated climate conditions in biolog-
ical experiments can be a laborious and time-consuming task.
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Figure 2: A component diagram of the deployment, detailed data flows, and device- and server-side applications of the CropSight system. (A) IoT phenotyping work-
stations installed in wheat field experiments. Distributed phenotyping nodes are connected by the CropSight system. (B) Infield phenotyping devices can be directly
accessed and controlled through the device-side CropSight system using a smart device. (C) The server-side CropSight system can be used to manage ongoing indoor
and infield experiments by accessing a centralized web interface. (D) A detailed component diagram showing the MVC design of CropSight and the interface between
distributed phenotyping workstations, device-side CropSight server, server-side system, and detailed data flows. The data input is through a RESTful API, responsible
for transferring data between servers and enabling interactions through a web-based user interface.

It is even more challenging if we need to calibrate and verify
datasets collected from sensing devices deployed in different
sites. In particular, low-quality and missing data often lead to
analysis errors and unusable results, which normally can only
be identified after the completion of experiments [34]. Hence,
the server-side CropSight system was designed to oversee on-
going experiments based on representative daily images, hourly
sensor data collected from each phenotyping device, as well as
experimental settings such as genotype, treatment, drilling date,
plot position and biological replicate.

The interfaces of experiment and data management are pre-
sented in Fig. 3, which integrate experiment location, plot map,
and crop/experiment/device information to enable quick cross-
referencing so that crop management decisions can be made
while experiments are ongoing. As shown in Fig. 3A, for a given
experiment, the grid view provides global positioning system
(GPS)-tagged project geolocation, identifiers of installed pheno-
typing devices, representative daily images of monitored plots,
and color-coded status indicator showing the operation mode of
each distributed device. CropSight reads the device-side server’s
GPS coordinates and presents the geolocation in an embedded
Google Map for users to locate the experiment. In addition to the
GPS location, an embedded plot map is also provided demon-
strating the position of each monitored plot or pot in the field or
in greenhouses together with color-coded status markers, indi-
cating whether extra attention is needed (e.g., green for operat-
ing, amber for idle, and red for device termination or operational
error). These markers in the plot map can be clicked, which will
bring the user to the detailed view of an individual device (Fig. 4).
Each distributed phenotyping device uploads a daily represen-
tative image of the monitored plot or pot. The resolution of the

image is 640 x 480 pixels, downsized from 2,592 x 1,944 pixels to
enable effective data transmission for large-scale device-server
data synchronization. The image is automatically selected based
on file size, intensity, and image clarity. Image calibration and
white balance for infield crop imaging are accomplished via phe-
notyping devices such as CropQuant workstations [24]. The au-
tomated adjustment of white balance gains and exposure mode
under changeable lighting conditions are included in the Python
script available in the CropSight project repository on GitHub
([34], Assets Section, camera_capture_script.py).

The grid view of these representative images is used as a
snapshot of the experiment, so that users can quickly assess
plant growth and performance of each genotype without reg-
ularly walking in the field during the growing season. We have
developed an image analysis algorithm to automatically select
high-quality images from daily image series to reduce manual
interference on operating phenotyping workstations [35], as well
as a number of Python-based software such as Leaf-GP to ana-
lyze growth phenotypes [36]. However, to maintain the indepen-
dence of CropSight, these algorithms have not been integrated
in the infrastructure.

The list view provides a table of status that incorporates crop
information with experiment and device details (Fig. 3B). This
view is mainly used for project maintenance proposes, which
contains three sections. First, similar to the grid view, crop in-
formation identifier lists phenotyping devices installed in the
experiment. Second, experiment information includes a colored
status indicator to display the operational mode of a given de-
vice, the experiment duration of a given device, and the lat-
est time stamp of data synchronization. Device uptime (i.e.,
experiment duration) is computed using the device’s internal
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duration, and representative daily images. (B) The list view shows detailed statistics of all monitored crops in a given experiment, including crop information (genotypes
and daily images), experimental information, and distributed phenotyping information such as workstation ID, storage, IP address, image and sensor data download,

and device interaction functions via flask-based HTTP interface.
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Figure 4: The individual view of the server-side CropSight system. (A) The individual view of the server-side CropSight system monitoring crops in the field, detailing
device and experiment information together with captured microclimate data. (B) Web-based graph visualization of hourly sensor readings during a given experiment,
showing ambient temperature, ambient humidity, field lighting, soil moisture, and soil temperature variation in the plot region.

clock (i.e., the Linux uptime command) and the time when the
latest image is captured. Third, distributed device information
shows: (1) each device’s onboard storage, using filled bars to in-
dicate the percentage of space left in gigabytes based on regular
30-minute updates; (2) buttons to download image- (i.e., “Crop
Growth Image Series,” in monthly Zip archives) and sensor-
based (i.e., “Download Sensor Data,” in a comma-separated
value file) datasets collated during the experiment from the SQL
database; and (3) device interaction buttons, providing direct de-
vice control and remote system configuration via Secure Shell or
VNC.

Continuous microclimate visualization

Microclimate is important evidence for plant scientist to mon-
itor radiation/ambient/soil variation in different locations over
the whole experiment site, an important factor that closely con-
nects with the performance at both plant and plot levels [37].
To facilitate the monitoring of microclimate during an experi-

ment, a comprehensive visualization function has been devel-
oped for CropSight (Fig. 4). By accessing a given phenotyping de-
vice’s detail page, collected environmental factors can be viewed
as individual line charts along with the device information. IoT-
based climate sensor readings are logged with the central server
and then indexed by device and location, allowing near real-
time microclimate readings (30-minute updates) of monitored
regions. The visualization is done in the web browser using the
D3 JavaScript library. In our case, we can soundly retrieve read-
ings such as device temperature (to assess device performance),
ambient relative humidity, ambient temperature (Fig. 4A), light
levels (based on light intensity), soil temperature, and soil mois-
ture (Fig. 4B). The microclimate datasets acquired from multi-
ple locations across the field can also be used for data calibra-
tion to generate a normalized and highly reliable environmental
reading of the experimental site. The CropSight system accepts
collective readings from most off-the-shelf climate sensors and
hence is open to the expansion of new environmental variables.
The environmental sensors used in our experiments are: DHT22
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digital temperature and humidity sensor, TSL2561 luminosity
sensor, DS18B20 waterproof digital temperature probe, and ana-
logue capacitive soil moisture sensor. Ambient temperature and
humidity sensors were incorporated into the housing of the phe-
notyping workstations, and soil sensors were inserted into the
ground of the plot, attached to the phenotyping workstations via
cables.

A key element of modern agriculture is to closely monitor dy-
namic crop performance and agricultural conditions to predict
and plan crop production [38]. Plant breeding and GXE studies
also rely on high-quality and high-frequency crop-environment
data to produce accurate growth models for yield and quality
prediction [39, 40]. The CropSight system provides users with
quick access to environmental factors recorded by each dis-
tributed phenotyping device during the growing season. Based
on the position of a given phenotyping device, seasonal micro-
climate datasets can jointly form a dynamic growth condition
map showing environmental conditions and variance in the field
(Fig. 5).

In a 253-day field experiment of 32 wheat genotypes within
the single genetic background of Paragon (a UK spring wheat va-
riety) completed in 2017, we installed 16 CropQuant field phe-
notyping workstations to monitor 6-meter wheat plots to col-
lect continuous crop growth image series as well as associated
microclimate conditions such as ambient temperature, relative
humidity, light levels, soil temperature, and soil humidity. When
the datasets were being collated in CropSight, a field map of dy-
namic microclimate conditions at key growth stages (i.e., from
early booting to early grain filling, 56 days) was gradually pro-
duced, showing the increase in ambient temperature (Fig. 5A),
the variation of ambient moisture levels (Fig. 5B), and the steady
increase in soil temperature (Fig. 5C). To simplify the presen-
tation, the microclimate heat map was presented with data at
14-day intervals, where wheat plots installed with sensors were
outlined with red and plots without sensors were outlined with
green, where climate data was produced through data interpo-
lation methods based on adjacent readings (Fig. 5). The period of
the interval can be flexibly changed, and the microclimate read-
ings are retrievable as soon as data synchronization is finished
(Supplementary Fig. S5 and Additional File 2). Furthermore, the
climate datasets can be used for cross-validating the soundness
of infield sensors, e.g., whether soil temperature correlates with
ambient temperature (Supplementary Fig. S5A) and why read-
ings from many low-cost sensors could provide more represen-
tative information of the field in comparison with one expensive
central weather station (Supplementary Fig. S5B).

Utilizing this approach, dynamic environmental conditions
throughout the field can be recorded with very low-cost cli-
mate sensors, which can then be scaled up through interpola-
tion methods to cover regions without sensors. To soundly in-
terpolate environmental data, the placement of climate sensors
needs to be standardized to ensure effective data coverage. De-
pending on measurement requirements, standards for sensor
placement can be based on the estimation of evapotranspiration
[41]. Through our wheat field experiments between 2016 and
2018 at Norwich Research Park in the United Kingdom, combin-
ing distributed sensors and the CropSight system was capable
of providing high-quality crop performance and growing condi-
tions datasets for our changeable experiment needs.

CropSight not only provides tools for monitoring ongoing infield
and indoor experiments but also supplies toolkits to reference
and download historical datasets. An important part in crop re-
search is being able to compare collected results with past exper-
iments. To this end, CropSight stores all image and sensor data
and manages these historical datasets with easy reference and
access (Fig. 6). Historical datasets can be retrieved through the
frontpage, similar to ongoing experiments (multiple projects can
be administered by CropSight simultaneously). After opening a
completed project, users can display the GPS-tagged geolocation
of an completed project and devices used in the project together
with project references (Fig. 6A). By clicking a specific plot within
the experimental field, CropSight can directly reference environ-
mental and image datasets in the plot, with device name, date
of last capture, and last image taken by the phenotyping device
(Fig. 6B). If users want to revisit previous datasets in the project,
they can download both sensor data packages and/or growth
image series in monthly archives by clicking the archive links
(Fig. 6C). This design enables a unified cloud-ready platform to
facilitate both ongoing and historical data management for in-
and post-experiment comparison.

The continuing challenge of global food security caused by fluc-
tuating environments and a narrower range of genetic variation
of modern crops requires innovative thoughts and technologies
to improve crop productivity and sustainability [2, 42, 43]. As
European infrastructures for sustainable agriculture (e.g., EM-
PHASIS and Analysis and Experimentation on Ecosystems) have
identified, openly shareable solutions built on widely accessible
digital infrastructures are likely to provide an effective solution
to address the challenge by integrating novel scientific concepts,
sensors, and models [44, 45]. The CropSight system presented
here is scalable and open source, providing the scientific com-
munity a number of interfacing options to adopt and extend.
The openly available platform integrates high-frequency envi-
ronmental data and crop images automatically, which can be
used to enable both phenotypic analyses and agricultural deci-
sion making. By associating environmental conditions with crop
growth data, we also trust that the system is capable of forming
a sound base for reliable GXE studies. More importantly, Crop-
Sight provides geolocation and remote sensor readings of cur-
rent and historical experiments, a comprehensive solution to
enable multi-site and multi-year cross-referencing of crop per-
formance and growth conditions.

Because CropSight facilitates the real-time access of micro-
climate conditions and crop imagery (through live video stream-
ing) in the field or in greenhouses, either through a smart device
or an office PC, users can make a quick decision of crop perfor-
mance, growth stages, and plot conditions of any monitored lo-
cation distributed in a given experiment, field, or site. Further-
more, automatic data transmission allows for centralized data
and experiment management, which means that the system can
be scaled up to the national scale if a broader IoT in agriculture
infrastructure is in place. As collected data is annotated and pre-
selected on distributed phenotyping or IoT devices, only stan-
dardized crop-environment datasets are collated to support de-
tailed traits analyses and cross-referencing. Finally, openly shar-
ing results from different sites and different experiments will
enable crop researchers, breeders, and farmers to gain great ben-
efits, e.g.,, predicting and prewarning disease spread at the na-
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Infield spatial measurements of ambient temperature, relative humidity, and soil temperature
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Figure 5: Infield spatial measurements of microclimate conditions collated by the CropSight system. (A, B) A heat map of ambient sensor reading of temperature and
relative humidity recorded during the growing season. Each cell represents a plot in the 2017 field experiment. Real sensor reading outlined in red and interpolated

values outlined in green. (C) A heat map of soil-based sensor reading of soil temperature recorded during the growing season.
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tional scale so that early adoption of preventative measures can
be arranged.

Presently, many governments are shifting their focus toward
innovative technologies to modernize crop and agricultural re-
search. The UK government, for instance, has invested heavily
in IoT-based technologies to address challenges on yield pro-
duction, food traceability, environmental issues, incompatibil-
ity, and lack of infrastructure [46]. We believe that CropSight
can address some of the current challenges directly. For exam-
ple, logging historical data and annotating crop growth and en-
vironmental effects within monitored fields can increase crop
traceability. To reduce the overall use of agrochemicals as part
of a precision farming strategy [47, 48], CropSight can be used to
identify the appropriate timing and areas for chemical applica-
tion together with infield imaging and ambient sensors. Water
is in limited supply for large regions of the globe, and the re-
duction of unnecessary irrigation would be of large benefit to
the cost-effectiveness of agriculture [49, 50]. As discussed previ-
ously, CropSight is built with near real-time environment mon-
itoring mechanisms including soil temperature, soil moisture
levels, and ambient humidity. Hence, it can provide information
crucial to making decisions and targeting irrigation as they re-
late to timing and location. Additionally, by linking extra climate
sensors with IoT devices, further environmental readings can be
extended in CropSight for growing agricultural needs.

Besides environmental and crop growth monitoring, historic
and current datasets collated in a central system can also deliver
predictive powers. An example of potentially predictable situa-
tions is the “Smith Period” for predicting late blight in potato
crops [51]. Late blight is shown to be likely to occur during a
“Smith Period,” which is defined by a period of two or more days
with a minimum temperature of 10°C and humidity of 90% or
above for at least 11 hours in each day. Having direct access to
dynamic sensor readings on the CropSight can make the moni-
toring of specific environmental patterns much easier and thus
establish an important tool to inform farmers and growers to
apply fungicides and chemical treatments to the appropriate ar-
eas. Hence, CropSight has a high potential to serve sustainable
agriculture and environmental friendliness of food production
under today’s changing climates.

To establish a data and experiment information management
system that is scalable and usable on regional, national, or even
global crop research and agricultural practices, we believe that
with further development, CropSight in connection with dis-
tributed IoT sensors can meet the future demand of usability
and scalability. One area of expansion is in scalability. The sys-
tem is currently tested on a local server with a direct network
connection to at least one of the distributed nodes. To allow the
expansion at a larger, national, or even global scale, the reliance
on maintained servers would be less effective than a true cloud-
based service. Hence, moving the CropSight system to a glob-
ally accessible cloud server with cloud-enabled distributed stor-
age is a potentially feasible approach that removes the require-
ments for institutions and agricultural practitioners to maintain
servers and storage. Given the lack of network infrastructure in
rural areas in many countries, the addition of 3G or 4G mobile
data networks to key distributed nodes in the field can improve
the infield network, upon which the data communication of a
large number of agri-tech devices can be relied.

Another prohibitive factor in IoT in agriculture is the quan-
tity and costs of IoT devices required to cover an entire field.

Based on our three-year field experiments, we believe that in-
stalling sensors and phenotyping workstations to cover every
area in the field is unnecessary. Figure 5 shows that the data
interpolation approach that is applied can generate microcli-
mate readings between randomly positioned stations to model
environmental variation across the whole field. This subsam-
pling approach has produced high-quality environmental read-
ings, which could be used to improve the effectiveness of IoT ap-
plications in agriculture. Additionally, with the development of
national IoT infrastructure, the similar subsampling idea can be
expanded to a larger and multi-site level, which can then truly
help inform decision in crop research and agricultural practices
across a country’s arable land.

Project name: CropSight for wheat prebreeding in Designing Fu-
ture Wheat

Project home page: https://github.com/Crop-Phenomics-Gr
oup/cropsight/releases [35]

Operating system(s): Platform independent

Programming language: Python, PHP, JavaScript, SQL

Requirements: Apache (or other PHP5+) server, MySQL (or
other SQL) server, a recent version of Chrome, Firefox, or Safari

License: BSD-3-Clause available at https://opensource.org/lic
enses/BSD-3-Clause

RRID:SCR-016870

The datasets supporting the results presented here are available
at the CropSight Project page [35]. Snapshots of source code and
other supporting data are also openly available in the GitHub
repository [35] and GigaScience database, GigaDB [52].

Additional File 1.docx (CropSight Installation Instructions and
Interface Details)

Additional file gives step-by-step instructions for initialis-
ing the system through an existing PHP webserver with SQL
database, details of RESTful API required fields necessary for de-
vice interaction, and addition detail of distributed installation
and database integration.

Additional File 2.html (Algorithm to generate plotted figures)

Additional file contains full python code to replicate plotted
figures within the paper, displayed within an exported iPython
notebook. All datasets shown within the plotted figures of the
paper are available at the project GitHub repository.

Supplementary Figure S1. The device-side CropSight sys-
tem login GUI and remote system configuration. (A) The device-
side CropSight system gives GUI-based access to each phenotyp-
ing device’s user interface. (B) The system allows device man-
agement and remote system configuration such as live video
streaming to assist in calibration and experiment setup.

Supplementary Figure S2. Archived image- and sensor-based
experimental data access. (A&B) Archived data access of 2016
and 2017 wheat field experiments, allowing browsing and down-
loading of previously completed infield experiments. (C) Access-
ing multiple indoor and infield experiments and archived histor-
ical data to enable cross-referencing crop growth and environ-
mental conditions.
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https://github.com/Crop-Phenomics-Group/cropsight/releases
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Supplementary Figure S3. The network topology of self-
operating crop phenotyping in the field. A number of nodes form
a star network with a central in-field server node, which commu-
nicates with the CropSight system through an in-field wireless
network.

Supplementary Figure S4. Database Entity-Relationship dia-
gram detailing high-level entities within the CropSight database
and the relational links between primary, composite and for-
eign key fields. The ER diagram also describes the structure of
database tables, omitting simple storage fields.

Supplementary Figure S5. Validating climate sensors de-
ployed in the field. (A) The cross-validation of two different sets
of sensors, normalised soil and ambient temperature readings.
(B) Different reading between distributed ambient humidity sen-
sors (15 placed in the field) in comparison with a central weather
station, showing different climate readings.

API: application programming interface; ER: entity relationship;
GPS: global positioning system; GUI: graphical user interface;
GxE: genotype by environment; HTTP: hypertext transfer pro-
tocol; IoT: Internet of Things; JSON: JavaScript object notation;
MVC: model-view controller; PHIS: phenotyping hybrid informa-
tion system; PHP: PHP hypertext pre-processor; SQL: structured
query language; USB: universal serial bus; VNC: virtual network
computing; WSN: wireless sensor network.
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