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Key Points 41 
 42 
Question:  43 
How does a deep learning system (DLS) compare with professional human graders in 44 
detecting glaucomatous optic neuropathy (GON)? 45 
 46 
Findings: 47 
The DLS showed a sensitivity of 96.2% and specificity of 97.7% for detecting GON in a 48 
local validation dataset；93.6-96.1% sensitivity and 95.6-97.1% specificity in three clinical-49 

based datasets；91.0% sensitivity and 92.6% specificity in a real-world distribution dataset; 50 
87.7% sensitivity and 80.8% specificity in a multi-ethnic dataset; 82.2% sensitivity and 70.4% 51 
specificity in a website-based dataset. 52 
 53 
Meaning: 54 
This assessment of fundus images suggests DLS can provide a tool with high sensitivity, 55 
specificity and might expedite screening for GON.  56 



Abstract: 57 

IMPORTANCE A deep learning system (DLS) that could automatically detect 58 

glaucomatous optic neuropathy (GON) with high sensitivity and specificity might expedite 59 

screening for GON. 60 

OBJECTIVE To establish a DLS for detection of GON using retinal fundus images and 61 

convoluted neural networks (GD-CNN) that has the ability to be generalized across 62 

populations. 63 

DESIGN, SETTING, AND PARTICIPANTS A DLS for the classification of GON was 64 

developed for automated classification of GON using retinal fundus images. To build and 65 

validate GD-CNN, a total of 355 339 fundus images were included. Of those, 241 032 images 66 

and 114 307 images were selected as the training and validation dataset, respectively. The 67 

generalization of the DLS was tested in several validation datasets, which allowed assessment 68 

of the DLS in a clinical setting without exclusions, testing against variable image quality 69 

based on fundus photographs obtained from websites, evaluation in a population-based study 70 

that reflects a natural distribution of glaucoma patients within the cohort and an additive 71 

dataset that has a diverse ethnic distribution. An online learning system was established to 72 

transfer the trained and validated DLS to generalize the results with fundus images from new 73 

sources. To better understand the DLS decision making process, a prediction visualization 74 

test was performed that identified regions of the fundus images utilized by the DLS for 75 

diagnosis.  76 

EXPOSURES Use of a deep learning system. 77 

MAIN OUTCOMES AND MEASURES Area under the receiver operating characteristics 78 

curve (AUC), sensitivity and specificity for DLS with reference to professional graders.  79 



 80 

RESULTS The AUC of the GD-CNN model in primary local validation datasets was 0.996 81 

(95% CI, 0.995-0.998), with sensitivity of 0.962, and specificity of 0.977. The most common 82 

reasons for both false-negative and false-positive grading by GD-CNN (46.3% and 32.3%) 83 

and manual grading (44.2% and 34.0%) was pathologic or high myopia. 84 

 85 

CONCLUSIONS AND RELEVANCE Application of GD-CNN to fundus images from 86 

different settings and varying image quality demonstrated a high sensitivity, specificity and 87 

generalization for detecting GON. These findings suggest automated DLS might enhance 88 

current screening programs in a cost-effective and time-efficient manner.  89 



Glaucoma is the leading cause of irreversible blindness.
1 

It is predicted to affect 80 million 90 

people worldwide by 2020 and 111.8 million by 2040.
2
 Glaucoma is a chronic 91 

neurodegenerative disease of the eye.
 3

 The majority of glaucoma patients are unaware of 92 

their condition until late in the course of their disease, when central visual acuity is affected.
4
 93 

Screening and early detection of glaucoma, along with timely referral and treatment, is a 94 

generally accepted strategy for preventing vision loss.
5
 Digital fundus image evaluation has 95 

emerged as a modality for large-scale glaucoma screening due to convenience and relative 96 

affordability.
6,7

 Nevertheless, this process of manual image assessment is labor intensive and 97 

time-consuming.
8
 In addition, glaucoma diagnosis from fundus images is subjective, and 98 

efficiency is likely linked to the experience and skill of the observer. 99 

 100 

Artificial intelligence has been successfully applied in image-based medical diagnoses, such 101 

as skin cancer, breast cancer, brain tumors and diabetic retinopathy.
 9-13 

The deep learning 102 

system (DLS) approach also has recently been adopted to provide high sensitivity and 103 

specificity (>90%) for detecting glaucomatous optic neuropathy (GON) from high-quality 104 

retinal fundus images.
14

 However, the use of DLS for medical diagnosis has inferior 105 

performance when applied to data obtained from different sources.
12,14

 This is an important 106 

consideration, as ideally a DLS would need to be generally utilized in different settings in 107 

which the images will be of varying quality, ethnicity and population sources if maximum 108 

reach and clinical benefit is to be achieved.
15-17

  109 

 110 

In this study, we established a large-scale database of fundus images for glaucoma diagnosis 111 

(‘FIGD’ database) and developed from fundus images Glaucoma Diagnosis with Convoluted 112 

Neural Networks (GD-CNN), as an advanced DLS approach for automatically detecting 113 

GON that has the ability to be generalized across populations. 114 



 115 

Methods 116 

Training datasets    117 

The study was conducted according to the tenets of the Declaration of Helsinki and it was 118 

approved by the institutional review board (IRB) of Beijing Tongren Hospital (identifier, 119 

TRECKY2018-034). As the study was a retrospective review and analysis of fully 120 

anonymized colour retinal fundus images, the medical ethics committee exempted the need 121 

for the patients’ informed consent. 122 

 123 

To establish an automatic diagnosis system for GON, a total of 274 413 fundus images were 124 

obtained from the Chinese Glaucoma Study Alliance (CGSA, Appendix 1.1 available online 125 

at www.aaojournal.org) between 2009 and 2017 (Table 1). The CGSA uses a tele-126 

ophthalmology platform and a cloud-based online dataset (http://www.funduspace.com 127 

Accessed May 2017), which has established its own electronic data capture system to achieve 128 

effective data quality control. For each patient, two fundus images of each eye were recorded. 129 

For this study, each image in the training dataset was subjected to a tiered grading system 130 

consisting of multiple layers of trained graders of increasing expertise. Each image imported 131 

into the database started with a label matching the most recent diagnosis of the patient. The 132 

first tier of graders consisted of five trained medical students and non-medical 133 

undergraduates. They conducted initial quality control according to the following rules: 1) the 134 

image did not contain severe resolution reductions or significant artifacts; 2) the image field 135 

included the entire optic nerve head and macula; 3) the illumination was acceptable i.e. not 136 

too dark or too light; 4) the image was focused sufficiently for grading the optic nerve head 137 

and retinal nerve fiber layer (RNFL). The second tier of graders consisted of twenty-two 138 

Chinese board-certified ophthalmologists or postgraduate ophthalmology trainees (>2 years’ 139 

http://www.aaojournal.org/
http://www.funduspace.com/


experience) who had passed a pre-training test. In the process of grading, each image was 140 

assigned randomly to two ophthalmologists for grading. Each grader independently graded 141 

and recorded each image according to the criteria of GON (Table 2). The third tier of graders 142 

consisted of two senior independent glaucoma specialists (>10 years of experience with 143 

glaucoma diagnosis); they were consulted to adjudicate disagreement in tier 2 grading 144 

(Appendix 1.2，available online at www.aaojournal.org). Following this process images 145 

were classified as unlikely, probable, and definite GON. Referable GON was defined as 146 

probable or definite GON.  147 

 148 

GD-CNN Model 149 

The training images with assigned labels were utilized to establish a state-of-the-art DLS, 150 

GD-CNN, based on the Residual Net (ResNet) platform.
18

 (eFigures 1 & 2, Appendix 2.0 - 151 

www.aaojournal.org). In the current study, we restricted the analysis to the binary 152 

classification problem of glaucoma in fundus images. The basic operation of ResNet is to 153 

apply convolution repeatedly, which is computationally quite expensive for high-resolution 154 

images. Therefore, we pre-process images by down-sampling them to 224×224 pixel 155 

resolution. In addition, these images were centered on the optic cup and contained part of the 156 

surrounding vessels, as glaucoma is highly correlated with alteration in these regions.
19

 To 157 

achieve this, the optic cups were automatically detected by recognition of the area with the 158 

highest intensity on the grayscale map of each fundus image; this was found to consistently 159 

be associated with the optic cup. Next, we calculate the mean values of red, green and blue 160 

(RGB) channels, respectively, among all the fundus images in the training dataset. Then, for 161 

each sample, we remove the three mean values on RGB channels, such that the input to GD-162 

CNN is around 0 for relieving the over-fitting issue.
20

 As such, the redundancy of the fundus 163 

image can be removed for the binary classification of glaucoma in GD-CNN. Since the GON 164 

http://www.aaojournal.org/
http://www.aaojournal.org/


diagnosis was formulated as a binary classification problem, predicting whether GON was 165 

positive or negative, a cross-entropy function was applied in GD-CNN as the loss function. 166 

For each parameter assessed, GD-CNN was trained to minimize the cross-entropy loss over 167 

the large-scale training samples of positive and negative GON. The minimization was 168 

achieved through the back-propagation algorithm with the stochastic gradient descent 169 

optimizer. Once training of GD-CNN was established, the system was applied to validation 170 

sets. 171 

 172 

Validation datasets 173 

Details of all validation datasets are described in Table 1 and eTable 1. The initial local 174 

validation dataset did not overlap with the image data used in training. Images previously not 175 

seen by the network were presented to GD-CNN for assessment and automated diagnosis. 176 

The images were also independently assessed by three experienced professional graders (>2 177 

years’ experience) in detecting referable GON.  178 

 179 

Online deep learning (ODL) system 180 

The central challenge of applying DLSs in medicine is the ability to guarantee 181 

generalizability in prediction. Generalization refers to the ability of DLSs to successfully 182 

perform when assessing previously unseen samples from different data sources. An ODL 183 

system was developed to improve the generalization ability of the GD-CNN model, making 184 

automatic GON diagnosis practical. In the ODL system, the GD-CNN model is used to 185 

sequentially predict GON with a Human-Computer Interaction (HCI) loop (eFigure 2 A). The 186 

HCI loop consisted of three iterative steps: (1) The computer used GD-CNN to initially 187 

diagnose glaucoma of fundus images with a high sensitivity rate; (2) the ophthalmologists 188 

manually confirmed the positive samples predicted by the computer; (3) the confirmed 189 



samples fine-tuned the GD-CNN model, which was used for initial GON diagnosis of the 190 

subsequent fundus images (i.e., go to step 1).  191 

 192 

Visualization of Prediction  193 

Following Zeiler and Fergus,
21

 we visualized the contributions of different regions to GD-194 

CNN prediction of GON on fundus images. The visualization is represented by heat maps, 195 

which highlight strong prognostic regions of the fundus images. The experiment of occlusion 196 

testing was conducted to obtain the visualization results. First, original fundus image was 197 

resized into a 360x360 RGB image. Then, a 60x60 gray block was used to slice through the 198 

fundus image (with a stride of 10 pixels), alongside both horizontal and vertical axes. 199 

Consequently, the fundus image generates 961 (=31x31) visualization testing images, each of 200 

which has a 60x60 gray block at different position, respectively. Second, the visualization 201 

testing images were predicted using the GD-CNN model. For each visualization test image, 202 

the prediction probability output refers to the value of the visualization heat map at the 203 

corresponding position. Hence, the visualization heat map was 31x31. Finally, the heat map 204 

was mapped to the original fundus image to visualize the importance of each region in GON 205 

prediction. 206 

 207 

The deep features refer to the output of the final max pooling layer, which is in 512 208 

dimensions. In order to visualize the distribution of the deep features from different 209 

categories, the dimensionality of deep features was reduced by t-distributed stochastic 210 

neighbor embedding visualization (t-SNE) from 512 to 3. Note that t-SNE is a state-of-the-art 211 

nonlinear dimensionality reduction method. The deep features from glaucoma and negative 212 

glaucoma are clustered into two groups once the training loss converges. The groups of two 213 



clusters can be clearly separated, verifying the effectiveness of the deep features learned in 214 

GD-CNN.  215 

 216 

Statistical analysis  217 

The performance of our algorithm was evaluated in terms of area under the curve (AUC) of 218 

receiver operating characteristic (ROC) curves. 95% confidence intervals for AUC were 219 

calculated non-parametrically through logit-transformation-based confidence intervals, which 220 

was found to have good coverage accuracy over unbiased samples. In addition to AUC, 221 

sensitivity and specificity of each operating point in ROC curves were also measured with 2-222 

sided 95% confidence intervals. These confidence intervals were calculated as Clopper-223 

Pearson intervals, which are “exact” intervals based on cumulative probabilities.  224 

 225 

Furthermore, to determine if the ODL system has an effect on diagnosing glaucoma, 226 

McNemar tests were conducted between the original GD-CNN model and the fine-tuned GD-227 

CNN models. Specifically, two 2x2 contingency tables were applied to count the diagnosis 228 

changes after ODL, for positive and negative samples, respectively. Then a Chi-squared 229 

based P value was calculated along with the sensitivity/specificity over each validation 230 

dataset.  231 

 232 

All statistical analyses were computed using the Stats Models (version 0.6.1) python package 233 

and Matlab AUC (version 1.1) package. 234 

 235 

Results 236 

Training, validation and evaluation of the GD-CNN model 237 



From a total of 274 413 fundus images initially obtained from CGSA, 269 601 images passed 238 

initial image quality review and were graded for GON by the second-tier graders of Chinese 239 

board-certified ophthalmologists. The median quantity of images per ophthalmologist graded 240 

was 14 756 (range, 8 762-55 389) and ten ophthalmologists graded more than 15 000 images. 241 

13 254 images of disagreement in tier 2 grading were adjudicate by senior glaucoma 242 

specialists. 241 032 images (definite GON 29 865 (12.4%), probable GON 11 046 (4.6%), 243 

unlikely GON 200 121 (83%) from 68 013 patients were selected, using random sampling, to 244 

train the GD-CNN model. Validation and evaluation of the GD-CNN model was assessed 245 

using the remaining 28 569 images from CGSA. Distribution of the three diagnostic 246 

categories was 15.8% definite GON, 2% probable GON and 82.2% unlikely GON (eTable 1). 247 

In local validation dataset, the AUC of the GD-CNN model was 0.996 (95%CI, 0.995-0.998), 248 

and sensitivity and specificity in detecting referable GON was comparable with that of 249 

trained professional graders (96.2%vs 96.0%; P = 0.76; 97.7% vs 97.9%; P = 0.81 250 

respectively) (eFigure 3). To evaluate the ability of the GD-CNN to work across different 251 

populations, three clinical based studies were performed to reflect the routine functioning of 252 

an ophthalmic center. When images from these cohorts from different hospitals were 253 

diagnosed through GD-CNN and compared to clinical evaluation, performance remained 254 

high (Table 3), such that the AUC for referable GON ranged from 0.995 to 0.987，with both 255 

sensitivity and specificity of greater than 90% (range: 93.6-96.1% and 95.6-97.1% 256 

respectively). Further evaluation was undertaken using the Handan Eye Study dataset to 257 

provide a real-world distribution of glaucoma patients. In this case AUC was 0.964 with a 258 

sensitivity of 91.0% and specificity 92.6% (Table 3). To test GD-CNN across a range of 259 

ethnic backgrounds, a multi-ethnic dataset (73.0% White, 19.3% Black/African American, 260 

5.4% Asian, 0.3% Middle Eastern) from the Hamilton Glaucoma Center was utilized, with 261 

AUC of 0.923, sensitivity of 87.7% and specificity 80.8%. GD-CNN showed an AUC of 262 



0.823 with 82.2% sensitivity and 70.4% specificity in a varied range of image quality dataset 263 

from worldwide web (Table 3).  264 

 265 

Understanding the basis for incorrect diagnosis 266 

Among the local validation datasets, an additional analysis was conducted to further evaluate 267 

GD-CNN’s performance, to better establish the basis for false positive and negative diagnosis 268 

(eTable 2). The most common reason for undetected GON from fundus images was 269 

pathological or high myopia for both GD-CNN and manual grading (n = 51 [46.3%] and n = 270 

50 [44.2%] respectively). Interestingly, the most likely cause for a false-positive 271 

classification by DLS or manual grading was also pathological or high myopia (n = 191 272 

[32.3%] and n =183 [34%] respectively). Physiologically large cupping was also a common 273 

cause of false positives with manual diagnosis (n = 138 [25.6%]), and to a lesser degree with 274 

GD-CNN (n = 94 [16.0%]).  275 

 276 

Implementation of the ODL system  277 

The ODL system was implemented in the tele-ophthalmic image reading platform of Beijing 278 

Tongren Hospital (Appendix 1.4), which collected a group of fundus images every week 279 

(around 600 images). It was found that the ODL system both sensitivity and specificity 280 

improve with each group of samples collected sequentially over a five-week period (eFigure 281 

2).  282 

 283 

Visualization of prediction  284 

To visualize the learning procedure and represent the areas contributing most to the DLS, we 285 

created a heatmap which superimposed a convolutional visualization layer at the end of our 286 

network; performed on 1000 images (Figure 1 and eFigure 4). The regions of interest 287 



identified to have made the greatest contribution to the neural network’s diagnosis were also 288 

shared with 91.8% of ophthalmologists (Figure 2A). All areas containing optic nerve head 289 

variance and neuroretinal rim loss were located correctly on all the images used for testing, 290 

while RNFL defects and peripapillary atrophy (PPA) on occasions did not present a clear 291 

point of interest with an accuracy of 90.0% and 87.0% respectively. Figure 2B represents a t-292 

distributed stochastic neighbor embedding visualization of this data set by our automated 293 

method, clearly showing 2 clusters of fundus images and indicating the ability of our model 294 

to separate normal from those with glaucoma.  295 

 296 

Discussion 297 

In this study, we focused on automating the diagnosis of glaucoma from fundus images by 298 

establishing a DLS (GD-CNN) with an ability to work across numerous populations. 299 

Previous studies have reported automated methods for the evaluation of glaucoma with most 300 

employing technology on feature extraction
22-26

. Recently, the DLS approach also has been 301 

adopted to provide high sensitivity and specificity for detecting GON from high-quality 302 

retinal fundus images.
14,27,28

 The ambition of deep learning is to create a “fully-automated” 303 

screening model, which can automatically learn the features for glaucoma diagnoses without 304 

any human effort, avoiding misalignment or/and misclassification caused by introduced 305 

errors in the localization and segmentation. Compared with previous work, the GD-CNN 306 

model differs from conventional learning-based algorithms in a number of aspects. 307 

 308 

The GD-CNN model was trained using a larger dataset than previous studies 
13,14,27-32

. It is 309 

reasonable to assume that access to a greater pool of training images is likely to increase the 310 

accuracy of the DLS to detect glaucoma. A major issue with deep learning algorithms is their 311 

general applicability to systems and settings beyond the site of development. To address this 312 



issue, additional data sets were employed. Datasets resulting from ophthalmic settings are 313 

likely to provide a higher incidence of glaucoma patients than is present in the general 314 

population. Therefore, to provide a realistic disease-screening test for GD-CNN, a population 315 

dataset obtained from the Handan Eye Study was employed, which provided a real-world 316 

ratio of individuals with and without diagnosed glaucoma
33,34

. Ethnicity can also present 317 

different anatomical/clinical features and incidence of glaucoma
35

. A number of the cohorts 318 

derived from Chinese centers have limited ethnic diversity. Therefore, to test GD-CNN 319 

across a range of ethnic backgrounds a multi-ethnic dataset, which includes White, African 320 

American, Asian, and Middle Eastern, from the Hamilton Glaucoma Center was utilized.  321 

Despite the different challenges imposed by these different data sets, GD-CNN consistently 322 

performed with high sensitivity and specificity. Another major factor that can impact on the 323 

generalization of DLSs is the image quality provided on which the DLS is making decisions 324 

and diagnosis. To address this important concern, GD-CNN was externally evaluated using a 325 

multi-quality image dataset of retinal fundus photographs established from website sources. 326 

Examination of 884 images available on the worldwide web using GD-CNN as expected 327 

proved a greater challenge, but analysis showed acceptable performance with AUC of 0.823 328 

with 82.2% sensitivity and 70.4% specificity.  329 

 330 

The current study addressed the issue of false positive and negative diagnosis by the DLS and 331 

manual grading. The main reason for both false-negative and false-positive diagnosis by GD-332 

CNN and manual grading was high or pathologic myopia, which are characterized by 333 

peripapillary atrophy (beta-zone), shallow cups, tilting and/or torsion optic disc. More studies 334 

assessing textural based properties are planned to allow more accurate classification by the 335 

algorithm which can distinguish among the optic disc region, central β-zone and peripheral α-336 

zone of peripapillary atrophy and other retinal areas.  337 



 338 

To further evaluate the ability of the GD-CNN model across multiple populations, an ODL 339 

system was proposed in which the GD-CNN model iteratively updated with an HCI loop. 340 

Consequently, in the ODL system, the generalization ability of GD-CNN can be improved 341 

through human-computer interaction, such that each can educate and inform the other. An 342 

ODL system using a pre-trained GD-CNN model to reinforce training on limited local images 343 

would likely generate a more accurate model requiring less time for local dataset 344 

classifications. In principle, the ODL system we have described here could potentially be 345 

employed on a wide range of medical images across multiple disciplines.  Further benefit 346 

may come from the use of AI with digital images like a combination of structural and 347 

functional testing, and even multiple other orthogonal datasets, for example, cardiovascular 348 

data and genomic data, to further enhance the value of data utilization for the health care 349 

system. 350 

 351 

Conclusions 352 

The GD-CNN model, which was driven by a large-scale database of fundus images, has high 353 

sensitivity and specificity for detecting glaucoma. The experimental results show the 354 

potential of automated DLSs in enhancing current screening programs in a cost-effective and 355 

time efficient manner. The generalization of this approach might be facilitated by training the 356 

GD-CNN model on large-scale data and implementing GD-CNN in an ODL system, which 357 

may be further refined through a human computer interface. 358 

 359 

1. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of 360 

glaucoma burden through 2040: a systematic review and meta-analysis. 361 

Ophthalmology. 2014;121(11):2081-2090. doi: 10.1016/j.ophtha.2014.05.013 362 



2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 363 

and 2020. Br J Ophthalmol. 2006;90(3):262-267. doi:10.1136/bjo.2005.081224 364 

3. Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula. Prog 365 

Retin Eye Res. 2013; 32:1-21. doi: 10.1016/j.preteyeres.2012.08.003 366 

4. Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of 367 

glaucoma: the combined structure-function index. Clin Ophthalmol. 2014; 8:611-621. 368 

doi: 10.2147/OPTH.S44586 369 

5. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: 370 

a review. JAMA. 2014; 311(18):1901-1911. doi: 10.1001/jama.2014.3192 371 

6. Pizzi LT, Waisbourd M, Hark L, et al. Costs of a community-based glaucoma 372 

detection programme: analysis of the Philadelphia Glaucoma Detection and 373 

Treatment Project. Br J Ophthalmol. 2018; 102(2):225-232. doi: 374 

10.1136/bjophthalmol-2016-310078 375 

7. Zhao D, Guallar E, Gajwani P, et al. Optimizing glaucoma screening in high-risk 376 

population: design and 1-year findings of the screening to prevent (SToP) glaucoma 377 

study. Am J Ophthalmol. 2017; 180:18-28. doi: 10.1016/j.ajo.2017.05.017 378 

8. Fleming C, Whitlock EP, Beil T, et al. Screening for primary open-angle glaucoma in 379 

the primary care setting: an update for the US preventive services task force. Ann Fam 380 

Med. 2005; 3(2):167-170. doi: 10.1370/afm.293 381 

9. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin 382 

cancer with deep neural networks. Nature. 2017; 542(7639):115-118. doi: 383 

10.1038/nature21056 384 

10. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al.  Diagnostic Assessment 385 

of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women 386 

with Breast Cancer. JAMA. 2017; 318(22):2199-2210. doi: 10.1001/jama.2017.14585 387 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Tatham%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=24707166
https://www.ncbi.nlm.nih.gov/pubmed/?term=Weinreb%20RN%5BAuthor%5D&cauthor=true&cauthor_uid=24707166
https://www.ncbi.nlm.nih.gov/pubmed/?term=Medeiros%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=24707166


11. Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to 388 

predict MGMT methylation status in glioblastomas. Med Phys. 2016; 43(6):2835-389 

2844. doi: 10.1118/1.4948668 390 

12. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning 391 

Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. 392 

JAMA. 2016; 316(22):2402-2410. doi: 10.1001/jama.2016.17216 393 

13. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning 394 

system for diabetic retinopathy and related eye diseases using retinal images from 395 

multiethnic populations with diabetes. JAMA. 2017; 318(22):2211-2223. doi: 396 

10.1001/jama.2017.18152 397 

14. Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting 398 

glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 399 

2018; 125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023 400 

15. Wong TY, Bressler NM. Artificial Intelligence with Deep Learning Technology 401 

Looks into Diabetic Retinopathy Screening. JAMA. 2016; 316(22):2366-2367. doi: 402 

10.1001/jama.2016.17563 403 

16. Castelvecchi D. Can we open the black box of AI? Nature. 2016; 538(7623):20-23. 404 

doi: 10.1038/538020a 405 

17. Verghese A, Shah NH, Harrington RA. What this computer needs is a physician: 406 

humanism and artificial intelligence. JAMA. 2018; 319(1):19-20. doi: 407 

10.1001/jama.2017.19198 408 

18. He K, Zhang X, Ren S. et al. Deep residual learning for image recognition. 409 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 410 

2016:770-778. doi: 10.1109/CVPR.2016.90 411 

19. Haleem MS, Han L, van Hemert J. et al. Automatic extraction of retinal features from 412 



colour retinal images for glaucoma diagnosis: A review. Computerized Medical 413 

Imaging and Graphics. 2013; 37(7-8):581-596. doi: 414 

10.1016/j.compmedimag.2013.09.005 415 

20. Szegedy, C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the 416 

IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9. 417 

doi:10.1109/CVPR.2015.7298594 418 

21.  Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. 419 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 420 

2014:818-833. doi: 10.1007/978-3-319-10590-1_53 421 

22. Singh A, Dutta MK, Partha SM, et al. Image processing based automatic diagnosis of 422 

glaucoma using wavelet features of segmented optic disc from fundus image. Comput 423 

Methods Programs Biomed. 2016; 124:108-120. doi: 10.1016/j.cmpb.2015.10.010 424 

23. Issac A, Partha SM, Dutta MK. An adaptive threshold-based image processing 425 

technique for improved glaucoma detection and classification. Comput Methods 426 

Programs Biomed. 2015; 122(2):229-244. doi: 10.1016/j.cmpb.2015.08.002 427 

24. Chakrabarty L, Joshi GD, Chakravarty A, et al. Automated Detection of Glaucoma 428 

from Topographic Features of the Optic Nerve Head in Color Fundus Photographs. J. 429 

Glaucoma. 2016; 25(7):590-597. doi: 10.1097/IJG.0000000000000354 430 

25. Chen X, Xu Y, Wong DWK, et al. Glaucoma detection based on deep convolutional 431 

neural network. Conf Proc IEEE Eng Med Biol Soc. 2015:715-718. doi: 432 

10.1109/EMBC.2015.7318462 433 

26. Annan L, Jun C, Damon WKW, et al. Integrating holistic and local deep features for 434 

glaucoma classification. Conf Proc IEEE Eng Med Biol Soc. 2016:1328-1331. doi: 435 

10.1109/EMBC.2016.7590952 436 

27. Christopher M, Belghith A, Bowd C, et al. Performance of Deep Learning 437 



Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy 438 

in Fundus Photographs. Sci Rep. 2018;8(1):16685. doi: 10.1038/s41598-018-35044-9 439 

28. Shibata N, Tanito M, Mitsuhashi K, et al. Development of a deep residual learning 440 

algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):14665. 441 

doi: 10.1038/s41598-018-33013-w 442 

29. Meier J, Bock R, Michelson G, et al. Effects of Preprocessing Eye Fundus Images on 443 

Appearance Based Glaucoma Classification. Proceedings of the International 444 

Conference on Computer Analysis of Images and Patterns. 2007:165-172. doi: 445 

10.1007/978-3-540-74272-2_21 446 

30. Bock R, Meier J, Michelson G, et al. Classifying Glaucoma with Image-Based 447 

Features from Fundus Photographs. Proceedings of the 29th DAGM Symposium, 448 

Heidelberg, Germany, September 12-14, 2007. doi:10.1007/978-3-540-74936-3_36 449 

31. Bock R, Meier J, Nyúl L, et al. Glaucoma risk index: automated glaucoma detection 450 

from color fundus images. Med Image Anal. 2010; 14(3): 471-481. doi: 451 

10.1016/j.media.2009.12.006 452 

32. Keerthi SS, Shevade SK, Bhattacharyya C, et al. Improvements to Platt's SMO 453 

Algorithm for SVM Classifier Design. Neural Computation. 2014; 13(3):637-649. 454 

doi:10.1162/089976601300014493 455 

33. Wang NL, Hao J, Zhen Y, et al. A Population-based Investigation of Circadian 456 

Rhythm of Intraocular Pressure in Habitual Position Among Healthy Subjects: The 457 

Handan Eye Study. J. Glaucoma. 2016; 25(7):584-589. doi: 458 

10.1097/IJG.0000000000000351 459 

34. Zhang Y, Li SZ, Li L, et al. The Handan Eye Study: comparison of screening methods 460 

for primary angle closure suspects in a rural Chinese population. Ophthalmic 461 

Epidemiol. 2014; 21(4):268-275. doi: 10.3109/09286586.2014.929707 462 



35. Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians. Surv 463 

Ophthalmol. 2014; 59(4):434-447. doi: 10.1016/j.survophthal.2013.09.003 464 

 465 

Legends: 466 

Figure 1. Visualization of deep features of the GD-CNN deep learning system. 467 

Visualization maps generated from deep features, which can be superimposed on the input 468 

image to highlight the areas the model considered important in making its diagnosis.  469 

Figure 2. Training loss and visualization of deep features at different training iterations. 470 

(A) Training loss with accuracy with training iterations. (B) Feature clustering with the 471 

progress of training. The dimensionality of deep features was nonlinearly reduced by t-472 

distributed stochastic neighbor embedding (t-SNE) method for visualization.  473 
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Table 1. Summary of Source Datasets 504 
Source 

Datasets 

Imag

es 

No. 

Eye

sa  

No. 

Individua

ls No. 

Age, 

Mea

n b 

(SD)

, y 

Femal

e b No. 

/Total 

(%)  

Cohort Ethnicity/Ra

ce 

Camer

a 

Assessor 

CGSA 274 

413 

138 

210 

69 105 54.1 

(14.5

) 

20 167 

(55.8

%) 

 

Clinic-

based 

Han 

Chinese 

(78.3%) 

Topco

n, 

Canon

, 

Carl 

Zeiss 

Professional 

grader team 

Beijing 

Tongren 

Hospital 

20 

466 

10 

308 

5 154 52.8 

(16.7

) 

1 068 

(49.7

%) 

Clinic-

based 

Han 

Chinese 

(81.7%) 

Topco

n, 

Canon 

2 

Ophthalmologi

sts; arbitration 

by 1 glaucoma 

specialist 

Peking 

Universit

y Third 

Hospital 

12 

718 

64 

60 

3 230 57.2 

(10.9

) 

327 

(43.1

%) 

Clinic-

based 

Han 

Chinese 

(79.5%) 

Topco

n 

2 

Ophthalmologi

sts; arbitration 

by 1 glaucoma 

specialist 

Harbin 

Medical 

Universit

y First 

Hospital  

9 305 4 

732 

2 366 59.9 

(11.2

) 

771 

(57.3

%) 

Clinic-

based 

Han 

Chinese 

(82.9%) 

Topco

n 

2 Professional 

senior graders; 

arbitration by 1 

glaucoma 

specialist 

Handan 

Eye 

Study 

29 

676 

13 

404 

6 702 55.2 

(10.9

) 

2 589 

(42.2

%) 

Populatio

n-based  

Han 

Chinese 

(80.1%) 

Topco

n, 

Canon 

3 Glaucoma 

specialists  

Hamilton 

Glaucom

a Center 

7 877 3 

938 

1 969 58.2 

(19.2

) 

1041 

(52.9

%) 

Clinic-

based 

White 

(73.0%), 

Black/Afric

an 

American 

(19.3%), 

Asian 

(5.4%), 
Middle 

Eastern 

(0.3%) 

Topco

n, 

Canon 

3 Glaucoma 

specialists 

Website 884 884 

 

884 N/A N/A Website-

based  

N/A N/A 2 Professional 

senior graders; 

arbitration by 1 

glaucoma 

specialist 

          
 a. For each patient, 2 fundus images were taken and recorded of each eye. b Individual data including 

age sex and ethnicity/race were available for CGSA (52.3%), Beijing Tongren Hospital (41.7%), 

Peking University Third Hospital (23.5%), Harbin Medical University First Hospital (56.9%), Handan 

Eye Study (99.6%), Hamilton Glaucoma Center (100%), Website (N/A). 

 505 
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Table 2. The Classification for Glaucomatous Optic Neuropathy 507 

Classification  Clinical Features  

Unlikely glaucomatous optic 

neuropathy  

With no sign of the following  

Probable glaucomatous optic 

neuropathy 

At least two conditions positive:  

0.7 ≤ VCDR < 0.85;  

Rim Width ≤ 0.1 DD;  

General Rim Thinning ≥ 60° or localized Rim Thinning

＜60° （11-1o’clock or 5-7o’clock);  

RNFL defects;  

Splinter Hemorrhages, 

Peripapillary Atrophy (Beta zone)  

Definite glaucomatous optic 

neuropathy 

Any of the following conditions:  

VCDR ≥ 0.85;  

RNFL defects corresponds with thinning area of rim or 

notches. 

VCDR: vertical cup-to-disc ratio. 

DD: disc diameter  

RNFL: retinal nerve fiber layer  

 508 
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Table 3. The Performance of the GD-CNN in Validation Datasets 510 
  % (95% CI) Confusion Result No. (%) 

Datasets 

(No. of 

Images) 

AUC 

(95% 

CI) Sensitivity Specificity 

True-

Positive 

False-

Positive 

False-

Negative 

True-

Negative 

Total 

Concordant 

Images 

Local Validation 

Chinese 

Glaucoma 

Study 

Alliance 

(N =28 

569) 

0.996 

(0.995-

0.998) 

96.2 

(95.4 – 

96.9) 

97.7 

(97.5- 

97.9) 

2 786 

(9.8) 

588 

(2.1) 

110 

(0.4) 

25 085 

(87.8) 

27 871 

(97.6) 

Clinical Validation 

Beijing 

Tongren 

Hospital 

(N =20 

466) 

0.995 

(0.996-

0.996) 

96.1 

(95.2-

96.9) 

97.1 

(96.8- 

97.3) 

2 226 

(10.9) 

534 

(2.6) 

90 (0.4) 17 616 

(86.1) 

19 842 

(97.0) 

Peking 

University 

Third 

Hospital 

(N = 12 

718) 

0.994 

(0.991-

0.996) 

96.0 

(93.9-

97.2) 

96.1 

(95.8- 

96.5) 

593 

(4.7) 

468 

(3.7) 

26 (0.2) 11 631 

(91.5) 

12 224 

(96.1) 

Harbin 

Medical 

University 

First 

Hospital 

(N = 9 

305) 

0.987 

(0.982-

0.991) 

93.6 

(90.9-

95.6) 

95.6 

(95.1- 

96.0) 

435(4.7) 392 

(4.2) 

30 (0.3) 8 448 

(90.8) 

8 883 

(95.5) 

Population Screening Validation  

Handan 

Eye Study 

(N = 29 

676) 

0.964 

(0.952-

0.972) 

91.0 

(88.4-

93.1) 

92.6 

(92.2- 

92.8) 

543 

(1.8) 

2 175 

(7.3) 

54 (0.2) 26 904 

(90.7) 

27 447 

(92.5)  

Multi-ethnic Validation 

Hamilton 

Glaucoma 

Center 

(N=7 877) 

0.923 

(0.916-

0.930) 

87.7 

(86.8-

88.5) 

80.8 

(78.9-

82.5) 

5224 

(66.3) 

369 

(4.7) 

733 

(9.3) 

1551 

(19.7) 

6 775 

(86.0) 

Multi-quality Validation 

Website 

(N = 884) 

0.823 

(0.787-

0.855) 

82.2 

(76.9-

86.6) 

70.4 

(65.8-

74.7) 

212 

(31.0) 

126 

(18.4) 

46 (6.7) 300 

(43.9) 

512 (74.9) 
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