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Abstract

We give a simple proof, using Auslander-Reiten theory, that the preprojective algebra of a

basic hereditary algebra of finite representation type is Frobenius. We then describe its Na-

kayama automorphism, which is induced by the Nakayama functor on the module category of

our hereditary algebra.
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1 Introduction

1.1 History

Preprojective algebras were introduced by Gabriel and Ponomarev as a way to combine all the pre-
projective representations of a quiver into a single algebra [GP79]. The path algebra of the quiver,
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or its opposite, is a subalgebra of the preprojective algebra, and on restriction to this subalgebra we
obtain all the indecomposable preprojective modules up to isomorphism. Preprojective algebras were
originally defined by an explicit presentation: one doubles the starting quiver and quotients by an
admissible ideal. Later, Baer, Geigle, and Lenzing found a more conceptual definition which works
for any hereditary algebra [BGL87]. Their definition uses the natural multiplication on morphisms
between preprojective modules. Ringel and Crawley-Boevey proved that, if one gets the signs right,
these definitions give isomorphic algebras [Rin98, CB99].

Gabriel showed that the representation type of a quiver depends on the underlying graph: a quiver
is representation finite precisely when it is an orientation of an ADE Dynkin diagram [Gab71]. So
one expects the associated preprojective algebras to have different properties in the Dynkin and non-
Dynkin cases. If our quiver has finitely many isoclasses of indecomposable modules then in particular
it has finitely many isoclasses of indecomposable preprojective modules, thus its preprojective algebra
is finite-dimensional. If instead we start with a quiver of infinite representation type then one can
find infinitely many non-isomorphic indecomposable preprojective modules, and thus the preprojective
algebra is infinite-dimensional.

In the Dynkin case, the preprojective algebra is not only finite-dimensional: it is self-injective. This is
a much stronger property than just being finite-dimensional. It says that every projective module is
injective, and vice-versa. As indecomposable projectives are projective covers of simple modules, and
indecomposable injective modules are injective envelopes of simple modules, we obtain a permutation
of the simple modules for our algebra, known as the Nakayama permutation.

Self-injectivity is a Morita-invariant property which minimally encompasses Frobenius algebras: an
algebra is self-injective if and only if it is Morita equivalent to a Frobenius algebra. An algebra is
Frobenius when its left regular module is isomorphic to the dual of its right regular module. Frobenius
algebras come with a distinguished outer automorphism known as the Nakayama automorphism which
induces the Nakayama permutation.

The fact that preprojective algebras of Dynkin quivers are self-injective seems to have been a folklore
result for some time. The first written statement known to the author is by Ringel and Schofield in
their handwritten manuscript [RS]. They give an automorphism of each ADE Dynkin graph and state
that this induces the Nakayama permutation of the preprojective algebra. There is related work by
Auslander and Reiten [AR96] and Buchweitz [Buch98].

Later, Brenner, Butler, and King made a detailed study of the ADE preprojective algebras as part
of their study of trivial extension algebras with periodic bimodule resolutions. They gave an explicit
formula for the Nakayama antomorphism and wrote out detailed checks that it satisfies the Frobenius
algbera condition in each of the ADE cases, thereby showing that these preprojective algebras are
self-injective [BBK02]. These checks rely on combinatorics specific to each Dynkin diagram and are
quite involved, especially for types D and E.

Up to this point, all proofs of self-injectivity relied on Gabriel’s classification theorem and then used
combinatorics of Dynkin diagrams. One might hope for a direct proof that the preprojective algebra of
a representation finite hereditary algebra is self-injective. This was achieved by Iyama and Oppermann
as a special case of a much more general result, as part of their study of stable categories of higher
preprojective algebras [IO13]. Their proof uses much more sophisticated technology: they deduce self-
injectivity of the preprojective algebra from the stability of a cluster-tilting subcategory of the derived
category under the Serre functor. Since Iyama and Oppermann’s result, other proofs of self-injectivity
have been found, such as [GLS17, Corollary 12.7] and [GI19, Corollary 4.13].
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1.2 Results

This article contains two main results. The first is a new proof of the result we have been discussing:

Theorem A (Theorem 3.1). The preprojective algbera of a representation-finite hereditary algebra
is self-injective.

Like the proof of Iyama and Oppermann, this proof does not rely on Gabriel’s classification theorem.
It uses relatively basic technology, avoiding the derived category. The preprojective algebra is defined
using only the module category, and we see it as a virtue that the proof stays within this setting.
We assume knowledge of adjunctions [MacL71, Chapter 4] and some Auslander-Reiten theory of
hereditary algebras [ARS97]

Our proof has two key ingredients. The first is Serre duality: roughly, maps out of a projective
module are dual to maps into the corresponding injective module. The second is a result proved by
both Platzeck-Auslander and Gabriel which characterizes representation finite hereditary algebras in
terms of whether their injective modules are preprojective. This result was also crucial in the proofs
of self-injectivity by Brenner-Butler-King and Iyama-Oppermann.

Brenner-Butler-King described the Nakayama automorphism of an ADE preprojective algebra using its
Gelfand-Ponomarev presentation by quivers with relations. One might wonder if this automorphism
has any interpretation in terms of the representation theory of the original quiver: can we describe the
Nakayama automorphism for the Baer-Geigle-Lenzing preprojective algebra? Our second main result
does this.

Theorem B (Theorem 3.8). The Nakayama automorphism of the preprojective algebra is induced by
the Nakayama functor of the representation-finite hereditary algebra.

It may be worth clarifying that, for any self-injective algebra, the Nakayama automorphism induces
the Nakayama functor. The above theorem is saying something different: the Nakayama functor for
the hereditary algebra induces the Nakayama automorphism for the preprojective algebra.

This result appears to be new, though I suspect that it will not surprise the experts. Once one realizes
that the Frobenius isomorphism relies on Serre duality, it makes sense that the right action should be
twisted by the Nakayama functor.

Given this intuition, the phrase “is induced by” needs to be made precise. The problem is that the
Nakayama functor doesn’t behave well on the module category: as our algebra is hereditary it kills
all non-projective modules. There are two possible strategies to overcome this problem. The first
strategy, which we follow in this article, is to replace the Nakayama functor by a procedure which is
better behaved on the abelian category. In order to show this procedure works in the way one would
hope, we are led to consider the postinjective algebra. People normally ignore this algebra for good
reason – it is isomorphic to the preprojective algebra – but here we find it useful to keep track of this
isomorphism. The second strategy is to work in a derived setting where the Nakayama functor is an
equivalence. I plan to return to this strategy in a sequel to this paper.

The two results above are stated for representation finite hereditary algebras, but in fact they go
through just as well for representation finite d-hereditary algebras [IO11, HIO14]. In this paper we
work everything out carefully in the hereditary case in a way that generalizes immediately to the
higher setting. This is both to simplify the exposition and to demonstrate the idea that, at least in
some cases, we have a good understanding of a property of hereditary algebras precisely when our
explanations also work for d-hereditary algebras.
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2 Background

We fix some notation. If f : L → M and g : M → N are maps in a category, we denote their
composition L→ N by g ◦ f , or simply gf .

Let F be a field and let A be an F-algebra. We denote the category of finitely generated left A-
modules by A -mod and write the hom space from M to N as HomΛ(M ,N). Let Aop denote the
opposite algebra of A. Then we can identify Aop -mod with the category mod-A of finitely generated
right A-modules.

Given M ∈ A -mod, we denote by M -add the full subcategory of objects isomorphic to direct sums
of direct summands of M . In particular, A -add is the category of projective A-modules.

2.1 Frobenius algebras

Let (−)∗ = HomF(−,F) denote the usual duality of vector spaces. Then (−)∗ interchanges left and
right A-modules, and interchanges projective and injective modules. In particular, the regular left (or
right) module A induces a right (or left) module structure on the dual A∗ of A, and A∗ -add is the
category of injective A-modules.

Definition 2.1. A Frobenius algebra is an F-algebra A together with an isomorphism of left modules
ϕ : A

∼
→ A∗.

Note that Frobenius algebras are necessarily finite-dimensional, and the definition is left/right sym-
metric because ϕ∗ is an isomorphism of right modules. We are often sloppy and say “A is Frobenius”
instead of “there exists an isomorphism ϕ making (A,ϕ) a Frobenius algebra”.

The Frobenius property is not invariant under Morita equivalence, but it does imply that our algebra
is self-injective, which is a Morita-invariant property. If the regular left A-module decomposes as
A =

⊕n

i=1 P
⊕d
i with the modules Pi pairwise nonisomorphic, so each projective appears with the

same multiplicity, then A is Frobenius if and only if it is self-injective.

Given a left B-module M and an algebra map σ : A→ B, M obtains the structure of a left A-module
via σ. If σ : A

∼
→ A is an automorphism then the new module is called a twist and is denoted σM .

The same process works for right modules.

The isomorphism A
∼
→ A∗ which comes with a Frobenius algebra can be upgraded to a bimodule

isomorphism as long as we twist the action of A or A∗ on one side. There is a choice here: on which
side of which bimodule should we twist? Up to taking inverses, it doesn’t matter. In this article, the
following definition is convenient:

Definition 2.2. Let (A,ϕ) be a Frobenius algebra let σ : A → A be an algebra automorphism. If
ϕ : A

∼
→ (A∗)σ is an isomorphism of A-A-bimodules then we call σ a Nakayama automorphism of A.
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Nakayama automorphisms are unique up to inner automorphisms of A. We are often sloppy and talk
about “the” Nakayama automorphism of an algebra. If A is Frobenius, we say that ϕ and σ constitute
the Frobenius structure of A.

Our aim is to describe the Frobenius structure of the preprojective algebra of an arbitrary representation
finite hereditary algebra.

2.2 The Nakayama functor and Serre duality

Let Λ be a finite-dimensional F-algebra and let (−)∨ = HomΛ(−, Λ) be duality with respect to the
identity bimodule Λ. This is a contravariant functor which interchanges left and right Λ-modules. In
general it is not an equivalence, but if we restrict to the categories of left and right projective modules
we do get an equivalence Λ -add

∼
→ Λop -add.

The composition (−)∨∗ of the two dualities is a covariant functor, called the Nakayama functor. We
denote it ν : Λ -mod→ Λ -mod. Again, it is not an equivalence in general, but it does restrict to an
equivalence Λ -add

∼
→ Λ∗ -add.

The following result is well-known, and is mentioned in Section I.4.6 of Happel’s book [Hap88].

Theorem 2.3 (Serre duality). There is an isomorphism of vector spaces

HomΛ(P ,M)
∼
→ HomΛ(M , νP)∗

natural in both P ∈ Λ -add and M ∈ Λ -mod.

One can prove this as follows:

HomΛ(P ,M)
∼
←− P∨ ⊗Λ M

∼
−→ (P∨ ⊗Λ M)∗∗

∼
−→ HomΛ(M , νP)∗.

2.3 Auslander-Reiten theory for hereditary algebras

For an arbitrary finite-dimensional F-algebra Λ, we have the the Auslander-Reiten translations

Λ -mod
τ

,,
Λ -mod

τ−

ll .

between the stable and costable module categories. We refer to the book of Auslander, Reiten, and
Smalø [ARS97] for details.

Let X be the direct sum of (a representative of each isoclass of) all Λ-modules. In general this
will be an infinite direct sum, but later we will only consider the case where X has finitely many
direct summands. Then (X/Λ) -add is the full subcategory of Λ -mod consisting of modules without
a nonzero projective direct summand, and (X/Λ∗) -add is the full subcategory consisting of modules
without a nonzero injective direct summand.

Now let Λ be hereditary, i.e., every submodule of a projective module is itself projective. Then the
inclusion of (X/Λ) -add into X -add induces an equivalence of categories

(X/Λ) -add
∼
→ Λ -mod

and similarly we have an equivalence (X/Λ∗) -add ∼= Λ -mod. Therefore we obtain the following.
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Proposition 2.4. If Λ is hereditary then τ and τ− induce quasi-inverse equivalences of categories

(X/Λ) -add
τ --

(X/Λ∗) -add

τ−

mm .

If we set τΛ = 0 and τ−Λ∗ = 0 then both τ and τ− extend to endofunctors of Λ -mod. There is a
useful alternative description of these endofunctors which follows from the fact that, for hereditary
algebras, the Auslander-Bridger transpose is given by Ext1Λ(−, Λ) (see, for example, [AH06, Proposition
5.1.1]).

Proposition 2.5. If Λ is hereditary then we have natural isomorphisms of functors

τ− ∼= E ⊗Λ − : Λ -mod→ Λ -mod

and
τ ∼= HomΛ(E ,−) : Λ -mod→ Λ -mod

where E denotes the Λ-Λ-bimodule Ext1Λ(Λ
∗, Λ). Therefore τ− is left adjoint to τ .

Modules of the form τ−rP , for r ≥ 0 and P ∈ Λ -add, are called preprojective. Dually, modules of
the form τ r I , for r ≥ 0 and I ∈ Λ∗ -add, are called postinjective (or, confusingly, preinjective).

2.4 Preprojective algebras

The following definition was given by Baer, Geigle, and Lenzing [BGL87].

Definition 2.6. Given a hereditary algebra Λ, its preprojective algebra is

Π =
⊕

r≥0

HomΛ(Λ, τ
−rΛ)

with the multiplication of f : Λ→ τ−rΛ and g : Λ→ τ−sΛ defined as

gf = τ−rg ◦ f : Λ→ τ−r−sΛ.

By construction, on restriction to a left Λ-module, Π is isomorphic to the direct sum
⊕

r≥0 τ
−rΛ of

all preprojective modules. Ringel [Rin98] and Crawley-Boevey [CB99] both showed that, up to sign,
this matches the earlier generators and relations definition of the preprojective algebra of a quiver due
to Gelfand and Ponomarev [GP79].

Note that Π contains HomΛ(Λ, Λ) ∼= Λop as a subalgebra.

2.5 A criterion for finite representation type

We now consider finite-dimensional hereditary algebras Λ of finite representation type, i.e., with only
finitely many isomorphism classes of indecomposable modules. These are the hereditary algebras for
which X ∈ Λ -mod, where X is as in Section 2.3.

We will make use of the following Auslander-Reiten theoretic characterization of hereditary algebras
of finite representation type due to Auslander and Platzeck [PA78, Theorem 1.7] (or see [ARS97,
Proposition VIII.1.13]) and also, in the case of quivers, to Gabriel [Gab80, Proposition 6.4].
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Theorem 2.7. A hereditary algebra Λ is of finite representation type if and only if every injective
module is preprojective.

Let S index the isoclasses of indecomposable projective left Λ-modules, so A =
⊕

i∈S P
⊕di
i . Then we

have indecomposable projective right modules iP = P∨
i . Dually, we obtain indecomposable injective

modules Ii = iP
∗ and i I = P∗

i .

Theorem 2.7 implies that if Λ is of finite representation type then there exists a permutation ρ : S
∼
→ S

and a function ℓ : S → Z≥0 such that, for every i ∈ S ,

Ii ∼= τ−ℓ(i)Pρ(i).

3 The Frobenius structure

3.1 The Frobenius isomorphism

The following result was folklore before a careful proof was written down for Λ the path algebra of a
quiver by Brenner, Butler, and King [BBK02, Theorem 4.8].

Theorem 3.1. If Λ is basic and representation finite then Π is Frobenius.

Proof. As Λ =
⊕

i∈S Pi is basic we can decompose Π as a vector space in the following way:

Π =
⊕

i ,j∈S

ℓ(j)
⊕

r=0

HomΛ(Pi , τ
−rPj).

For each pair i , j ∈ S and 0 ≤ r ≤ ℓ(j), consider the chain of isomorphisms

ϕr
ij : HomΛ(Pi , τ

−rPj)
∼
−→ HomΛ(τ

−rPj , Ii )
∗ ∼
−→ HomΛ(Pj , τ

r Ii )
∗ ∼
−→ HomΛ(Pj , τ

r−ℓ(i)Pρ(i))
∗

The first comes from Serrre duality, the second from the adjunction between τ− and τ , and the third
from the fact that every injective is preprojective. So, taking the direct sum over i , j , and r , we have
found an isomorphism of vector spaces Π ∼= Π∗. It remains to show that this isomorphism preserves
the left Π-module structures.

Given f : Pi → τ−rPj and g : Pj → τ−sPk , we want to show that gϕr
ij(f ) = ϕr+s

ik (gf ), so we need
to show that the following diagram commutes:

HomΛ(Pi , τ
−rPj)

∼ //

��

HomΛ(Pj , τ
r−ℓ(i)Pρ(i))

∗

��
HomΛ(Pi , τ

−r−sPk )
∼ // HomΛ(Pk , τ

r+s−ℓ(i)Pρ(i))
∗

First, we note that the square

HomΛ(Pi , τ
−rPj)

∼ //

��

HomΛ(τ
−rPj , Ii )

∗

��
HomΛ(Pi , τ

−r−sPk)
∼ // HomΛ(τ

−r−sPk , Ii )
∗

7



commutes by the naturality of Serre duality, so then we can check that the rest of the square commutes
before dualizing the hom spaces, i.e., we only need to check that the following diagram commutes:

HomΛ(τ
−rPj , Ii )

∼ // HomΛ(Pj , τ
r Ii )

∼ // HomΛ(Pj , τ
r−ℓ(i)Pρ(i))

HomΛ(τ
−r−sPk , Ii)

∼ //

OO

HomΛ(Pk , τ
r+s Ii )

∼ // HomΛ(Pk , τ
r+s−ℓ(i)Pρ(i))

OO

The rightmost vertical map is given by first applying τ−s and then precomposing with g . By Pro-
position 2.4, τ−sτ r+s−ℓ(i)Pρ(i)

∼= τ r−ℓ(i)Pρ(i). Thus the rightmost vertical map is the composition of
the following adjunction and precomposition:

HomΛ(Pk , τ
r+s−ℓ(i)Pρ(i))

∼
−→ HomΛ(τ

−sPk , τ
r−ℓ(ρ(i))Pρ(i)) −→ HomΛ(Pj , τ

r−ℓ(ρ(i))Pρ(i)).

We break our diagram into parts, and will show that each part commutes.

HomΛ(τ
−rPj , Ii)

∼ // HomΛ(Pj , τ
r Ii )

∼ // HomΛ(Pj , τ
r−ℓ(i)Pρ(i))

HomΛ(τ
−r−sPk , Ii )

OO

∼ // HomΛ(τ
−sPk , τ

r Ii )

OO

∼ //

∼

��

HomΛ(τ
−sPk , τ

r−ℓ(i)Pρ(i))

OO

∼

��
HomΛ(τ

−r−sPk , Ii )
∼ // HomΛ(Pk , τ

r+s Ii )
∼ // HomΛ(Pk , τ

r+s−ℓ(i)Pρ(i))

The top left and bottom right squares commute by naturality of adjunctions. The bottom left square
commutes by definition. The top right square commutes by bifunctoriality of HomΛ(−,−).

So we have shown that our isomorphism respects the left Π-module structure, and we are done.

3.2 The graded structure

The preprojective algebra has a natural structure of a nonnegatively graded algebra: maps Λ→ τ−rΛ
are in degree r . Therefore the regular left and right modules also have a natural graded structure.

Let M =
⊕

r∈Z
Mr be a graded (left or right) module. We extend (−)∗ to a duality on graded

modules by (M∗)r = (M−r )
∗. We shift gradings by (M{n})r = Mr+n. With these conventions,

(M{n})∗ = M∗{−n}, and homogeneous maps f : M → N of “degree k”, i.e., such that f (Mr ) ⊆
Nr+k , correspond to degree 0 maps f : M → N{k}.

Our Frobenius isomorphism of Theorem 3.1 can be upgraded to a graded isomorphism in the following
straightforward manner. Let εi : Pi

=
→ Pi denote the identity map on Pi . Then εi is an idempotent

in Π.

Recall our function ℓ : S → Z≥0 from Section 2.5.

Proposition 3.2. For all i ∈ S, we have an isomorphism Πεi ∼= (ερ(i)Π)
∗{−ℓ(i)} of graded left

Π-modules.

8



Proof. First, note that

Πεi =
⊕

j∈S

ℓ(j)
⊕

r=0

HomΛ(Pi , τ
−rPj)

and

εkΠ =
⊕

j∈S

ℓ(k)
⊕

r=0

HomΛ(Pj , τ
−rPk).

Recall our maps
ϕr
ij : HomΛ(Pi , τ

−rPj)
∼
−→ HomΛ(Pj , τ

r−ℓ(i)Pρ(i))
∗.

So elements in (Πεi)r are sent to elements in the dual of (ερ(i)Π)−r+ℓ(i), i.e., ϕ
r
ij sends degree r

elements of Πεi to degree r − ℓ(i) elements of (ερ(i)Π)
∗. So ϕr

ij is a homogeneous map of degree
−ℓ(i) and thus

ϕi =
⊕

j,r

ϕr
ij

is a graded map Πεi → (ερ(i)Π)
∗{−ℓ(i)}.

We say that Π is a graded Frobenius algebra with Gorenstein function ℓ. Informally, we write

ΠΠ ∼= ΠΠ
∗{ℓ}.

3.3 Postinjective algebras

There is an obvious definition dual to the preprojective algebra:

Definition 3.3. Given a hereditary algebra Λ, its postinjective algebra is

Π

=
⊕

r≥0

HomΛ(τ
rΛ∗, Λ∗)

with the multiplication of f : τ rΛ∗ → Λ∗ and g : τ sΛ∗ → Λ∗ defined as

gf = g ◦ τ s f : τ r+sΛ→ Λ.

Π

is nonnegatively graded with maps τ rΛ∗ → Λ∗ in degree r .

This gives us nothing new, but it will be useful to see precisely how this gives us nothing new. We
go from Π to

Π

using Serre duality and our adjunctions, as follows:

∆r
ij : HomΛ(Pi , τ

−rPj)
∼
→ HomΛ(τ

−rPj , Ii)
∗ ∼
→ HomΛ(Pj , τ

r Ii)
∗ ∼
→ HomΛ(τ

r Ii , Ij)
∗∗ ∼
→ HomΛ(τ

r Ii , Ij)

Proposition 3.4. The map ∆ : Π→

Π

sending f : Pi → τ−rPj to ∆(f ) : τ r Ii → Ij is an isomorphism
of graded algebras.

Proof. We only need to check that ∆ is an algebra homomorphism, i.e., that the following diagram
(with Homs omitted) commutes:

(Pi , τ
−rPj)⊗ (Pj , τ

−sPk) //

∼

��

(Pi , τ
−r−sPk)

∼

��
(τ r Ii , Ij)⊗ (τ s Ij , Ik ) // (τ r+s Ii , Ik)

9



We use the definitions of the multiplication maps and break the diagram up as follows:

(Pi , τ
−rPj)⊗ (τ−rPj , τ

−r−sPk ) //

��

(Pi , τ
−r−sPk)

��
(τ−rPj , Ii )

∗ ⊗ (τ−rPj , τ
−r−sPk ) //

��

(τ−r−sPk , Ii)
∗

��
(Pj , τ

r Ii)
∗ ⊗ (Pj , τ

−sPk) //

��

(τ−sPk , τ
r Ii)

∗

(τ r Ii , Ij)
∗∗ ⊗ (τ−sPk , Ij)

∗ //

��

(τ−sPk , τ
r Ii)

∗

��
(τ r+s Ii , τ

s Ij)
∗∗ ⊗ (Pk , τ

s Ij)
∗ //

��

(Pk , τ
r+s Ii)

∗

��
(τ r+s Ii , τ

s Ij)
∗∗ ⊗ (τ s Ij , Ik )

∗∗ // (τ r+s Ii , Ik)
∗∗

The constituent squares commute because of the naturality of Serre duality and the naturality of the
adjunction, alternatively.

We obtain two corollaries. The first can be seen as an enhanced naturality property of Serre duality,
and is a useful tool for showing that diagrams commute.

Corollary 3.5. Fix f : Pi → τ−rPj . Then the following diagram commutes:

HomΛ(Pj , τ
−sPk)

∼ //

τ−r

��

HomΛ(τ
−sPk , Ij)

∗

(1,∆(f ))∗

��
HomΛ(τ

−rPj , τ
−r−sPk)

(f ,1)

��

HomΛ(τ
−sPk , τ

r Ii )
∗

∼ adj

��
HomΛ(Pi , τ

−r−sPk)
∼ // HomΛ(τ

−r−sPk , Ii )
∗

Proof. Having fixed f , this is a subdiagram of the large diagram in the previous proof.

The second relates the (“left”) preprojective algebra to the “right” preprojective algebra. By Proposi-
tion 2.5, τ− : Λ -mod→ Λ -mod is given by tensoring on the left with the bimodule E = Ext1Λ(Λ

∗, Λ) ∼=
Ext1Λ⊗FΛop(Λ, Λ⊗F Λ), which is left-right symmetric. So τ− : Λop -mod→ Λop -mod is given by tensor-
ing on the right with E , and thus we can write τ−Λ unambiguously whether we are dealing with left
of right modules.

Corollary 3.6. We have an algebra anti-isomorphism

R :
⊕

r≥0

HomΛ(Λ, τ
−rΛ)

∼
→

⊕

r≥0

HomΛop(Λ, τ−rΛ)

f 7→ℓf (1)

which respects the grading. It sends a map f : Pi → τ−rPj to a map R(f ) : jP → τ−r
iP.
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Proof. Take the F-linear dual of

Π

.

We therefore have the following diagram of graded algebras:

left preprojective algebra
∼ // left postinjective algebra

anti-isom

��
right postinjective algebra

anti-isom

OO

right preprojective algebra
∼oo

Remark 3.7. If one just wanted to relate the left and right preprojective algebras, an alternative
approach would be to use the fact that both functors HomΛ(Λ,−) and HomΛop(Λ,−) are natur-
ally isomorphic to the identity functor on the category of Λ ⊗F Λop-modules. Explicitly, we have
isomorphisms

HomΛ(Λ,M)
∼
→ HomΛop(Λ,M)

given by f 7→ [a 7→ f (1)a]. Then one can check on elements that this gives an algebra anti-
isomorphism.

3.4 The Nakayama automorphism

We will now describe the Nakayama automorphism of Π, denoted σ. Given a map

f : Pi → τ−rPj

of left Λ-modules we first apply the algebra isomorphism ∆ of Proposition 3.4, and pre- and post-
compose with the isomorphisms which exhibit our injectives as preprojective modules, to obtain a
map

τ r−ℓ(i)Pρ(i) → τ−ℓ(j)Pρ(j)

between preprojectives. Then we use the adjunction between τ− and τ to obtain:

σ(f ) : Pρ(i) → τ ℓ(i)−ℓ(j)−rPρ(j).

Theorem 3.8. σ is a Nakayama automorphism of Π, i.e., we have an isomorphism

Π ∼= (Π∗)σ

of Π-Π-bimodules.

Proof. Choose some
f : Pi → τ−rPj

and
g : Pj → τ−sPk

in Π. We apply the chain of isomorphisms of hom spaces from Theorem 3.1 to g :

HomΛ(Pj , τ
−sPk ) ∼= HomΛ(τ

−sPk , Ij)
∗ ∼= HomΛ(Pk , τ

s Ij)
∗ ∼= HomΛ(Pk , τ

s−ℓ(j)Pρ(j))
∗

We need to show that the following diagram commutes:

HomΛ(Pj , τ
−sPk )

∼ //

��

HomΛ(Pk , τ
s−ℓ(j)Pρ(j))

∗

��
HomΛ(Pi , τ

−r−sPk )
∼ // HomΛ(Pk , τ

r+s−ℓ(i)Pρ(i))
∗

11



The left vertical map is the right action of f , so we apply τ−r to g and then precompose with f , and
the right vertical map is given by post-composition with τ r+s−ℓ(i)σ(f ) before applying the functional.

By Corollary 3.5 we have that the following diagram commutes:

HomΛ(Pj , τ
−sPk)

∼ //

��

HomΛ(τ
−sPk , Ij)

∗

��
HomΛ(τ

−rPj , τ
−r−sPk)

��

HomΛ(τ
−sPk , τ

r Ii )
∗

∼

��
HomΛ(Pi , τ

−r−sPk)
∼ // HomΛ(τ

−r−sPk , Ii )
∗

and so we can remove duals from the rest of the diagram, and it remains to check that the following
diagram commutes:

HomΛ(τ
−sPk , Ij)

∼ // HomΛ(Pk , τ
s Ij)

∼ // HomΛ(Pk , τ
s−ℓ(j)Pρ(j))

HomΛ(τ
−sPk , τ

r Ii )

OO

HomΛ(τ
−r−sPk , Ii )

∼

OO

∼ // HomΛ(Pk , τ
r+s Ii )

∼ // HomΛ(Pk , τ
r+s−ℓ(i)Pρ(i))

OO

The left vertical map is defined by first using the adjunction and then postcomposing with ∆(f ), and
the right vertical map is post-composition with τ r+s−ℓ(i)σ(f ). By definition of σ and the horizontal
maps, the following diagram commutes:

HomΛ(Pk , τ
s Ij)

∼ // HomΛ(Pk , τ
s−ℓ(j)Pρ(j))

HomΛ(Pk , τ
r+s Ii )

∼ //

OO

HomΛ(Pk , τ
r+s−ℓ(i)Pρ(i))

OO

where the left vertical map is post-composition with τ s∆(f ) : τ r+s Ii → τ s Ij . So it remains to check
that the square

HomΛ(τ
−sPk , Ij)

∼ // HomΛ(Pk , τ
s Ij)

HomΛ(τ
−sPk , τ

r Ii )

OO

HomΛ(τ
−r−sPk , Ii )

∼

OO

∼ // HomΛ(Pk , τ
r+s Ii )

OO

commutes. The bottom left vertical map and the bottom horizontal maps are both just adjunction
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maps, so the triangle in the following square commutes

HomΛ(τ
−sPk , Ij)

∼ // HomΛ(Pk , τ
s Ij)

HomΛ(τ
−sPk , τ

r Ii )

OO

∼

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

HomΛ(τ
−r−sPk , Ii )

∼

OO

∼ // HomΛ(Pk , τ
r+s Ii )

OO

and the remaining square commutes by the naturality of the adjunction.

For Λ = FQ the path algebra of an ADE Dynkin quiver, an explicit formula for the Nakayama
automorphism was given by Brenner, Butler, and King. In this case, there is at most one arrow of
Q with a given source and target, so we can write yij for an arrow α : i → j of Q. Recall that Π is
generated by the arrows yij = α : i → j of Q and by arrows yji = α∗ : j → i in the opposite direction.
The former corresponds to irreducible maps between projectives and the latter to irreducible maps
from projectives to summands of E = τ−Λ. Then we have the following formula [BBK02, Definition
4.6 and Theorem 4.8]:

Theorem 3.9 (The BBK formula). For Q an ADE Quiver, the Nakayama automorphism σ of the
preprojective algebra of Λ = FQ acts on generators by:

σ(yij ) =

{

yρ(i)ρ(j) if yij ∈ Q or yρ(i)ρ(j) ∈ Q;

−yρ(i)ρ(j) if yij /∈ Q and yρ(i)ρ(j) /∈ Q.

Remark 3.10. It would be interesting to recover the BBK formula directly from Theorem 3.8. The
hope is that such a derivation would avoid the complicated calculations necessary in Section 4.4 of
[BBK02]. Such calculations become more difficult in higher global dimension, as illustrated by the
appendix of the arXiv version of [EP12].

3.5 Worked example

To make calculations it is useful to use the isomorphism τ− ∼= E ⊗Λ − from Proposition 2.5 and the
classical fact that, for Λ = FQ, the bimodule E is generated by the dual of the arrow space of Q (see
[GI19, Proposition 3.1] for a modern treatment).

Example 3.11. Let Q be the quiver

1
α
−→ 2

β
−→ 3

γ
←− 4

and let Λ = FQ be the path algebra of Λ. Unlike functions, we compose arrows in a path right to left,
so the nontrivial length 2 path is denoted βα. We write the projective left Λ-modules as Pi = Λei
and the preprojectives as E r

i = E⊗Λrei . They have bases

P1 = 〈e1〉, P2 = 〈e2,α〉, P3 = 〈e3,β, γ,αβ〉, P4 = 〈e4〉,

E1 = 〈α
∗〉, E2 = 〈β

∗,ββ∗, γβ∗〉, E3 = 〈β
∗β,ββ∗β〉, E4 = 〈γ

∗,βγ∗,αβγ∗〉,

E 2
1 = 〈β∗α∗, γβ∗α∗〉, E 2

2 = 〈β∗α∗α〉

where α∗α = ββ∗ and β∗β = −γ∗γ.

13



The Auslander-Reiten quiver of Λ -mod is as follows:

P1

α
��❄

❄❄
❄❄

❄❄
❄

E1

!!❇
❇❇

❇❇
❇❇

❇❇
E 2
1

  ❆
❆❆

❆❆
❆❆

❆

P2

α∗

>>⑥⑥⑥⑥⑥⑥⑥⑥

β   ❆
❆❆

❆❆
❆❆

❆
(+) E2

==⑤⑤⑤⑤⑤⑤⑤⑤

!!❈
❈❈

❈❈
❈❈

❈
(+) E 2

2

P3

β∗

==④④④④④④④④

γ∗

!!❈
❈❈

❈❈
❈❈

❈
(−) E3

>>⑥⑥⑥⑥⑥⑥⑥⑥

P4

γ

>>⑤⑤⑤⑤⑤⑤⑤⑤
E4

==④④④④④④④④

The leftmost arrows are labelled by arrows and their duals: the map P1 → P2 sends e1 to α, and the
map P2 → E1 sends e2 to α∗. These can be seen as right multiplication, and then the arrows obtained
by applying τ− can be interpreted as the same multiplications: for example, the map E1 → E2 sends
α∗ 7→ α∗α = ββ∗. Note that not all squares commute: the anticommuting square is marked (−).

The injective modules have bases

I1 = 〈β
∗α∗,α∗, e∗1 〉, I2 = 〈β

∗, e∗2 〉, I3 = 〈e
∗
3 〉, I4 = 〈γ

∗, e∗4 〉.

Our vertex permutation ρ sends i to 5 − i and our length function is given by ℓ(1) = ℓ(2) = 2 and

ℓ(3) = ℓ(4) = 1. We fix isomorphisms Ii ∼= E
ℓ(i)
ρ(i) which are determined by

I1 ∋ e∗1 7→ αβγ∗ ∈ E4, I2 ∋ e∗2 7→ ββ∗β ∈ E3, I3 ∋ e∗3 7→ β∗α∗α ∈ E 2
2 , I4 ∋ e∗4 7→ γβ∗α∗ ∈ E 2

1 .

We start by applying the maps ϕr
ij of Theorem 3.1 to the maps out of P1, so i = 1. So we work with

Πε1 = 〈 idP1 : P1 → P1, rα : P1 → P2, rαβ : P1 → P3, rαβγ∗ : P1 → E4 〉.

Serre duality sends idP1 to the dual of the map P1 → I1 sending e1 7→ e∗1 . Using our isomorphism
I1 ∼= E4 we get the dual of rαβγ∗ : P1 → E4. Similarly, the degree 0 maps rα : P1 → P2 and rαβ are
sent to the duals of rβγ∗ : P2 → E4 and rγ∗ : P3 → E4, respectively. Serre duality sends the degree 1
map rαβγ∗ to the dual of the map E4 → I1 sending αβγ∗ 7→ e∗1 . Composing with I1 ∼= E4, this sends
αβγ∗ to itself, so on applying τ we get idP4 . This shows that (Πε1)

∗ ∼= ε4Π{1}, as predicted by the
dual of Proposition 3.2.

Now we calculate the Nakayama automorphism σ. The identity map on Pi is clearly sent to the
identity map on Pρ(i) and σ is an algebra automorphism, so it is enough to find the images of the
irreducible maps Pi → Pj and Pi → Ej .

We start with irreducible maps Pi → Pj . First, ∆ sends rα : P1 → P2 to the map I1 → I2 sending α∗

to e∗2 . So using our fixed isomorphisms we get the map E4 → E3 sending βγ∗ to ββ∗β = −βγ∗γ.
So, applying τ−, we see that σ(rα) is the map −rγ : P4 → P3 sending e4 to −γ. Second, ∆(rβ)
sends β∗ ∈ I2 to e∗3 ∈ I3, so we get E3 → E 2

2 sending β∗β to β∗α∗α = β∗ββ∗, and applying τ− gives
rβ∗ : P3 → E2. Third, ∆(rγ) sends γ

∗ ∈ I4 to e∗3 ∈ I3, so we get E 2
2 → E 2

1 sending β∗α∗ to β∗α∗α,
and applying τ− gives rα : P1 → P2.

Now we determine how σ acts on irreducible maps Pi → Ej . First, consider rα∗ : P2 → E1. Applying
Serre duality gives the dual of a map E1 → I2 which sends α∗ to e∗2 . Under our isomorphism I2 ∼= E3,
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e∗2 corresponds to ββ∗β = α∗αβ, so applying τ− gives the map rαβ : P1 → P3. Using Serre duality
once more gives us the map P3 → I1 sending αβ to e∗1 , which corresponds to αβγ∗ in E4. So
σ(rα∗) = rγ∗ : P3 → E4.

Second, we take rβ∗ : P3 → E2. Applying Serre duality gives the dual of a map E2 → I3 which sends
β∗ to e∗3 . Under our isomorphism I3 ∼= E 2

2 , e
∗
3 corresponds to β∗α∗α, so applying τ− gives the map

rα∗α : P2 → E2. Using Serre duality once more gives us the map E2 → I2 sending α∗α = ββ∗ to e∗2 ,
which corresponds to ββ∗β in E3. Applying τ once more shows that σ(rβ∗) = rβ : P2 → P3.

Third, consider rγ∗ : P3 → E4. Applying Serre duality gives the dual of a map E4 → I3 which
sends γ∗ to e∗3 . Under our isomorphism I3 ∼= E 2

2 , e
∗
3 corresponds to β∗α∗α = β∗ββ∗ = −γ∗γβ∗,

so applying τ− gives the map −rγβ∗ : P4 → E2. Using Serre duality once more gives us the map
E2 → I4 sending −γβ∗ to e∗4 , which corresponds to γβ∗α∗ in E3. Applying τ once more shows that
σ(rγ∗) = −rα : P2 → P3.

Below, we have two copies of the quiver of Πop, with Q as the subquiver on the top arrows. In the
first copy we record the sign of its image under the Nakayama automorphism as calculated above.
The second copy shows the sign appearing in the BBK formula.

1
−

((
2

+

hh
+

((
3

+

hh
−

66 4
+

vv
1

+
((
2

−

hh
+

((
3

+

hh
−

66 4
+

vv

These automorphisms differ by an inner automorphism of Π: we can conjugate by −ε1+ ε2+ ε3+ ε4.
To recover the BBK automorphism directly, we should scale our isomorphism I1 ∼= E4 by −1 so that
it sends e∗1 7→ −αβγ

∗.

4 Higher preprojective algebras

4.1 Generalizations

All the constructions and proofs in this paper generalize immediately to d-representation finite and
(d + 1)-preprojective algebras [IO11]. Indeed, they were originally conceived in this setting, but for
the sake of clear exposition we have explained everything in the classical setting. To modify the
statements and proofs, one only needs to add a subscript d to each τ and τ− [Iya07].

Of course, one needs to know the theorems we rely on still hold in this generality, but they do:

Result used above d-AR generalization

Proposition 2.4 Theorem 1.4.1 of [Iya07]
Proposition 2.5 Proposition 2.10 of [GI19],

based on Lemma 2.13 of [IO13]
Definition 2.6 Definition 2.11 of [IO13]
Theorem 2.7 Proposition 1.3(b) of [Iya11]

Therefore, if Λ is a d-representation finite algebra, and Π is its (n + 1)-preprojective algebra, we get
the following results.

Theorem 4.1. If Λ is basic and d-representation finite then Π is Frobenius.
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Proof. As for Theorem 3.1.

Then, defining σ as in Section 3.4 but with τ−d and τd , we get

Theorem 4.2. σ is a Nakayama automorphism of Π, i.e., we have an isomorphism

Π ∼= (Π∗)σ

of Π-Π-bimodules.

Proof. As for Theorem 3.8.

To make calculations, we use that τ−2
∼= E ⊗Λ − where E is generated by the dual of the relation

space of Λ.

Example 4.3. Let Λ = FQ/I where Q is the quiver 1
α
−→ 2

β
−→ 3 and I = 〈αβ〉. Λ is isomorphic to

the Auslander algebra of the path algebra of the quiver 1→ 2 and so is 2-representation finite. The
projective and 2-preprojective left Λ-modules are

P1 = 〈e1〉, P2 = 〈e2,α〉, P3 = 〈e3,β〉, E1 = 〈β
∗α∗〉.

The 2-Auslander-Reiten quiver of Λ -mod is as follows:

P3

β∗α∗

��✵
✵
✵
✵
✵
✵
✵
✵

P2

β >>⑤⑤⑤

P1

α >>⑤⑤⑤
E1

Note that the composition P1 → P2 → P3 is zero.

The injective modules have bases

I1 = 〈α
∗, e∗1 〉, I2 = 〈β

∗, e∗2 〉, I3 = 〈e
∗
3 〉.

Our vertex permutation is given by ρ(1) = 2, ρ(2) = 3, and ρ(3) = 1 and our length function is given

by ℓ(1) = ℓ(2) = 0 and ℓ(3) = 1. We fix isomorphisms Ii ∼= E
ℓ(i)
ρ(i) which are determined by

I1 ∋ e∗1 7→ α ∈ P2, I2 ∋ e∗2 7→ β ∈ P3, I3 ∋ e∗3 7→ β∗α∗ ∈ E1.

Using Serre duality it is easy to check that

(Πε1)
∗ ∼= ε2Π{0}, (Πε2)

∗ ∼= ε3Π{0}, (Πε3)
∗ ∼= ε1Π{1}

as predicted by the generalization of the dual of Proposition 3.2.

Now we calculate the Nakayama automorphism σ. ∆ sends rα : P1 → P2 to the map I1 → I2 sending
α∗ to e∗2 , which corresponds to sending e2 ∈ P2 to β ∈ P3, so σ(rα) = rβ : P2 → P3. Similarly,
σ(rβ) = rβ∗α∗ : P3 → E1. Finally, applying Serre duality to rβ∗α∗ gives the dual of the map E1 → I3
sending β∗α∗ to e1 which, using our isomorphism I3 ∼= E1, gives the identity map on E3. So applying
τ−2 gives the identity map on P1, and applying Serre duality once more gives P1 → I1 sending e1 to
e∗1 . Using I1 ∼= P2 gives the map P1 → P2 sending e1 to α, so we get σ(rβ∗α∗) = rα : P1 → P2.
Note that this agrees with the calculation of Herschend and Iyama [HI11, Theorem 3.5].
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