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Abstract

Background: Emerging and re-emerging pathogens imperil public health and global food security. Responding to
these threats requires improved surveillance and diagnostic systems. Despite their potential, genomic tools have
not been readily applied to emerging or re-emerging plant pathogens such as the wheat yellow (stripe) rust
pathogen Puccinia striiformis f. sp. tritici (PST). This is due largely to the obligate parasitic nature of PST, as culturing
PST isolates for DNA extraction remains slow and tedious.

Results: To counteract the limitations associated with culturing PST, we developed and applied a field
pathogenomics approach by transcriptome sequencing infected wheat leaves collected from the field in 2013. This
enabled us to rapidly gain insights into this emerging pathogen population. We found that the PST population
across the United Kingdom (UK) underwent a major shift in recent years. Population genetic structure analyses
revealed four distinct lineages that correlated to the phenotypic groups determined through traditional pathology-based
virulence assays. Furthermore, the genetic diversity between members of a single population cluster for all 2013 PST field
samples was much higher than that displayed by historical UK isolates, revealing a more diverse population of PST.

Conclusions: Our field pathogenomics approach uncovered a dramatic shift in the PST population in the UK, likely due
to a recent introduction of a diverse set of exotic PST lineages. The methodology described herein accelerates genetic
analysis of pathogen populations and circumvents the difficulties associated with obligate plant pathogens. In principle,
this strategy can be widely applied to a variety of plant pathogens.
Background
Emerging and re-emerging diseases of humans, animals
and plants pose a significant hazard to public health and
food security. These threats can arise from newly discov-
ered pathogens, such as the Middle East respiratory syn-
drome (MERS) coronavirus in humans [1], or novel host
adaptation, as in zoonotic influenza [2]. Recent disease
outbreaks in plants have been associated with expan-
sions of pathogen geographic distribution and increased
virulence of known pathogens, such as in the European
outbreak of ash dieback [3] and wheat stem rust across
Africa and the Middle East [4]. Independent of the host
organism, the scale and frequency of emerging diseases
have increased with the globalization and industrialization
of food production systems [5]. Improved surveillance
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mechanisms and diagnostic tools are needed to rapidly re-
spond to these emerging threats. With recent advances in
DNA and RNA sequencing, bacteriologists and virologists
are capitalizing on these technological advances by inte-
grating high-resolution genotypic data into pathogen
surveillance activities [6]. However, the application of
genomics to emerging filamentous plant pathogens has
lagged. Filamentous plant pathogens tend to have large
genomes and are often obligate parasites that cannot be
axenically cultured in the laboratory. The time-consuming
and tedious protocols required to maintain these pathogens
on their hosts have impeded the translation of genomic
technologies into surveillance and diagnostics methods.
Traditional diagnostic tools for pathogens have been

based on targeted cultures, PCR-based approaches and/
or phenotypic evaluation of disease response in specific
plant genotypes [7]. These methods detect only known
pathogenic agents, can introduce bias, and can fail to
recognize novel variants or races due to their narrow
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scope [8]. However, next-generation sequencing tech-
nologies can circumvent these limitations to provide a
rich source of data for the development of surveillance
and diagnostic tools. The high resolution of these ap-
proaches also enables exploration of the genetic deter-
minants underpinning pathogenicity. Whole-genome
sequencing has emerged as a preferred technology, espe-
cially for viruses with relatively small genomes (approxi-
mately 50 kb on average) [9], although this methodology
is less tractable in pathogens with large genomes such as
filamentous plant pathogens, which have genomes that
range from 19 to 280 Mb [10]. Alternatively, RNA sequen-
cing (RNA-seq), which focuses solely on the expressed
fraction of the genome, reduces the sequence space of the
sample and provides relevant transcriptome data for both
the pathogen and host in situ [11].
Despite modern agricultural practices, diseases of the

major food crops cause up to 15% pre-harvest yield loss
[12]. Among these crops, wheat is a critical staple pro-
viding 20% of the calories and over 25% of the protein
consumed by humans [13]. One of the major fungal dis-
eases of wheat is yellow (stripe) rust caused by the obligate
fungus Puccinia striiformis Westend. f. sp. tritici Eriks
(PST) [14]. This disease is widespread across the major
wheat-producing areas of the world and can cause signifi-
cant reductions in both grain quality and yield in suscep-
tible cultivars [15]. In the past decade, new PST races
have emerged that are capable of adapting to warmer tem-
peratures, have expanded virulence profiles, and are more
aggressive than previously characterized races [16]. More
recently, a series of PST races have arisen in Europe and
overcome many of the major resistance genes in European
germplasm [17]. For instance, in 2011 a race group col-
lectively called ‘Warrior’ (based on the virulence of one of
the initial variants of this group to the UK wheat variety
Warrior) emerged as a serious threat to wheat production.
However, the origin of this new race and its relationship
with previously characterized races remain unclear.
An important first step towards the development of

more effective surveillance and diagnostic tools is the
availability of a draft reference genome and annotation.
Cantu et al. [18] published a first draft sequence of PST
isolate 130 (PST-130) with 22,185 annotated protein-
coding sequences across the 64.8 Mb assembly. More
recently, Zheng et al. [19] published a 110 Mb draft
sequence of Chinese PST isolate CYR32 using a ‘fosmid-
to-fosmid’ approach and annotated 25,288 protein-
coding sequences. These genomic resources can be used
to identify pathogenicity determinants, such as secreted
effector proteins [20] that are recognized in certain host
genotypes, where they induce an immune response that
prevents disease progression. Avirulence effector pro-
teins are under strong selective pressure to adapt in
order to evade detection by the host plant immune
system [21]. The signatures of adaptation and gene ex-
pression patterns of pathogen isolates with distinct
virulence profiles can provide a powerful means of
identifying specific avirulence/virulence proteins that
can be used to track pathotypes at a national and inter-
national level. Furthermore, publication of these draft
reference genomes also provides an opportunity to
characterize pathogen populations at a considerably
higher resolution and on a much wider scale through
re-sequencing of PST isolates.
In this study, we developed a robust and rapid ‘field

pathogenomics’ strategy, using transcriptome sequencing
of PST-infected wheat leaves to gain insight into the
population structure of an emerging pathogen. Our ana-
lysis uncovered a dramatic shift in the PST population
in the UK and supports the hypothesis that recent intro-
duction of a diverse set of exotic PST lineages may have
displaced the previous PST populations. Our field patho-
genomics approach circumvents the difficulties associated
with less-tractable filamentous plant pathogens and can
be applied to other emerging populations of pathogens.

Results
Genotyping pathogens and their hosts using RNA-seq of
field-collected infected leaves
To characterize the genotypic diversity of PST at the
field level, we collected 219 samples of wheat and triti-
cale infected with PST from 17 different counties across
the UK in the spring and summer of 2013 (Figure 1a;
Table S1 in Additional file 1). From these, we selected
35 PST-infected wheat samples from wheat varieties that
spanned the resistance spectrum, and 4 PST-infected
triticale samples (Table S1 in Additional file 1). Total
RNA was extracted from each sample and subjected to
RNA-seq analysis (Figure 1a). After filtering, an average
of 37% (standard deviation 12.7%) reads aligned to the
PST-130 reference genome [18], indicating that fungal
transcripts account for a high percentage of the transcripts
in PST-infected plant tissue (Table S2 in Additional file 1).
To address whether each sample comprised a single
PST genotype without considerable bias in allele-
specific expression, we calculated the distribution of
read counts for biallelic single nucleotide polymor-
phisms (SNPs), determined from alignment to the
PST-130 genome. As a dikaryon, the PST mean of read
counts at heterokaryotic positions is expected to have
a single mode at 0.5, with two alternative alleles each
representing one of the two haploid nuclei (Additional
file 2) [22]. Based on the presence of only two alleles
and the shape of the distribution being comparable to
purified isolates when heterokaryotic SNPs were con-
sidered, we concluded that all samples likely represent
a predominantly single genotype with little bias in al-
lele expression (Additional files 3 and 4).



Figure 1 PST field isolates belong to a diverse emergent lineage. (a) A total of 219 samples of wheat and triticale infected with PST were
collected from 17 different counties across the United Kingdom (UK) in the spring and summer of 2013. Transcriptome sequencing was carried
out on 39 samples to generate transcript data from both the pathogen and host. For the pathogen, the data were used to assess the pathogen
population diversity and differential gene expression. For the host, the data were used to confirm the host variety within a particular sample. SNP,
single nucleotide polymorphism. (b) 2013 field isolates (dark blue squares) are distinct and highly diverse when compared with the older UK
population (light blue squares). Phylogenetic analysis was undertaken using the third codon position of 5,610 PST-130 gene models (2,496,679
sites) with ≥80% breadth of coverage for all PST isolates using a maximum likelihood model. Stars indicate samples in which both the genome
and transcriptome were sequenced from the same PST isolate.
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We next used our data to confirm the wheat variety in
a particular PST-infected sample. To this end, we ex-
tracted the wheat sequences flanking a set of 18,162
genetically mapped wheat SNPs (Table S3 in Additional
file 1) [23]. Nine of the PST-infected wheat samples were
collected from wheat varieties with identified SNPs
(Donal O’Sullivan (University of Reading) and James
Cockram (NIAB), personal communication) and for each
of these samples, reads were independently aligned
against the wheat sequences extracted above. Each of
the 18,162 SNP positions with ≥10× coverage was then
assessed for correlation against the available sequence
data for seven wheat varieties. This analysis confirmed
the wheat variety recorded at the point of sample collection
as the most likely variety for all nine PST-infected wheat
samples (Figure 2). Furthermore, for samples taken from
the wheat variety Oakley, the second highest matching var-
iety was KWS Santiago, whose parents are Sherbourne and
Oakley. Oakley has been used widely in the parentage of
various wheat varieties as reflected by the level of similarity
between PST-infected Oakley samples and all other var-
ieties (Figure 2). This analysis demonstrates that the tran-
scriptomic data from PST-infected field samples can be
used successfully to determine the host wheat variety.



Figure 2 Identification of wheat varieties using transcriptome data generated directly from PST-infected field samples. A total of 18,162
SNP positions were used to differentiate wheat varieties. Each of the 18,162 SNP positions with ≥10× coverage was assessed for correlation
against the available sequence data for seven wheat varieties. For each SNP position, if the PST-infected field sample matched the sequence at a
SNP site for a particular variety (for example, variety = AA; field sample = AA) the position was scored 1, if the site only partially matched (for example,
variety = AA; field sample = AC) then the position was scored 0.5, and if the site had no match (for example, variety = AA; field sample = CC) then the
position was given a score of 0. For each sample, the total score was determined and visualized for each of the seven wheat varieties. Numbers in
parentheses represent scores associated with differential markers for a particular wheat variety (blue shading). Monomorphic markers across all varieties
are represented in red. Background colour and header relate to the reported variety for a given sample. Warrior-1, W1865; Warrior-2, W994.
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A dramatic shift in the PST population in the UK
To determine the relationship between the 2013 PST
field isolates and previously prevalent PST populations,
the genomes of 14 UK and 7 French purified PST iso-
lates collected between 1978 and 2011 were sequenced
using an Illumina whole-genome shotgun approach
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(Table S4 in Additional file 1). After filtering, reads were
independently aligned to the PST-130 reference genome.
Phylogenetic analysis was undertaken using the third
codon position of 5,610 PST-130 gene models (2,496,679
sites) with ≥80% breadth of coverage for all PST isolates
using a maximum likelihood model. This analysis illus-
trated that 13 of the 14 historical UK PST isolates and all
French isolates clustered together in a single clade with lit-
tle genetic variation (Figure 1b). By contrast, the PST field
isolates collected in 2013 were distantly related to the older
UK population, and included several diverse lineages. Fur-
thermore, a subset of 11 of the 39 PST 2013 field isolates
were also genetically similar to a characterized ‘Warrior’
type PST isolate from 2011 (PST-11/08; Figure 1b). This
indicates that a diverse PST population that contained the
‘Warrior’ pathotype was prevalent across the UK in 2013.
With the first record of the ‘Warrior’ pathotype occur-

ring in the UK in 2011, we decided to investigate the
distribution of this lineage further by sequencing the
genome of two purified PST isolates with known viru-
lence profiles from 2011 and two from 2012 [24]. After
filtering, reads were aligned to the PST-130 reference
genome. Phylogenetic analysis revealed that two PST
isolates from 2011 (PST-11/128 and PST-11/13) were
more closely related to the older UK population,
whereas the remaining 2012 isolates clustered within the
‘Warrior’ type lineage (Figure 1b). To further support
the topology of the phylogenetic tree, we extracted RNA
from a susceptible wheat variety infected independently
with six PST isolates (PST-78/66, PST-12/86, PST-12/83,
PST-11/13, PST-11/128 and PST-11/08) that were also
subjected to genome sequencing. The distribution of
biallelic SNPs, from alignment to the PST-130 genome,
confirmed that each sample comprised predominantly a
single PST genotype without considerable bias in allele-
specific expression (Additional file 5). When SNP sites
with sufficient depth of coverage in both the genomic
and RNA-seq samples were compared, an average of
99.78% were identical between the genomic and RNA-
seq datasets (Table S5 in Additional file 1). This indi-
cates that allele-specific gene expression had a negligible
effect on the topology of the phylogenetic tree. This ana-
lysis further supports the recent emergence of a diverse
PST population that may have now displaced the previ-
ous PST population in the UK.

A genetically diverse PST population in the UK in 2013
To elucidate the population structure among the 39 PST
2013 UK field isolates, we generated a list of 34,806 syn-
onymous SNP sites, of which 34,764 were biallelic. We
used multivariate discriminant analysis of principal com-
ponents (DAPC) with the 34,764 biallelic SNP sites to de-
fine the population structure and identify groups of
genetically related PST isolates. The Bayesian information
criterion supported the division of PST isolates into four
population clusters, which were clearly distinct in a
scatterplot of the five principal components of the
DAPC (Figure 3a,b). In addition, Bayesian-based clus-
tering of the full set of 34,806 synonymous SNP sites
using the program STRUCTURE classified the PST iso-
lates into four population clusters (Figure 3c,d) that dif-
fered only in the partitioning of two isolates (PST-13/
120 and PST-13/27) compared with the DAPC assign-
ment (Additional file 6). Phylogenetic analyses were also
undertaken using the third codon position of 5,713 genes
(2,513,246 sites) with ≥80% breadth of coverage for all
PST isolates using a maximum likelihood model. This
analysis supported the assignment of PST isolates to the
four population clusters as reported by the Bayesian-based
clustering method (Figure 3d). Cluster-specific SNPs
were converted into PCR-based assays and shown to dif-
ferentiate the PST lineages (Table S6 in Additional file 1;
Additional file 7). Furthermore, within the PST field sam-
ples collected in 2013, all PST isolates sampled from triti-
cale clustered within a single genetically distinct lineage
(Figure 3d, cluster II), potentially indicating a degree of
host specificity within the PST population in the UK.
Next, to determine if the observed population struc-

ture was reflected in the phenotypic characteristics of
the PST 2013 field isolates, we purified and cultured a
subset of isolates for virulence profiling. Four PST iso-
lates from each of the three population clusters derived
from PST-infected wheat samples were inoculated on a
series of 39 differential wheat varieties. Disease severity
was recorded 16 to 20 days post-inoculation (Table S7 in
Additional file 1). Phylogenetic analysis of the 12 PST
isolates using a maximum likelihood model (6,479 genes;
2,792,462 sites) was combined with their virulence pro-
files to assess correlations between the population sub-
structure and pathology data. This analysis revealed
distinct phenotypic characteristics for each population
cluster that were different from members of other popula-
tion clusters, but were largely conserved between isolates
of a similar genetic background (Figure 4a). Furthermore,
principal component analysis of the phenotypic character-
istics supported the clear division of the isolates into three
phenotypic groups that correlated directly with the genetic
population clusters (Figure 4b). This reflects a clear asso-
ciation between the genotypic and phenotypic diversity
displayed by the 2013 PST field isolates.
Cluster I isolates displayed the least phenotypic diver-

sity between PST isolates. This correlated with much
lower nucleotide diversity between members of this clus-
ter compared with other clusters (Figure 4c). Overall,
however, the degree of genetic diversity between mem-
bers of a single population cluster for all 2013 PST field
samples was much higher than that displayed by the
older UK and French isolates collected between 1978 and



Figure 3 The 2013 PST field isolates are highly diverse and group genetically into four distinct population clusters. (a) Scatterplot using
the first two principal components (Y-axis and X-axis, respectively) of the discriminant analysis of principal components (DAPC) analysis of 34,806
synonymous single nucleotide polymorphism (SNP) sites. Each symbol represents a single PST isolate, coloured according to assignment to one
of four population clusters. All four population clusters are clearly separated by DAPC analysis. (b) The first three eigenvalue components from
the DAPC analysis, supporting the maintenance of three discriminant functions in the DAPC analysis. (c) The optimal predicted number of population
clusters K for the dataset is four. The Y-axis corresponds to the Bayesian information criterion (BIC), a goodness-of-fit measurement calculated for each
K. The elbow in the BIC values (K = 4) indicates the optimal number of populations. (d) Phylogenetic analysis using a maximum likelihood model
(2,513,246 sites) and Bayesian-based clustering of 34,806 synonymous SNP sites classified PST field isolates into four population clusters. All PST isolates
sampled from triticale clustered within a single genetically distinct lineage, cluster II. Bar charts represent STRUCTURE analysis, with each bar representing
estimated membership fractions for each individual. Stars highlight isolates purified for virulence profiling. Coloured circles represent UK counties in which
samples were collected (Table S1 in Additional file 1).

Hubbard et al. Genome Biology  (2015) 16:23 Page 6 of 15
2011, excluding PST-11/08 (Figure 4c). Substantial genetic
differentiation was also identified in all pair-wise compari-
sons of the four population clusters, with FST values ran-
ging from 0.1492 to 0.5673 (Figure 4c). The variation in
gene expression between members of a population cluster
did not influence the calculation of genetic diversity
(Additional files 7 and 8). Taken together, this supports
the hypothesis that the new UK PST population is derived
from a highly diverse founder population.

Polymorphic and differentially expressed effector
candidates can be linked to the virulence profiles of the
PST 2013 field isolates
We also used our field pathogenomics approach to look
for two signatures of adaptation, namely mutation and
differential gene expression, by treating all isolates within
a population cluster as replicates in the analysis. Specific-
ally, we sought to identify potential effector proteins and
link these to the distinct virulence profiles within the 2013
PST population. First, to identify polymorphic effector
candidates, we discriminated 21,217 homokaryotic and
heterokaryotic SNP sites that induced non-synonymous
substitutions from alignment of all 39 PST 2013 field iso-
lates against the PST-130 reference genome. Of these
non-synonymous sites, we identified 10,158 SNP sites
where the amino acid residue was conserved among all
members of a single population cluster with coverage in
the region, but differed from the amino acid encoded by
all members from at least one other population cluster
(Table S8 in Additional file 1). These 10,158 SNP sites



Figure 4 The 2013 PST field isolates identified on wheat show correlation between genetic and phenotypic profiles. (a) The population
substructure illustrated by phylogenetic analysis of 12 PST isolates using a maximum likelihood model (6,479 genes; 2,792,462 sites) correlated
with the virulence profiles of the isolates. Virulence profiles for each population cluster were largely conserved between members of the same
population cluster, but differed from those of members of other population clusters. Four PST isolates from each of the three population clusters
derived from PST-infected wheat samples were inoculated on a series of 39 different wheat varieties and the six discriminative results are shown:
Yr7, AvocetS-Yr7 near isogenic line; Sp, Spaldings Prolific; War, Warrior; Amb, Ambition; Tim, Timber; Ren, Rendezvous. Disease severity was recorded
16 to 20 days post-inoculation: 0 (green) to 4 (red) scale with 0 to 2 resistant and 2 to 4 susceptible. Roman numerals represent population
clusters. (b) Principal component analysis of the virulence profiles of the 12 PST isolates supports the separation of isolates into three distinct
groups based on their phenotypes, which correlates with their genetic partitioning. (c) The degree of genetic diversity between members of a
single population cluster for all 2013 PST field samples was much greater than that displayed by older UK isolates collected between 1978 and
2011. Circle size represents the degree of nucleotide diversity enclosed; standard deviation is given in parentheses. Branch lengths represent FST
values stated alongside.
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were dispersed among 4,633 genes that displayed cluster-
specific unique amino acid substitutions, of which 177
had detectable secretion signals (Figure 5a). Using the
most highly ranked PST effector candidates from our pre-
vious study [20], we identified 42 genes that encoded
cluster-specific polymorphic proteins that displayed fea-
tures typical of characterized effector proteins (Figure 5a).
Next, to assess whether the gene expression profiles of

the 39 PST field isolates could be associated with
cluster-specific disparity in virulence profiles, reads from
each isolate were aligned independently to the PST-130
genome. Differential expression analysis was conducted
after normalization to identify genes that were signifi-
cantly differentially regulated between the four popula-
tion clusters (false discovery rate <0.05; P-value <0.05).
All isolates within each population cluster were used as
replicates in the analysis (Table S9 in Additional file 1;
Additional file 9). Of the genes that were identified as
significantly down- and up-regulated for all isolates
within a particular population cluster, between 8.5 and
45.9% could be annotated with potential structural or
enzymatic functions (Figure 5b; Additional file 9). Of
those that were not annotated, an average of 16.7%
(standard deviation 9.6%) were predicted to encode
proteins with detectable secretion signals (Figure 5b).
Furthermore, we identified 10 up-regulated and 9
down-regulated genes that were among the most highly
ranked PST effector candidates from our previous study
(Figure 5b). One of these candidates, PST130_08031,
was significantly down-regulated by isolates in cluster



Figure 5 Polymorphic and differentially expressed effector candidates can be linked to the virulence profiles of the PST 2013 field
isolates. (a) Polymorphism analysis highlights cluster-specific effector candidates. Circles represent the number of genes with non-synonymous
mutations in each category. (b) Differential expression analysis identifies cluster-specific differentially expressed effector candidates. Roman
numerals represent population clusters. (c) PST130_08031 is a previously identified effector candidate that was significantly down-regulated by
isolates in cluster III and had two amino acid substitutions that were specific and conserved among cluster I isolates. The five carboxy-terminal
amino acids were not defined due to poor coverage.
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III and had two amino acid substitutions that were spe-
cific and conserved among cluster I isolates (Figure 5c;
Additional file 9).

Discussion
Exploiting transcriptome sequencing for surveillance and
population analysis of (re)-emerging pathogens
Human, animal and plant pathogens necessitate constant
monitoring to preserve public health and food security.
With the advent of next-generation sequencing tech-
nologies, it is now possible to integrate high-resolution
DNA and RNA sequencing into pathogen surveillance
programs. However, many pathogens cannot be axenic-
ally cultured, limiting access to pure DNA and RNA
preparations. Furthermore, large-scale population ana-
lysis of fungal pathogens by whole-genome sequencing
remains limited by the lengthy processes associated with
purification and multiplication of isolates for high molecu-
lar weight DNA extraction and the cost of sequencing
large genomes. We have developed an approach for patho-
gen population surveillance based on high-resolution tran-
scriptome data acquired directly from field samples of
pathogen-infected wheat and triticale. Even though the an-
alyzed samples consist of a mixture of pathogen and host
RNA, we recovered enough pathogen sequences for ana-
lysis. Also, the RNA-seq data were deep enough for reli-
able genotypic characterization. Similar approaches using
shotgun genome sequencing could have been problematic
due to the large size of the genome of wheat (approxi-
mately 17 GB) compared with that of PST (approximately
110 Mb) [19,25]. Our approach also captures the PST
population directly from the field and negates any biases
that might be caused by purification and multiplication of
the pathogen in the laboratory, a lengthy process that can
impose artificial selection on the pathogen.
Using field pathogenomics, we could detect only a

single PST genotype within each lesion. Furthermore,
using comparative analysis of RNA-seq and genomic se-
quence data from six independent PST isolates (PST-
78/66, PST-12/86, PST-12/83, PST-11/13, PST-11/128
and PST-11/08), we were able to confirm that allelic-
specific expression between the two PST nuclei had
minimal effect on genotypic analysis. Together these re-
sults demonstrate that RNA-seq analysis of PST-infected
plant material is a useful approach for accurately genotyp-
ing isolates of PST directly from the field. However, our
findings contrast with studies of Mycosphaerella gramini-
cola on wheat and Rhynchosporium secalis on barley,
where co-infection with multiple genotypes is common
[26,27]. Analyses of field pathogenomics data may be
more complex in such pathosystems.
Whilst effectively capturing pathogen diversity, tran-

scriptome sequencing of infected host tissue can also be
leveraged to assess the genotype of the host. The
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availability of high-throughput SNP chips for wheat [23]
and SNP marker information for the majority of wheat
varieties in the UK [28] (and elsewhere) provides an un-
precedented opportunity to exploit sequence data to
confirm outbreaks on particular wheat varieties and
look for associations between pathogen genotypes and
host pedigrees. In this study, we developed an accurate
system to associate samples from known wheat varieties
with their corresponding SNP markers. In the future,
this will provide a rapid means of confirming whether
previously resistant wheat varieties have indeed been
broken by virulent races of the pathogen, using samples
submitted directly to national pathology surveys. This
would reduce delays associated with current protocols,
which include pathogen propagation, subsequent viru-
lence profiling and confirmation of a specific wheat var-
iety using protein gels from harvested grains or similar
distinctness, uniformity and stability assessments [29].

Integration of high-resolution genotyping into traditional
pathogen surveillance surveys
Traditionally, the surveillance of rust fungal pathogens
in agroecosystems has hinged on field biology and race
pathotype surveys to provide phenotypic information on
pathogen diversity [30]. However, assessments of geno-
typic diversity are not included routinely and when
employed are restricted to just a handful of markers such
as simple sequence repeats or amplified fragment length
polymorphisms [31]. Our field pathogenomics approach
enables the integration of high-resolution genotypic data
into pathogen surveillance activities. For instance, more
than 2 million nucleotide positions were used to assess
PST population diversity in this study. These high-
resolution genotypic data are vital to improve our under-
standing of the genetic substructure within a population,
which provides essential information on the evolutionary
forces that drive pathogen evolution within an agroecosys-
tem. This study uncovered four genetically distinct line-
ages within the UK PST population, and each of these
lineages had unique virulence profiles revealing a direct
link between genotype and pathotype. Although such a
correlation has been reported for rust fungi [32,33], our
findings contrast to distantly related filamentous plant
pathogens such as Magnaporthe oryzae [34] and Colleto-
trichum lindemuthianum [35] where a relationship be-
tween genotype and pathotype has not been detected.
The time-consuming nature of traditional surveillance

methods limits the number of PST isolates assessed each
year. For instance, in the UK, a target number of 25
PST-infected wheat samples are tested each year, specif-
ically focusing on wheat varieties with a previous record
of good resistance in the field. With new PST patho-
types/genotypes arising on susceptible varieties by muta-
tion, recombination or through exotic incursions, it is
unlikely that a new pathotype would be detected in a
timely fashion by the current surveillance system. Further-
more, an exotic isolate that displays similar phenotypic
characteristics to a subset of the existing population would
not be recognized as such. In this study, we uncovered a
group of PST isolates (population cluster III) that dis-
played identical phenotypic characteristics to a subset of
the old UK population, but in fact belonged to a new
emergent lineage that appears to be new to the UK. None
of these isolates would have been identified as belonging
to an emergent lineage based on phenotypic data alone.
However, such population shifts may bear significance
on disease incidence as the new population may carry
important epidemiological traits other than pathogen
virulence. Rapid and systematic application of field
pathogenomics should transform current disease sur-
veillance systems by generating high-resolution geno-
typic information (Additional file 10) that inform
disease incidence models, agronomic practices, and the
selection of PST isolates for subsequent labor-intensive
phenotypic characterization.

Using effector-specific markers to track pathotype
dispersal
The emergent PST population in the UK is now domi-
nated by a number of newly selected, virulent clones that
are adapted to an array of widely cultivated wheat var-
ieties. By revealing genotype/pathotype-specific polymor-
phisms, the data we generated could prove useful in
identifying candidate avirulence effectors that contribute
to a pathogen’s ability to evade recognition on particular
host genotypes. Herein, our analysis identified a small
number of candidate effector genes with conserved mu-
tations or expression profiles between members of the
same population cluster that shared similar virulence
profiles. Ultimately, such information could be used to
develop polymorphic markers to track the long-distance
migration of pathotypes across wheat growing regions.

Field pathogenomics reveals a shift in the PST population
in the UK
We uncovered a dramatic shift in the PST population
that could have serious implications for wheat produc-
tion in the UK. Whilst there have been widespread re-
ports of recent changes in the PST population based on
phenotypic characteristics [17], we report a comprehen-
sive genetic analysis of this emergent PST population.
Plant-pathogenic fungi rely predominantly on recombin-
ation and mutation as the evolutionary forces that drive
the emergence of new races and pathotypes [36]. How-
ever, within a pathogen population, gene and genotype
flow can shape the population substructure as propa-
gules are exchanged between geographically separated
epidemiological areas [36]. Given the clonal population
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structure of PST in northwestern Europe, mutation and
genotype flow are the primary inducers of diversity [32].
The fact that none of the 2013 PST field isolates showed
genetic similarity to the great majority of the older UK
population (collected between 1978 and 2011; excluding
PST-11/08) indicates that the 2013 population is likely
an exotic PST population that appears to have displaced
the previous population. Furthermore, the highest level
of genetic diversity between the four emergent PST line-
ages (FST ranging from 0.1492 to 0.5673) was similar to
that detected using simple sequence repeat markers and
comparing PST isolates from different continents [37].
This is indicative of distant ancestry or relatively low
levels of gene flow between these emergent UK PST lin-
eages. Based on this evidence, we hypothesize that the
change in PST population structure may have arisen
from exotic incursions from multiple sources over recent
years. Future studies will focus on defining the origin(s)
of this PST population.
A subset of the emergent PST population we charac-

terized displays the ‘Warrior’ pathotype that was first de-
tected in 2011 in the UK and is virulent on an array of
previously resistant wheat varieties, including Alchemy,
Warrior, and Claire [24]. Our findings illustrate how
pathogen genotype flow can trigger abrupt changes in
the landscape of wheat genetic resistance to yellow rust.
Breeders are now at a crossroads in the UK, with few
sources of yellow rust disease resistance available and
the prospect of new varieties being rapidly taken off the
official recommended list due to poor yellow rust resist-
ance, as happened with Torch (1 year on the recom-
mended list) and Warrior (3 years). With anthropogenic
activities having a marked influence on the size of gen-
etic neighborhoods [38], pathogen genotype flow is no
longer dependent on life history traits and natural dis-
persal alone. The next step will be to define the bound-
aries of these ever-expanding genetic neighborhoods to
inform surveillance strategies and breeding programs
that need to take into account the full pathogen popula-
tion within an isolated genetic neighborhood to breed
for durable resistance.

Exploring the origin of PST diversity in the UK
The 2013 PST isolates displayed a much higher degree
of nucleotide diversity when compared with the older
UK population. This reflects an increase in PST evolu-
tionary potential in the UK pathogen population that
could enhance their ability to overcome genetic resist-
ance in the host. Given that the highest levels of PST
genotypic diversity have been reported in the Himalayas
and neighboring regions, it is possible that the emerging
PST population is derived from one or more migration
events from a geographic area with high sexual
reproduction rates and a recombinant population
structure [37]. This is further supported by similarity in
pathotypes between one lineage (cluster I) of the emer-
gent UK population and those previously reported for
exotic PST isolates [39]. For instance, three Chinese iso-
lates that were collected in 2004 and a Nepalese isolate
from 2008 were shown to be virulent on the wheat var-
iety Spaldings Prolific [40], which is a key determinant
for the cluster I (‘Warrior’) pathotype [17]. Furthermore,
Ali et al. [40] previously classified two Chinese isolates
collected in 2001 as belonging to the Northern French
genotypic group (G1). Future studies will focus on com-
parative sequence analysis between the PST isolates re-
ported herein and global isolates of PST to determine
the specific geographic origin(s) for this diverse PST
population in the UK.

The future of genomics-enabled plant pathogen
surveillance systems
The agronomic consequences of long-distance pathogen
migration are currently unpredictable. Although a patho-
gen population may not pose a significant threat to crop
production in the country of origin, it can have devastat-
ing consequences in a new environment. For instance, in
2013 a severe stem rust epidemic in Ethiopia was caused
by a race similar to those detected in Egypt, Germany and
Turkey between 2007 and 2013. However, despite the
widespread devastation reported in Ethiopia, other coun-
tries reported no negative effect of this race on wheat pro-
duction. This episode illustrates the importance of global
pathogen surveillance networks, to enable early warning
systems that assess the threat of pathotypes to all crop ge-
notypes planted within a single genetic neighborhood.
Field pathogenomics provides the means to generate
enough markers to comprehensively genotype the PST
population. High-resolution SNP marker arrays would
allow tracking pathogen dispersal on a global scale and
clear definition of the pathogen population genetic
structure. The approach reported herein uses attenuated
PST-infected field samples, thereby negating the limita-
tions associated with movement of live samples. Whilst
genotyping is undertaken in state-of-the-art molecular
laboratories, the complementary virulence profiling can
be carried out in national centers, thereby preventing
any threat posed by transportation of live samples be-
tween countries. Once genotypic information is gener-
ated, subsequent phenotypic characterization can focus
on the most notable and representative samples ensur-
ing the best possible use of limited national resources.

Conclusions
In this study, we developed a robust and rapid method
based on RNA sequencing directly from infected host
samples to gain insight into emerging pathogen popu-
lations. Field pathogenomics should be applicable to
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surveillance of many pathogens besides wheat rust
pathogens, and could contribute to addressing human,
animal, and plant health issues. Our approach enabled
us to discover a dramatic shift in the UK PST popula-
tion in 2013 essentially months after collecting the
field samples. The emergent PST population has high
levels of genetic diversity compared with historical UK
isolates and appeared to be unrelated to the older
population. This led us to conclude that the 2013 PST
population was most probably derived from the recent
introduction into the UK of diverse assemblage of
exotic PST lineages, and that these introduced lineages
may have rapidly displaced the previous PST popula-
tion. Such detailed knowledge of population shifts and
dynamics is important for our understanding of emer-
ging plant diseases and has consequences for the man-
agement of such diseases.

Materials and methods
Whole-genome and transcriptome sequencing of
PST-infected wheat and triticale
A total of 219 single lesion leaf samples of PST-infected
wheat and triticale were collected directly from the field
and stored in RNA later solution at 4°C (Life Technologies,
Paisley, UK). The single lesion consisted of a 2 to 3 cm leaf
section taken from a single infection site. Total RNA was
extracted from 39 of these samples using the Qiagen
RNeasy Mini kit according to the manufacturer’s instruc-
tions (Qiagen, Manchester, UK). In addition, we extracted
RNA in a similar manner from infected leaves of suscep-
tible wheat variety Vuka inoculated independently with six
PST isolates (PST-78/66, PST-12/86, PST-12/83, PST-11/
13, PST-11/128 and PST-11/08). The quantity and quality
of RNA extracted were assessed using the Agilent 2100
Bioanalyzer (Agilent Technologies, Edinburgh, UK).
cDNA libraries were prepared using the Illumina TruSeq
RNA Sample preparation Kit (Illumina, Cambridge, UK).
Library quality was confirmed before sequencing using
the Agilent 2100 Bioanalyzer (Agilent Technologies,
Edinburgh, UK). Libraries were sequenced on the Illumina
GAIIx at The Sainsbury Laboratory (for RB1 and RB2) or
the Illumina HiSeq machine at The Genome Analysis
Centre, UK. Adapter and barcode trimming and quality
filtering were carried out using the FASTX-Toolkit. The
76-bp (GAIIx) or 101-bp (HiSeq) paired-end reads were
aligned to the PST-130 assembly [18] using the TopHat
package (version 1.3.2) and Bowtie alignment program
(version 0.12.7) with default parameters [41,42]. A similar
approach was used for whole genome sequencing of PST
isolates, except that gDNA was extracted for each isolate
from dried urediniospores using the CTAB method as de-
scribed by Chen et al. [43] and DNA quantity was con-
firmed using the Qubit 2.0 Fluorometer. DNA libraries
were prepared using the Illumina TruSeq DNA Sample
preparation Kit (Illumina, Cambridge, UK). Sequencing of
all gDNA samples was carried out on an Illumina HiSeq
machine at The Genome Analysis Centre, UK, generating
101-bp paired-end reads which were aligned to the PST-
130 assembly [18] using BWA with default parameters
[44]. The Illumina reads from all RNA-seq and gDNA
runs were deposited in the short read archive (GenBank;
PRJNA256347 and PRJNA257181).
Identifying the wheat variety in PST-infected field
samples
First, from a set of 90,000 high-density wheat SNPs,
18,162 genetically mapped wheat SNPs were extracted
[23]. Up to 100 bp up- and down-stream of each SNP
site were extracted from the wheat chromosome arm
survey sequence [45] to create a reference for subse-
quent sequence alignments. Nine PST-infected field
samples were collected on wheat varieties with known
varietal SNP information (Donal O’Sullivan (University
of Reading) and James Cockram (NIAB), personal com-
munication). Reads from each of these nine samples were
independently aligned to the wheat genome sequences ex-
tracted above using the TopHat package (version 1.3.2)
and Bowtie alignment program (version 0.12.7) with de-
fault parameters [41,42]. Each of the 18,162 SNP positions
with ≥10× coverage was then assessed for correlation
against the available sequence data for the seven wheat
varieties. For each SNP position, if the PST-infected field
sample matched the sequence at a SNP site for a particu-
lar variety (for example, variety = AA; field sample = AA)
the position was scored 1, if the site only partially matched
(for example, variety = AA; field sample = AC) then the
position was scored 0.5, and if the site had no match (for
example, variety = AA; field sample = CC) then the pos-
ition was given a score of 0. For each sample, the total
score was determined and visualized for each of the seven
wheat varieties.
Calling single nucleotide polymorphisms
BAM files were sorted and indexed, and SNPs deter-
mined using raw allele counts for each position that
were obtained using pileup from SAMtools [46]. Hetero-
karyotic sites were identified as sites with allelic frequen-
cies ranging from 0.2 to 0.8. Homokaryotic sites were
those with allelic frequencies below 0.2 or above 0.8. For
both hetero- and homokaryotic sites to be reported, they
had to satisfy a minimum depth of coverage of 20× for
RNA-seq data and 10× for genomic DNA data. Read fre-
quencies were calculated for biallelic heterokaryotic SNP
sites and plotted using ggplot2 in R [47]. Homokaryotic
and heterokaryotic SNP sites that induced synonymous
and non-synonymous substitutions were identified using
SnpEff, version 3.6 [48].
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Phylogenetic analysis of the historical and current UK PST
population
All phylogenetic analysis of PST isolates was conducted
using a maximum likelihood approach. First, for both
genomic and RNA-seq samples, nucleotide residues that
differed from the PST-130 reference were identified and
recorded if they satisfied a minimum of 10× or 20×
depth of coverage, respectively. Next, sites that were
identical to the reference were recorded when they satis-
fied a minimum of 2× depth of coverage. Finally, these
sites were used to generate synthetic gene sets for each
isolate and genes with a minimum of 80% breadth of
coverage for all samples in a comparison were selected.
The third codon position of these genes was then used
to build maximum likelihood trees using RaxML 7.0.4
with 100 replicates using the rapid bootstrap algorithm
[49]. Phylogenetic trees were visualized in MEGA6.06
[50]. For the RNA-seq samples, results from STRUCTURE
analysis were incorporated into the phylogenetic tree
using iTOL [51].

Population structure analysis of PST field isolates in the
UK in 2013
Genetic differentiation of the 39 PST field isolates was
examined using the Bayesian model-based approach im-
plemented in the software STRUCTURE, version 2.3.4
[52] via the python StrAuto program, version 3.1 [53].
First, a list of 34,806 sites that introduced a synonymous
change in at least one isolate was generated. Then, the
nucleotide at this position was extracted for all 39 RNA-
seq samples. The ‘admixture’ model was used with three
replicates of 200,000 Markov Chain Monte Carlo gener-
ations for K = 1 to 10, where K is the number of popula-
tions. For each run the first 100,000 generations were
discarded as burn-in before collecting data. To identify
the K value the average log probability (LnP(D)) of each
K value was calculated [52].
The genetic differentiation of the 39 field isolates was

further assessed using the multivariate DAPC within the
adegenet package [54]. First, 34,764 biallelic SNP sites
that introduced a synonymous change in at least one
isolate were identified. Using these data, principal com-
ponent analysis was carried out to summarize genetic
variation between and within potential population clus-
ters. The optimum number of clusters was determined
as the one showing the lowest Bayesian information cri-
terion. DAPC analysis was then used to assign individ-
uals to each of the population clusters.

Assessing diversity within and between PST population
clusters
To assess the genetic diversity both within and between
PST population clusters, all heterokaryotic and homokar-
yotic SNPs determined above from individual alignment
of each isolate to the PST-130 reference were incorporated
into a synthetic gene set for that isolate. The synthetic
genes were combined for all PST field isolates within a
population group, and genes with >80% breadth of cover-
age for all isolates were selected. To calculate the degree
of nucleotide diversity between isolates of a single popula-
tion group, the degree of polymorphism between these
gene sets was calculated using the DnaSP software pack-
age, version 5.10.1 [55]. To determine the proportion of
total genetic variance attributable to inter-population
differences, the 34,806 sites that introduced a synonym-
ous change in at least one isolate were used as input in
the program Genepop version 4.2 [56] to calculate the
Wright’s FST statistic.

Virulence profiling of PST isolates
Virulence phenotyping of PST isolates was based on the
reactions of wheat cultivars possessing known resis-
tances to PST, together with a number of cultivars pos-
sessing resistances which have not yet been fully
described. Tests were carried out on seedlings under
controlled environment conditions [57], with infection
types being assessed on the first seedling leaf using a 0
to 4 scale. Infection types 3 and 4 were considered to
represent a compatible interaction between host geno-
type and pathogen isolate, indicating the absence of Avr
alleles (that is, virulence) at the corresponding locus in
the pathogen. The host resistance genes covered by the
differential set were Yr1, Yr2, Yr3, Yr4, Yr5, Yr6, Yr7, Yr8,
Yr9, Yr10, Yr15, Yr17, Yr24, Yr25, Yr32 and the resistance
in Spaldings Prolific. Other discriminating differentials
included the cultivars Robigus, Solstice, Timber, Warrior,
Ambition, and Rendezvous. To distinguish the internal
structure and variance within the pathology data, the
scores associated with the reactions of each isolate on
the differential wheat cultivars were used for principal
component analysis in R [58].

Gene expression analysis between PST population
clusters
Quantification of reads mapping to the PST-130 gene
set from the 39 PST field isolates was determined using
the program HTSeq-count [59]. Next, the Fisher’s exact
test, implemented as part of the edgeR package [60], was
used to identify genes that were significantly differen-
tially regulated between the four population clusters
(false discovery rate <0.05; P-value <0.05). All isolates
within each population cluster were used as replicates in
the analysis to (1) limit the influence of environmental
factors on the expression profiles, as samples were col-
lected at various sites throughout the season, and (2) to
link gene expression profiles to the virulence profiles
that were unique to these genotypic groups. To identify
potential effector proteins with signatures of adaptation
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such as mutation and variation in gene expression profiles,
we focused on accessing those that were ranked the high-
est in our previous effector mining study [20]. Previously,
we clustered protein sequences based on sequence simi-
larity and ordered the resulting protein families based on
the association of known effector features and PST-
specific annotation [20]. This resulted in overall scores for
each family that reflected their likelihood of containing
potential effector proteins [20]. Those within the top 100
protein families were considered herein.
KASP assays
Primers were designed with primer3 version 2.3.5 [61]
carrying standard FAM or HEX compatible tails (FAM
tail: 5′ GAAGGTGACCAAGTTCATGCT 3′; HEX tail:
5′ GAAGGTCGGAGTCAACGGATT 3′) and with the
target SNP at the 3′ end. Oligonucleotides were ordered
from Sigma-Aldrich (Gillingham, UK) and primer mixes
were as recommended by the manufacturer (46 μl dH2O,
30 μl common primer (100 μM), and 12 μl each tailed pri-
mer (100 μM); LGC Genomics, Teddington, UK). Assays
were carried out as described previously [62] with the fol-
lowing modifications: 4 μl reactions were used (composed
of 2 μl template (10 to 20 ng DNA), 1.944 μl V4 2× Kaspar
mix, and 0.056 μl primer mix)), PCR cycling was per-
formed in an Eppendorf Mastercycler pro 384 and 384-
well optically clear plates (catalogue number E10423000,
Starlab, Milton Keynes, UK) were read on a Tecan Safire
plate reader. Data analysis was performed manually using
Klustercaller software (version 2.22.0.5, LGC).
Additional files

Additional file 1: Contains supplementary Tables S1 to S9. Microsoft
Excel Workbook containing nine worksheets. Table S1: all PST-infected
field samples collected in 2013. Table S2: fungal transcripts account for a
high percentage of the transcripts in PST-infected plant tissue. Table S3:
wheat variety SNPs from iSelect wheat SNP chip (Wang et al. [23]). Table
S4: virulence profiles of PST isolates subjected to full genome sequencing.
Table S5: comparison of SNP sites between genomic and RNA-seq
datasets generated from the same PST isolate. Table S6: genotype data
for nine PST field samples generated from KASP assays. Table S7: full
seedling virulence tests of selected PST isolates. Table S8: non-synonymous
SNP sites where the amino acid residue was conserved among all members
of a single population cluster with coverage in the region, but differed from
the amino acid encoded by all members of at least one other population
cluster. Table S9: differential expression analysis based on Fisher’s exact test
of all pair-wise comparisons of population clusters.

Additional file 2: Distribution of biallelic read counts. (a,c) Read
frequency at biallelic single nucleotide polymorphisms (SNPs) for a gDNA
sample known to consist of multiple mixed genotypes. The presence of
several alleles with three copies and the presence of an uneven
frequency distribution are indicators of more than a single genotype in
the sample. (b,d) Read frequency at biallelic SNPs for a purified gDNA
sample that consists of only a single PST genotype. The even frequency
distribution and presence of only two alleles support the presence of a
single genotype in the sample. The mode for each distribution is given in
parentheses.
Additional file 3: Distribution of biallelic read counts for purified
UK isolates subjected to full genome sequencing. The 16 purified UK
PST isolates that were selected for genome sequencing show varying
patterns of read frequencies for biallelic single nucleotide polymorphisms.
The mode for each distribution is given in parentheses.

Additional file 4: All PST-infected plant samples consist of a single
PST genotype. Distribution of biallelic single nucleotide polymorphism
read frequencies for all 39 2013 PST field samples (RNA-seq). The mode
for each distribution is given in parentheses.

Additional file 5: All 2011 and 2012 PST-infected plant samples
consisted of a single PST genotype. Distribution of PST biallelic single
nucleotide polymorphism read frequencies in RNA-seq datasets generated
from wheat independently infected with PST isolates from 2011 and 2012.
The mode for each distribution is given in parentheses.

Additional file 6: PST 2013 field isolates can be partitioned into
four distinct population clusters based on their genotypes. (a)
Application of the discriminant analysis of principal components (DAPC)
multivariate method to 34,764 biallelic SNP sites defined the population
structure and identified four groups of genetically related PST isolates. (b)
Bayesian-based clustering of the full 34,806 synonymous SNP sites using
the program STRUCTURE classified the PST isolates into four population
clusters, which differed in partitioning of two isolates (PST-13/120 and
PST-13/27) when compared with the DAPC assignment.

Additional file 7: Details of analysis to (1) develop cluster-specific
SNP markers to differentiate the four PST lineages, and (2) assess
the influence of variation in gene expression on calculations of
nucleotide diversity. Text file.

Additional file 8: Variation in expression profiles between members
of a single PST population cluster are minimal. (a) Of approximately
1,500 to 2,000 highly expressed genes within each population cluster,
>99.7% were expressed by all members of the cluster. (b) Variation
between members of a population cluster in expression levels for
individual genes was low and comparable between clusters.

Additional file 9: Differential expression analysis reveals population
cluster-specific expression profiles. (a) There were 49 to 254 genes
significantly down-regulated and 122 to 240 genes significantly up-regulated
for all isolates within a particular population cluster. Differential expression
analysis was undertaken using Fisher’s exact test from the edgeR package
to identify genes that were significantly differentially regulated between the
four population clusters (false discovery rate <0.05; P-value <0.05). (b) Of the
significantly up- or down-regulated genes, between 8.5 and 45.9% could be
annotated with potential structural or enzymatic functions based on
sequence similarity searches. (c) The effector candidate PST130_08031 was
significantly down-regulated by isolates of cluster III.

Additional file 10: SNP markers developed from the field
pathogenomics data could differentiate the four emergent PST
lineages. Of the fifteen KASP assays developed, 11 could be used to
differentiate particular lineages within the emergent PST population in
the UK. Each closed circle represents the genotype of a single PST field
sample. Blue circles, X:X; green circles, X:Y; red circles, Y:Y; open circles,
H20 negative control; grey circles, not determined. Where shown,
background color reflects grouping of field samples within particular
population clusters: cluster 1 = pink; cluster 2 = green; cluster 3 = blue;
cluster 4 = red. Numbers reflect population clusters within each genotype
group.
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