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Abstract
With the ability to propagate very long distances, guided waves have been good candidates for serving 
as an efficient non-destructive evaluation (NDE) method. In this paper, theoretical work is carried out 
by developing the appropriate dispersion equations for circumferential guided waves in a pipe. 
Meanwhile, strain formulations are derived from a general equidistant surface coordinate, in which one 
of axes is parallel to the propagation of waves. Following that, a semi-analytical FEM is adopted to 
solve the dispersion equations. Then, scattered fields in a circular annulus are calculated using the 
hybrid FEM and the obtained results are verified by the conservation of energy principle. Finally, the 
recently developed QDFT (quantitative detection of Fourier transform) technique is further enhanced 
for the reconstruction of circumferential defects in pipeline structures. Four numerical examples of 
flaw detection problems are examined to demonstrate the correctness of this technique in terms of 
accuracy and efficiency. Results show that reconstruction of circumferential surface defects using 
improved QDFT method can be performed quickly without the necessity of analytical formulations and 
also streamline the whole procedure of inspecting surface defects, which will lead to the reduced time 
for practical engineering tests.
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1. Introduction
  Defect detection in various structures using ultrasonic guided waves has been paid more attention in 
the field of structural health monitoring (SHE) owing to the accuracy and efficiency of this technique 
for the inspection. For annulus structures with large radii or thick-walled thicknesses, the motion theory 
and numerical simulations were applied to analyze the detailed wave propagation by many researches. 
In early years, Cook and Valkenburg[1] found that the Rayleigh-type wave might propagate along a 
cylindrical surface. Then, a mathematical model for waves traveling around a solid cylinder immersed 
in water was presented. Following that, a formal asymptotic theory validated at high frequencies was 
developed for harmonic Rayleigh surface waves traveling over the general smooth free surface of a 
homogeneous elastic solid[2]. Recently, the research about guided waves in a circular annulus[3][4] 
has been focused on the theoretical derivation of dispersion equations and the relationship between a 
flat plate and an annulus with an infinite radius. 
  The main step in the traditional inspection process is the calculation of scattered fields, which is 
defined as solving a forward problem. Rattanawangcharoen[5] combined finite element (FE) 



formulations and the wave function expansion to investigate the plane strain wave scattering by cracks 
in cylinders. Wang et al. [6] simulated the behaviors of circumferential shear horizontal (SH) guided 
waves using commercial FE software ABAQUS. Based on the results from forward problems, the 
relationships between scattered fields and defect profiles were determined.

In the meanwhile, ultrasonic guided waves have been used to detect defects in plate-like structures. 
Leonard et al.[7] applied tomographic reconstruction for nondestructive evaluation (NDE) of aerospace 
structures. Huthwaite and Simonetti[8] and Huthwaite[9] compared the ray tomography with 
diffraction tomography techniques and provided a mechanism for determining the thickness from a 
velocity reconstruction. Luo et al.[10] suggested that circumferential SH waves could be used for the 
inspection and sizing of axial cracks in pipelines. To generate circumferential shear horizontal guided 
waves, experiments on two sample pipes having notches with different depths and lengths were carried 
out utilizing magnetostrictive sensor (MsS) technology. Similarly, SH guided waves propagating in the 
circumferential direction of pipeline were modeled in 3D and implemented to analyze axial cracking in 
in-line inspection (ILI) tools[6]. Valle et al.[11] applied guided circumferential waves in a hollow 
isotropic cylinder to research both the crack location and size, and indicated that the confine of 
inspecting small cracks with high frequency signals was significantly weakened by the mentioned 
techniques. Liu et al.[12] proposed a new multichannel time reversal focusing (MTRF) method to 
detect different kinds of defects in thick-walled pipes with large diameters using circumferential Lamb 
waves. Liu et al.[13] combined the guided circumferential wave (GCW) with continuous wavelet 
transform (CWT) to identify radial cracks in pipes. Shivaraj et al.[14] used a higher order cylindrically 
guided ultrasonic wave for the detection and sizing of hidden pitting-type corrosion in the hidden 
crevice regions (between the pipe and the pipe supports) without lifting or disturbing the structural 
layout arrangement of the pipelines. An axial transducer array or a single axially scanned transducer 
was suggested to send and receive dispersive circumferential guided waves around a pipe[15]. 
Furthermore, ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT) 
actuators were also utilized to meet the requirements from practical applications[16][17]. Common-
source synthetic focusing was used to reconstruct defect images from the guided wave signals, where 
filters operating in the spectral domain of wavenumber, circumferential order and frequency were 
designed to suppress the signal components of unwanted mode-family and unwanted traveling 
direction[18].

However, it has been challenging to complete the quantitative reconstruction of arbitrary surface 
defects in annulus structures using circumferential guided waves. To address this issue, a novel 
approach is proposed in this paper to accurately and efficiently achieve the reconstruction of surface 
defects in such structures. The quantitative detection procedure consists of three parts: the dispersion 
analysis of circumferential guided waves in a circular annulus, the calculation of scattered fields, and 
the defect reconstruction using reflection coefficients extracted from scattered fields. First, the 
dispersion equations have been derived for helix guided waves with an arbitrary incident angle 
propagating in a hollow cylinder and then solved using the semi-analytical finite element method 
(SAFEM)[19][20]. The obtained results have been validated by other published data. To calculate 
scattered fields, the in-house hybrid FEM[21][22] has been developed to numerically determine the 
scattered fields and its correctness has been verified by the theory of energy conversation. Finally, the 
developed Quantitative Detection of Fourier Transform (QDFT) approach has been applied to 
reconstruct four types of surface defects in annulus structures with high levels of accuracy and 
efficiency.



2. Analysis of dispersion equations for annulus structures
The analysis of guided wave dispersion is of great importance to grasp the propagation mechanism 

in the structure. It can help to choose optimum modes of guided waves for the defect reconstruction. In 
this paper, a generalized orthogonal coordinate  shown in Fig.1 has been defined to derivate (𝛼1,𝛼2,𝛼3)
the dispersion equations of helical guided waves traveling in a hollow cylinder so that the 
circumferential guided waves can be represented by assigning the value of zero to the incident angle . 𝜃
For helical guided waves propagate with an arbitrary angle  in a hollow cylinder, the curvatures for  𝜃
the geodesics[23] which are spirals for the surface of the hollow cylinder can be expressed as 

, 𝜅1 = 𝜅1cos2 𝜃 + 𝜅2sin2 𝜃 𝜅2 = 𝜅1sin2 𝜃 + 𝜅2cos2 𝜃 (1)

where  and , which are the principal curvatures of the outside surface defined in a 𝜅1 = 1 𝑟out 𝜅2 = 0
cylindrical system. The curvatures of the coordinate  and  are denoted as  and , 𝛼1 𝛼2 𝜅1 𝜅2

respectively. Hence, Lame coefficients (scale factors) can be written as, where the outsider surface is 
considered as the reference surface of equidistant surface,

, , ℎ1 = 1 + 𝜅1𝛼3 ℎ2 = 1 + 𝜅2𝛼3 ℎ3 = 1 (2)
Thus, the relationship between the particle displacements  and strains  are represented as𝑢𝑖 𝜀𝑖𝑗
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Fig. 1 Helical guided waves propagating along  direction in a pipe𝛼1

Eq.(3) can be written in matrix form as follows 
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Along the wall thickness (the direction of ), the hollow cylinder is discretized so that the 𝛼3

displacements are represented as:
𝒖(𝛼1,𝛼2,𝛼3) = [𝑢1 𝑢2 𝑢3]𝑇 = 𝐍(𝛼3)𝑼(𝛼1,𝛼2) (6)
where  is a matrix of element shape function. 𝐍
Substituting Eqs. (5) and (6) into Eq.(4), the strains are denoted as 
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Applying Fourier series, the displacements  in the direction  can be written as𝑼 𝛼2
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where  employing Fourier transform and  represents a wavenumber. 𝑼𝑛(𝛼1) = ∫𝑼𝑛(𝜉𝑛)𝑒𝑖𝜉𝑛𝛼1𝑑𝜉𝑛 𝜉𝑛

  According to Hamilton’s principle, the governing equations can be given
,[𝐀(𝑛,𝜔) ‒ 𝜉𝑛𝐁(𝑛,𝜔)]𝑸𝑛 = 𝑷𝑛
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 and  are the circular frequency and the material density;  represents displacements in the 𝜔 𝜌 𝑼𝑛

wavenumber domain, which are obtained by inverse Fourier transform of  in Eq.(8); and  𝑼𝑛(𝛼1) 𝑭𝑛

is the loads in the wavenumber domain and its definition is the same as . In order to obtain the 𝑼𝑛

nontrivial solutions of the dispersion equations, the determinant of the matrix in Eq.(9) should be equal 
to zero as follows:
|𝐀(𝑛,𝜔) ‒ 𝜉𝑛𝐁(𝑛,𝜔)| = 0 (11)
Solving the Eq.(11), the left eigenvectors and right eigenvectors  are obtained as functions 𝝓 𝐿

𝑛𝑚 𝝓 𝑅
𝑛𝑚

of different eigenvalues  (wavenumber), in which the subscript  means the order number of 𝑘𝑛𝑚 𝑚
guided wave modes and  represents the order number for the axis . Then, based on Zhuang’s 𝑛 𝛼2

work[19], the displacement and stress formulas (  and ) are derived as𝑼𝑛 𝝈𝑛
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(12)



𝝈𝑛 = {𝐃[(𝐁1 + 𝑖𝑛𝜅2𝐁2 ‒ 𝑖𝑘𝑛𝑚𝐁3)𝚽  
𝑛𝑚] }𝑒 ‒ 𝑖𝑘𝑛𝑚(𝛼1 ‒ 𝛼0) = 𝐭𝑛𝑒 ‒ 𝑖𝑘𝑛𝑚(𝛼1 ‒ 𝛼0)

where  is the position of load  in axis ,  represents elastic moduli matrix.𝛼0 𝑷𝑛 𝛼1 𝐃
Based on the aforementioned semi-analytical finite element (SAFE) method, the dispersion 

equations of helix guided waves in pipes can be numerically solved to discover the relationship 
between the frequency and the wave phase velocity using the examples as follows:

In the numerical tests, material properties and the geometry of a pipe has been given in Table 1. In 
Fig.2, different incident angles  have been selected to calculate the 𝜃 = 0, π 6, π 4, π 3, π 2
corresponding dispersion curves of the plane mode waves and the superscript ‘ ’ represents the anti-﹀

plane mode. It is emphasized that in this paper the situation of the order number  is considered. 𝑛 = 0

When , the guided waves propagate along the axis of the cylinder and for the incident angle 𝜃 = π 2 𝜃
, the circumferential guided waves can be obtained. In the cases with the incident angles = 0 𝜃 =  π 6, 

, it can be observed that the propagation paths of guided waves are helix curves, which make π 4, π 3
the problem more difficult for the calculation of scattered fields caused by structural flaws. In this 
paper, the outer wall of the hollow cylinder is considered as the reference surface. Unless otherwise 
stated, wavenumbers and phase velocities correspond to the values at the outer surface. When the 
incident angle  is decreased from  to 0, the phase velocity gradually become larger. This can be 𝜃 π 2
also proved in three different cases: , , and  shown in Fig.3. 𝑟in 𝑟out = 0.1 𝑟in 𝑟out = 0.5 𝑟in 𝑟out = 0.95
The obtained solutions have a good agreement with the results by Liu [3]  As  is increased, the . 𝑟in 𝑟out

0th plane mode fades away and a dispersive to non-dispersive transition of the  anti-plane mode can 1st

be observed as well as the phase velocity being a little larger than the velocity of transverse waves.

Table 1 
Material properties of the pipe model
Density
( )𝜌,kg m3

Inner radius (𝑟in

),m
Outer radius 
( )𝑟out,m

Wall thickness
( )ℎ = 𝑟out ‒ 𝑟in, m

Lame constants 
(  and )𝜆 𝜇, Pa

8.2324 × 103 3.881 × 10 ‒ 2 4.440 × 10 ‒ 2 5.590 × 10 ‒ 3
1.0878 × 1011 
and
8.4302 × 1010
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Fig. 3 The dispersion curves of guided waves in pipes with different values of thickness wall, as 

incident angle : (a) ; (b) ; (c)𝜃 = 0  𝑟in 𝑟out = 0.1  𝑟in 𝑟out = 0.5  𝑟in 𝑟out = 0.95

  In the meanwhile, an example with the ratio  has been examined to compare the 𝑟in 𝑟out = 0.874
results of guided wave modes in circular annulus with the ones in plate shown in Fig.4. The phase 



velocity of the  anti-plane mode wave in circular annulus is larger than the one in plate, the cut-off 1st  
frequency of the  plane mode wave in circular annulus is not equal to zero, and velocities of all 2nd

plane modes waves in plate are smaller by comparison of the results in circular annulus. It is also noted 

that the non-dispersive characteristic of the  anti-plane mode wave is remarkable and that is why 1st

this mode is used to detect flaws in a circular annulus.
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3. Calculation of scattered fields using hybrid FEM
Many three-dimensional engineering simulations can be simplified into a plain strain analysis for 

computational efficiency. Taking into account this situation, a long pipe with defects that has a constant 
cross section is investigated for the numerical determination of displacement and stress fields using 
hybrid FEM in this paper. The circumferential guided waves are adopted to detect flaws in the structure 
and the circular annulus is represented by a two-dimensional model shown in Fig.5. 

For the circumferential wave with the incident angle , Eq.(1) can be rewritten as 𝜃 = 0
, 𝜅1 = 𝜅1 𝜅2 = 0 (13)

where  mean the curvature. 𝜅1

  The whole circular annulus has been divided into two parts shown in Fig.5: one bounded between 
two cross-sections  and  includes defects (highlighted in red lines), and the other contains the 𝑆1 𝑆2

remaining structure. Based on the observation in Fig.4, the  anti-plane mode waves can propagate 1st

in a constant phase velocity. Therefore, in this research the clockwise  anti-plane mode guided 1st

waves are generated and will travel on the surface of the circular annulus.
It is obvious that the incident and reflected waves propagate through  whilst the transmitted 𝑆2

waves travel through . The nodal displacements and forces of the two cross-sections  and  𝑆1 𝑆1 𝑆2

consist of infinite components induced by different mode waves with unknown amplitudes, which are 
depicted in Section 2. However, most of the non-propagating modes will quickly die off and only the 
propagating waves and a few non-propagating modes will be used to calculate the scattered fields. 
Based on authors’ previous work[21], the hybrid FEM[22] is implemented to numerically determine 
the scattered fields of annulus structures with circumferential defects as follows:

 The main motion equation is formulated by

[𝐆][𝐪I
𝐀] = [𝐓] (14)

where ,𝐆 = {[ 𝐈 𝟎
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𝟎 𝐭 ]}
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， ， ，  is an identity matrix, the subscripts I = [𝚽 1
0𝑚

𝚽 2
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0M] 𝐈

and B mean interior nodes and boundary nodes,  is the displacement vector of the interior nodes,  𝐪I M
is the total number of non-propagating waves and guided waves corresponding to different frequencies, 

 is the modified coefficients for scattered fields,  and  denote nodal displacements and forces 𝐀 𝚽 𝐭
induced by a unity amplitude of reflected and transmitted waves propagating through the cross sections 

 and , and  and  represent nodal displacements and forces incident waves through the 𝑆1 𝑆2 𝚽1 𝐭1

cross sections. 
  Based on the formulations derived in section 2, the displacements  and forces  can be further 𝚽 𝐭
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0𝑚 = {𝐃[(𝐁1 ‒ 𝑖𝑘0𝑚𝐁3)𝚽tra

0𝑚] }𝑒
‒ 𝑖𝑘0𝑚(  

𝑆1𝛼
1

‒  
𝐿𝛼1)

= 𝐭0𝑒
‒ 𝑖𝑘0𝑚(  

𝑆1𝛼
1

‒  
𝐿𝛼1)

  𝑚 = 1,2,⋯,M (15)
and 

,𝚽ref
0𝑚 = 𝚽ref

0𝑚𝑒
𝑖𝑘0𝑚(  

𝑆2𝛼
1

‒  
𝑅𝛼1)

=‒
𝑖

2π

𝑘0𝑚[𝝓 𝐿
0𝑚𝑢]H𝑷0

𝐵0𝑚
𝝓 𝑅

0𝑚𝑢𝑒
𝑖𝑘0𝑚(  

𝑆2𝛼
1

‒  
𝑅𝛼1)

,𝐭ref
0𝑚 = {𝐃[(𝐁1 ‒ 𝑖𝑘0𝑚𝐁3)𝚽ref

0𝑚] }𝑒
𝑖𝑘0𝑚(  

𝑆2𝛼
1

‒  
𝑅𝛼1)

= 𝐭0𝑒
𝑖𝑘0𝑚(  

𝑆2𝛼
1

‒  
𝑅𝛼1)

  𝑚 = 1,2,⋯,M (16)

where and  represent circumferential coordinates along the axis  at the truncated left and  
𝑆1𝛼1

 
𝑆2𝛼1 𝛼1

right cross sections  and ;  and  denote circumferential coordinates of the left and right 𝑆1 𝑆2
 
𝐿𝛼1

 
𝑅𝛼1

boundaries of the defect. More details about the calculation of scattered fields using hybrid FEM can be 
found in [21].
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Fig. 5 A circular annulus with a surface defect: (a) Entire vision of schematic and (b) Partial schematic 

To demonstrate the correctness of the developed hybrid FEM for the calculation of the scattered 
fields, numerical simulations of a circular structure with a surface defect shown in Fig.5 have been 
performed in terms of conservation of energy. It is noted that material properties used in section 2 have 

been applied in the following examples. The incident signal frequency range of the mode  guided 1st

waves from  includes 112 frequency points. 0~683.70KHz
In Case 1, four models are marked as A1, A2, A3 and A4, respectively, in Table 2. The opening 

angles  of the defects are same (  ). The reflection coefficients calculated by the ∆𝜃 ∆𝜃 = 0.250rad
hybrid FEM are shown in Fig.6. It is obvious that the absolute values of the reflection coefficients 
increase with the defect depths in the whole frequency range. Especially, when the frequency is lower 
than about , the values from model A1 to model A4 are almost linear increase, and there are 300.0KHz
only two peaks in this frequency range. However, when the frequency is higher than , the 300.0KHz
reflection coefficient curves for the different models have their respective shapes. It can be explained 
by the change of the mode number of anti-plane guided waves, due to cut-off frequency of the mode 

 guided waves near , i. e., when incident frequencies are larger than , the 2nd 300.0KHz 300.0KHz
scattered waves include no longer the  guided waves. From an energy point of view, results of the 1st

transmitted energy at the cross section  and reflected energy at the cross section  have been 𝑆1 𝑆2

given in Fig.7. The dash lines and solid lines denote the ratios of transmitted and reflected energy to the 
incident energy flux, respectively. It is obvious that the summation must be equal to 1, according to the 
law of conservation of energy. Since the two curves are symmetric with respect to the axis whose label 
(the energy ratio) is 0.5, which explain our simulations are accord to the energy conservation. So it is 
correct that using the hybrid FEM solves the scattered fields in circular annulus.

In Table 2, another set of four models with different opening angles has been analyzed and labelled 
as E1, E2, E3 and E4 for each model. The changes in reflection coefficients of different models with 
frequency can be observed in Fig.8. Obviously, the similar conclusions can be drawn as the findings in 
Case 1. Summarily, more modes of guided waves will make inspection more complex as the frequency 
increases. The defect depth mainly affects the amplitudes of the reflection coefficients and the defect 
length influences the number of peaks of the reflection coefficient curves.

Table 2
The notch sizes in the annulus

Serial number A1 A2 A3 A4
the depth  𝑑 ℎ 6 ℎ 3 ℎ 2 2ℎ 3Case 1
the opening angle ∆𝜃 0.250rad 0.250rad 0.250rad 0.250rad
Serial number E1 E2 E3 E4
the depth 𝑑 ℎ 3 ℎ 3 ℎ 3 ℎ 3Case 2
the opening angle ∆𝜃 0.1250rad 0.250rad 0.3750rad 0.50rad
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Fig. 6 The mode  reflection coefficients with the same mode incident waves for Case 11st
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Fig. 7 The energy conservation with the mode  incident waves for Case 11st

0 1 2 3 4 5 6 7
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

R
ef

le
ct

io
n 

co
ef

fic
ie

nt

E1
E2
E3
E4

Fig. 8 The mode  reflection coefficients with the same mode incident waves for Case 21st
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Fig. 9 The energy conservation with the mode  incident waves for Case 21st

4.  Examples of surface defect reconstruction using extended QDFT method
  Based on our previous work, the QDFT (quantitative detection of Fourier transform) approach has 
been further developed to efficiently reconstruct the defects in the circular annulus, which have been 
widely used in ocean engineering [24][25]. The flowchart of QDFT has been given in Fig.10 for the 
detailed procedure of defect detection. Two important stages in this procedure include the calculation 
of reflection coefficients introduced in section 3 and the correction of integral coefficients below. More 
detailed information about QDFT can be found in [21]. 

Selecting a reference model with the surface defect function  𝜂0(𝛼1)
and calculating the corresponding reflection coefficients  𝐶0(𝑘01)

by the hybrid FEM

Converting the spatial surface defect function  into the 𝜂0(𝛼1)
wavenumber function  by Fourier transform and obtaining 𝐻0(𝑘01)

the integral coefficients 𝐵0(𝑘01) = 𝐶0(𝑘01) 𝐻0(𝑘01)

Reconstructing the surface defect profile 𝜂1(𝛼1) =
1

2π

 by inverse Fourier transform based ∫ + ∞
‒ ∞ 𝐵0(𝑘01)𝐶(𝑘01)𝑒𝑖𝑘01𝛼1𝑑𝑘01

on the measured reflection coefficients 𝐶(𝑘01)

Modifying the distribution with singularities where the integral 
coefficients  have large values and obtaining the updated 𝐵0(𝑘01)

integral coefficients 𝐵0(𝑘01)



Fig. 10 The procedure of reconstructing surface defects in circular annulus by QDFT

  Two reference models (Model 1 and Model 2) shown in Fig.11 and Fig.12 are selected to reconstruct 
surface defects using the aforementioned QDFT approach. The frequency-dependent reflection and 
integral coefficients are shown in Fig.13. In order to reduce the influence of singularities of the integral 
coefficients  on the reconstruction results, a practical strategy is proposed in this paper stating 𝐵0(𝑘01)
the value of  in the zones including singular points should be assigned to the value of zero for 𝐵0(𝑘01)
real number or minimal modulus for complex number. In an example shown in Fig.14, where  𝐵0(𝑘01)
of the Model 1 is used to reconstruct the defect in the Model 2, the large amplitude fluctuation of 
reconstruction results is remarkably observed in the no-defect region due to the influence of 
singularities of integral coefficients . This will deteriorate the accuracy of reconstruction of 𝐵0(𝑘01)
defects. By Fourier transform, the results in frequency domain are given in Fig.15. It is noted that the 
peak value locates at about , which is the frequency for the corresponding singularity in the 209.0KHz
integral coefficient curve represented by the red line in Fig.13 (b). Thus, the conclusion is drawn that 
the singularity of  will mainly contribute to the overall fluctuation in the process of defect 𝐵0(𝑘01)
reconstruction. To enhance the accuracy of the reconstruction result, it is necessary to modify the 
values of  in the reference model using the proposed strategy. Once the integral coefficients 𝐵0(𝑘01)

 is updated, the corrected reconstruction result is shown in Fig.16. Obviously, the fluctuation 𝐵0(𝑘01)
in the no-defect region is effectively suppressed and the accuracy of reconstruction of circumferential 
defects is significantly improved. Therefore, the proposed strategy for modifying integral coefficients 

 is employed in the following numerical experiments. 𝐵0(𝑘01)
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Fig. 12 The sketch of the reference model 2
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  In order to demonstrate the superiority of the proposed QDFT approach for arbitrary surface defect 
detections, reconstructions of different profiles of circumferential defects are performed. The defects 
considered in the following examples are: a single flaw, a step flaw, two flaws, and a triple defect 
shown in Figs.17-20. To employ Model 1 as a reference model to reconstruct a single defect in Fig.21, 
the reconstruction is less accurate than the one obtained using Model 2. This can be interpreted as the 
better relatedness to the real defect using Model 2 than the one by Model 1 in terms of the area of the 
defect. In the step flaw construction example in Fig.22, the predicted profile of a step defect by Model 
2 can reflect the real defect with a higher level of precision than the result by Model 1 owing to the 
same reason described in the single defect case. To further illustrate the powerful capacity of the 
improved QDFT approach to circumferential multiple defects, multi-defects inspection such as double 
defects and triple defects, are performed and the reconstruction of defects is shown in Fig.23 and 
Fig.24, respectively. The results indicate that effective and efficient reconstruction of defects using 
QDFT approach can be achieved in terms of the accurate position and sizing. Averagely, the predicted 
profiles of defects by the reference model of Model 1 are more accurate than the ones reconstructed 
using Model 2. This is because the depth of the defect in the reference Model 1 gets closer to the 
equivalent depth of the real defects than the defect depth in Model 2. It is concluded that the defect 
depth of the reference model is a driving factor to precisely reconstruct the multiple circumferential 



surface defects rather than the area of the defect.  
  Summarily, the quantitative detection of circumferential surface defects in circular annulus using 
improved QDFT approach can be achieved with a high level of accuracy, no matter which reference 
model will be chosen. However, the closer the defect profile of the reference model gets to the real 
defect, the better the predicted reconstruction will be obtained. It is noted that the way to select a better 
reference model for more accurate reconstruction of circumferential surface defects needs to be further 
explored in the future work, which should consider the relationship between reference models and real 
defects in terms of key parameters such as, the defect area, the equivalent defect depth, and the 
equivalent defect length. 
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Fig. 21 The reconstructed result of single defect
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Fig. 22 The reconstructed result of step defect
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Fig. 23 The reconstructed result of double defects
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5. Conclusion
  In this work, the dispersion equations of guided waves propagating along the spiral path of the helix 
in a hollow cylinder have been derived using the semi-analytical FEM. Based on the theoretical 
analysis, the scattered fields in circular annulus have been numerically determined by employing the 
hybrid FEM and also validated by the law of conservation of energy. Through the changes of opening 
angle and depth of circumferential defects, it is concluded that the peak number and magnitude of the 
reflection coefficients increase with the opening angle and depth of defects, respectively, in the low 
frequency range. In the reconstruction simulations, it is found that the circumferential surface defects in 
pipeline structures can be effectively reconstructed with high levels of accuracy and efficiency by the 
extended QDFT (quantitative detection of Fourier transform) technique, in which general reference 
models are adopted to investigate defects sizing. It is emphasized that this reconstruction method is not 
confined by the defect shape and the number of defects, which has be demonstrated throughout four 
typical defect reconstruction examples. However, the differences between reference models and real 
structures, the defect area, and the equivalent opening angle and depth of defects are remarkable factors 
which influence reconstruction precision and are being considered for further research in various 
engineering subjects by authors. The results shown in this paper will lay a solid foundation for 
circumferential defect detection using ultrasonic guided waves as well as highlight some implications 
which could be considered for early-stage, qualitative inspections of circumferential surface flaws in 
circular annuli.
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