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Abstract  

Background: Reference Intakes for iron are derived from physiological 

requirements, with an assumed value for dietary iron absorption. A new approach to 

estimate iron bioavailability, calculated from iron intake, status, and requirements, 

was used to set European Dietary Reference Values, but the values obtained cannot 

be used for low- and middle-income countries where diets are very different. 

Objective: We tested the feasibility of using the model developed from UK and Irish 

data to derive a value for dietary iron bioavailability in an African country, using data 

collected from women of child-bearing age in Benin.  

Methods: Dietary iron intake and serum ferritin (SF), together with physiological 

requirements of iron, were entered into the predictive model to estimate % iron 

absorption from the diet at different levels of iron status. 

Results: The results obtained from the two different methods for calculating 

physiological iron requirements were similar, except at low SF concentrations. At a 

SF value of 30 µg/L predicted iron absorption from the African maize-based diet was 

6%, compared with 18% from a Western diet, and it remained low until the SF fell 

below 25 µg/L. 

Conclusions: We used the model to estimate % dietary iron absorption in 30 

Beninese women. The predicted values agreed with results from earlier single meal 

isotope studies, therefore we conclude that the model has potential for estimating 

dietary iron bioavailability in men and non-pregnant women consuming different diets 

in other countries. 
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Highlights: our recently developed model for estimating dietary iron bioavailability, 

which only requires iron intake and serum ferritin data from a minimum of 30 

individuals, can be used to derive dietary reference values for low-and middle-

income countries. 
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Nutrient Reference Intakes (NRIs), known in Europe as Dietary Reference Values 

(DRVs) and in the US as Dietary Reference Intakes (DRIs), are needed to assess 

the adequacy of nutrient intakes of populations in order to avoid health problems 

associated with deficiency and excessive intakes, and, where appropriate, to reduce 

the risk of chronic disease. Reference intakes are used by risk managers for a wide 

range of other activities, such as planning diets, formulating complementary foods, 

setting levels of food fortification, implementing biofortification programmes, and food 

labelling. DRVs are derived using published data describing the relationship between 

dietary intakes and selected health endpoints. Appropriate sources of evidence 

include metabolic studies, clinical trials, and, in some instances, epidemiological 

data. However, in the case of iron there are no endpoints on which to base DRVs 

because dietary intake data cannot be used to predict absorbed iron due to wide 

variations in bioavailability. Therefore, the approach taken is to derive physiological 

requirements by the factorial method and apply a bioavailability factor to convert into 

dietary intakes. However, there is considerable uncertainty surrounding the selection 

of an appropriate bioavailability value1.  

 

Dietary iron bioavailability depends firstly on the availability of iron for absorption in 

the GI tract, determined by the physicochemical form of iron in the lumen of the GI 

tract, largely dictated by the composition of meals, and secondly by an individual’s 

absorptive efficiency. The latter is a function of physiological requirements for iron 

and homeostatic mechanisms designed to maintain null balance. Traditionally, 

bioavailability factors have been derived from predictive algorithms, based on the 

intake of enhancers and inhibitors of iron absorption, and results from isotopically-

labelled single meal absorption studies. Estimates of dietary iron bioavailability for 
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three different categories of diet that relate to the amount of meat and iron 

absorption enhancers and inhibitors (5, 10, and 15%) were first introduced by 

FAO/WHO2 and were subsequently updated to include a category of 12%3. The 

European Food Safety Authority (EFSA) used values derived from a new approach 

developed by Dainty et al.4 (updated by Fairweather-Tait et al.5) to set DRVs for iron 

in adults6. Equivalent values for dietary iron bioavailability are urgently required for 

low- and middle-income countries, and it is hoped that these can be used to refine 

the requirements for iron on a more global basis. 

 

Methods 

Data for dietary iron intake, serum ferritin (SF) and C-reactive protein (CRP) 

concentrations, as well as anthropometric indices were used from the first phase of a 

follow-up iron absorption study in women of child-bearing age in Benin conducted 

between June and October 2017. For the follow-up, previous participants of three 

original studies on iron absorption from single cereal-based test meals in Beninese 

women of child-bearing age conducted from 2009 to 20127,8,9 were re-contacted on 

their originally stated phone numbers or orally via the re-contacted participants. 

Former participants were invited to come to the district hospitals of Abomey-Calavi 

(southern Benin) or Natitingou, as well as the health centers in Toukountouna and 

Parakou (northern Benin) for venous blood sampling every two months, and a three-

day home visit for the dietary assessment. 

 

The dietary assessment comprised of a 3-day weighed food record to determine 

dietary energy and nutrient intakes of participants. Whenever possible, the 3-day 

weighed food records included two consecutive weekdays and one weekend day. 
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Trained, local field workers familiar with the local languages and culture carefully 

recorded quantity and recipe of any food or drink consumed by the participant 

between 7.00 h and the time when the study participant has eaten her last main 

meal (usually between 19.00 h and 21.00 h). Food portions were weighed using an 

electronic scale (Soehnle, Leifheit AG, Nassau, Germany; accurate to 5 g /500 g with 

a maximum of 5 kg) and recorded. For foods consumed when field assistants were 

not present (e.g. during the night), portions were served and weighed under 

presence of the field assistant whenever possible and remaining left-overs were 

weighed the next morning and subtracted from the initial portion. If no portion 

preparation has occurred, recall using household measures was applied. Recipes for 

unassisted food preparation that was consumed outside the household, such as food 

bought from street food sellers or offered by neighbors, were recorded based on 

recalls and common recipes. Unknown quantities in unassisted food preparations 

were estimated using average recipes. In order to avoid altering the eating behavior 

during the visits, participants were explicitly asked to maintain their usual food 

pattern and their traditional cooking habits.  

 

Food consumption data were later converted to nutrient intakes on behalf of the 

West African Food Composition Table10, the Food Composition Table for Mali11 as 

well as food composition data directly measured in the frame of former studies and 

student projects in the ETH laboratory12 and the laboratory of human nutrition of 

Abomey-Calavi University13. The nutrition software Nutrisurvey14 was used for 

conversions. Mean intakes were calculated using Microsoft Excel 2016 (Microsoft 

Corporation, Redmond, WA). 
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Trained staff collected the venous blood samples (~8 mL) and recorded body weight 

and body height. Body weight was measured with a common digital body scale with 

a capacity of 150 kg and a precision of 100 g. In northern Benin body height was 

measured with a stadiometer to the nearest 1 cm and in southern Benin it was 

copied from the participant’s official ID card after double-checking with a measuring 

tape affixed to the wall. BMI was calculated by dividing the mean weight of the three 

visits in June, August and October 2017 by the mean height of the three visits. 

 

For iron status determination, serum was separated the day of blood collection in 

June, August, and October 2017 and stored at -20°C until analysis. SF and CRP 

were measured with an enzyme-linked immunoabsorbent assay (ELISA) 

technique15. SF values from participants with CRP >5 mg/L at a single time point 

were excluded from the calculation of mean SF concentrations across time points 

due to underlying inflammation17. 

 

For women of child-bearing age who participated in the study on iron absorption from 

pearl millet-based test meals (n=13)8, isotopically determined fractional iron 

absorption data assessed during the original study were used for validation of our 

model. Isotopically labelled pearl millet test meals (Pennisetum glaucum; regular 

millet extrinsically labelled with 57Fe, iron-biofortified millet extrinsically labelled with 

58Fe, and post-harvest iron-fortified millet extrinsically labelled with 54Fe) were 

administered in a series of ten servings given twice per day (in the morning and at 

noon) from Wednesday to Sunday for three consecutive weeks in July 2012. The 

serving in the morning, between 06.30 h and 09.30 h and after an overnight fast, was 

accompanied by a traditional leafy vegetable sauce, and the second serving was 
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administered at least 3 h later, accompanied by a traditional okra sauce. The 

participants consumed all of the test meals in the presence of the investigators and 

were not allowed to eat or drink between the test meals or for 3 h after the second 

meal. The shift in the isotopic ratios after a 14-d incorporation period was measured 

using multi-collector inductively coupled plasma-mass spectrometry and fractional 

iron absorption was calculated as described by Walczyk et al.17 

 

The distribution of iron requirements for the sample of Beninese women was 

generated from calculated physiological requirements, according to two different 

methods:1) using the IOM distribution of dietary intake requirements with values 

interpolated to derive iron absorption requirements for each 0.5th percentile18 and, 2) 

using an additional set of physiological iron requirements calculated from the more 

recent publication of Hunt et al.19 This study measured whole body iron excretion, 

which is equivalent to requirements for iron absorbed from the diet. On this basis, 

values were interpolated to derive iron absorption requirements for each 0.5th 

percentile for data on pre-menopausal women only.  

 

Ethics  

All original stable isotope studies on iron absorption from single cereal-based test 

meals in Beninese women of child-bearing age were approved by the ethical review 

committee at the Ministry of Health in Benin. Studies in northern Benin were further 

approved by the ethical review committee at ETH Zurich (Switzerland) and the study 

in southern Benin by the medical ethical committee of the University of Wageningen 

(the Netherlands). The follow-up study assessing dietary iron intake, SF and CRP 

was approved by the ethical committee of the Institute of Biomedical Sciences at the 
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Ministry of Higher Education and Scientific Research in Benin and the ethical review 

committee at ETH Zurich (Switzerland) as a new study. 

 

Written informed consent was obtained from all women before the original stable 

isotope studies on iron absorption from single cereal-based test meals and the 

follow-up study. 

 

Statistical analysis 

The method to calculate iron absorption from SF measurements has been described 

in previous publications4,5. Briefly, iron absorption was estimated from the measured 

iron intakes along a scale of assumed iron absorption values (1-40%). Requirements 

for absorbed iron were predicted using the IOM’s distribution of dietary intake 

requirements18 and from the data derived from Hunt et al.19, with values interpolated 

to derive iron absorption requirements for each 0.5th percentile. These values were 

compared to each individual’s absorbed iron estimate at each point on the 1-40% 

scale and the average absorption for the population was calculated. Subtracting 

these values from 100 gave the estimated percentage of the population who require 

a higher iron absorption to meet their requirements (i.e. the estimated prevalence of 

inadequate iron intakes). A model was created for the prediction of dietary iron 

absorption at each level of SF concentration using the assumption that the estimated 

prevalence of inadequate intakes would be equivalent to the observed prevalence of 

iron insufficiency, as defined by SF concentrations. 

 



10 
 

Statistical tests (t-tests) were used to examine differences between the IOM and 

Hunt methods and between Western and African diets. Results were considered 

significant if p<0.05.          

 

Results  

A total of 63 Beninese women of child-bearing age participated in the three original 

studies on iron absorption from single cereal-based test meals. Follow-up data was 

available for 33 women, but three women had to be excluded from analyses due to 

missing SF and CRP values (n=2) or having reached post-menopausal state (n=1). 

Subject characteristics and dietary data are given in Table 1.  

 

As shown in Figure 1 and Table 2, the results obtained from the two different 

methods for calculating physiological iron requirements18,19 were similar, except at 

low SF concentrations. At a SF of 30 µg/L, iron absorption from the African maize-

based diet was 6%, compared with 18% from a Western diet, and it remained low 

until the SF fell below 25 µg/L. Examining the Western diet data, there was no 

statistical difference (p=0.132) between the estimated iron absorption for the Hunt et 

al.19 and the IOM18 data. This was also the case for the African diet (p=0.604). In 

contrast, iron absorption from the Western versus the African diet was significantly 

different for both the Hunt et al.1 (p=0.004) and the IOM18 data (p<0.001). 

 

Fractional iron absorption assessed in a multiple meal stable iron isotope study from 

three pearl millet meals in one of the original studies8 is shown in Table 3. Mean 

fractional iron absorption was 10.4% from the post-harvest iron-fortified millet meal, 
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8.0% from the non-fortified millet meal, and 7.8% from the iron-biofortified millet 

meal.  

 

Discussion 

The Beninese diet is characterized by a high cereal intake (50% of energy intake) 

and a reasonably high intake of animal products (13% of energy intake), mainly 

originating from consumption of Benin’s famous cheese (fromage peulh). Pulses and 

fats are other important energy contributors (10% each). Solid mash or porridge of 

maize flour (often fermented) consumed with various sauces, e.g. okra, green leafy 

vegetables, tomatoes, or peanuts are the base of Beninese diet. Another important 

staple is watché, a mixture of rice and cowpeas, and mashed yam eaten with sauce. 

Fruit consumption is low, but there are higher intakes during the mango season in 

April to June20. Our dietary assessment was not conducted during the mango 

season, therefore fruit intake only contributed 1% to dietary energy intake. Cereals 

and animal products contributed equally to our participants’ iron intake (29% and 

30% respectively) while the remaining iron was mostly delivered by pulses (20%) 

and vegetables (16%). When there are major seasonal changes to the diet, data on 

iron intake and serum ferritin should be collected at the end of each season and % 

absorption estimated using the model. An average of all seasons will indicate dietary 

iron bioavailability on an annual basis. Socioeconomic level can be a determinant of 

changes to the diet and therefore should also be taken into account. 

 

In the present study the mean dietary iron intake of the group of Beninese women 

was 19.1 (±5.5) mg/day which is more than twice that of the Average Requirement 

(AR) for women of child-bearing age derived by the IOM, 8mg/d, and the European 
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Food Safety Authority (EFSA), 7 mg/d. However, the IOM and EFSA values are 

based on an estimated dietary iron absorption of 18% (in the case of the EFSA 

value, this assumes a mean SF of 30 µg/L), and absorption from the African diet will 

be much lower, mainly because of the high phytate content21. According to the 

calculations from our predictive model, dietary absorption is 6% from the Beninese 

diet when SF is 30 µg/L. This is one third of the value we predicted from a Western 

diet, and therefore the intake in Benin should be three times higher to compensate. 

In fact, the Beninese iron intakes approach this value. However, the mean SF 

concentration, 41.6 (±40.9) µg/L (median(IQR) = 23.1(54.7) µg/L), after exclusion of 

SF concentrations from individuals with raised CRP concentrations (CRP > 5 mg/L), 

is higher in our population than the assumed 30 µg/L. Nevertheless, the range is 

large: 6.3 µg/L – 167.4 µg/L, as is the standard deviation. When examining the data 

more closely, the unexpectedly high mean SF concentration in our population is 

mainly due to three participants presenting with SF concentrations > 100 µg/L. SF 

concentrations >100 µg/L were already reported for two of them in the original 

studies while the third participant’s SF concentrations reached a level > 100 µg/L 

due to a doubling of SF concentration in the 8 years between the original study and 

our follow-up (original value: 50.3 µg/L). Excluding the three participants with SF 

concentrations >100 µg/L brings the mean SF concentration down to 31.4±26.9 µg/L. 

Eleven participants (one third) had SF concentrations < 15 µg/L and were classified 

as iron deficient. 

 

Unfermented maize and rice meals have very unfavourable phytic acid to iron molar 

ratios (> 10:1 or even > 20:1) which strongly impairs dietary iron absorption. In our 

study the geometric mean (-SD; +SD) dietary phytic acid intake was 1717.9 (970.1; 
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3042.3) mg/d, with a phytic acid:iron molar ratio of 7.6. This is very high but 

comparable to intakes reported for school-aged children in the same area 

(1690 mg/d12) and lower than estimates for other African countries (2270 mg/d22). 

Cereal products, mainly maize, contributed 73.6% to all phytic acid intakes in our 

population, followed by pulses (22.7%), while phytic acid intakes from roots and 

tubers, vegetables and seeds were negligible. The mean ascorbic acid intake of 48 

mg/day is relatively low compared with the EFSA AR of 80 mg/d for women, but this 

is because the dietary intake data were collected outside the mango season when 

fruit consumption was extremely low.  

 

An FAO/WHO expert committee on iron absorption suggested that the average 

bioavailability from a mixture of heme and non-heme iron is about 5% from a low 

bioavailable diet, 10% from an intermediate bioavailable diet and 15% from a high 

bioavailable diet2. The low bioavailability estimate compares favourably with results 

from our model that indicates iron absorption from the African diet (which is high in 

phytate, low in heme iron and, therefore has low bioavailability) is approximately 6-

7%. We attempted to validate these results with stable isotope data from 13 of the 

original 30 women in the study. These indicate that iron absorption was between 8-

10% when the stable isotope labelled iron was added to typical meals eaten by the 

study population in a multiple meals study with pearl millet8. In the original data no 

significant difference in fractional absorption from the iron-biofortified and regular-

iron millet meals (n=13, p=0.80) was seen, despite the difference in iron content of 

the millet flour (2.5 and 8.8 mg iron/100g flour respectively). However, mean 

fractional absorption was approximately 30% higher from the post-harvest iron-

fortified millet meals compared to iron-biofortified millet meals (p=0.003) and the 
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regular-iron millet meals (p=0.045). Still, it should be noted that the 13 volunteers 

that consumed stable isotope iron had a median (IQR) SF of 16.3 (30.3) µg/L which 

was lower than the 23.1 (54.7) µg/L of the 30 volunteers. Given the inverse 

relationship between SF and iron absorption, there is good evidence for agreement 

between the iron absorption model and the stable isotope derived absorption. 

 

The use of Hunt et al19 or IOM18 as the reference for the iron requirements does not 

make a significant difference to the mean iron absorption results (6.7% vs. 6.4%; 

P=0.604) although the iron absorption values are predicted to diverge when SF is 

less than 10 µg/L (15.4% vs 11.8%). This might be an important consideration when 

approximately one third of the study population had SF<15 µg/L. A comparison 

between iron absorption from the African and Western diets does yield a significant 

difference using either the Hunt et al.19 data (15.1 vs 6.7%; P=0.004) or the IOM18 

data (13.7 vs 6.4%; P<0.001) at SF=30 µg/L, but this is not unexpected given that 

the average Western diet will be highly bioavailable in comparison to the African diet. 

 

Conclusions 

It was possible to predict % iron absorption from the Beninese diet with data from 

just 30 women, therefore this approach could be easily used to derive country-

specific values for dietary iron bioavailability. DRVs for iron, which are dependent on 

the dietary pattern, can then be calculated transparently, without the need to assume 

values for bioavailability. The data required for this exercise would be accurate 

measures of dietary iron intake from typical diets, iron status (SF concentration and 

CRP, to exclude individuals with inflammation/infection, or to correct for this using 

the method advocated by the Brinda project23) and an estimate of physiological iron 
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requirements. Accurate measures of iron intake and iron status are rarely available 

in most low- and middle-income countries for any representative population, and it 

may be a little over-optimistic to assume that data from 30 individuals is sufficient to 

derive values for dietary iron bioavailability. However, the good agreement between 

iron absorption measured in isotopically-labelled meals and the bioavailability values 

derived from our model is very encouraging. This new evidence-based approach is a 

distinct improvement than current less well-documented approaches and may indeed 

form the basis for some policy actions whilst awaiting more complete data. .   

By entering data collected from different countries into our model national/regional 

values for dietary iron bioavailability can be generated, and these estimates can be 

used to derive DRVs for iron that are pertinent to the country. These new values, in 

conjunction with more detailed dietary information, for example phytic acid and heme 

iron intakes, can facilitate the development of policies for reducing iron deficiency, 

We recommend that our model is employed to derive bioavailability values for iron in 

countries with different dietary patterns, and that the country-specific bioavailability 

values are used to derive DRVs using a harmonized approach24. 
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Table 1. Characteristics of women. Data are mean (±SD) or geometric mean (-SD; +SD) 

 

 

Number of 

participants 

Age  

(y) 

BMI  

(kg/m2) 

Serum ferritin 

(µg/L) 

Energy 

intake 

(kcal/d) 

Iron intake 

(mg/d) 

Ascorbic 

acid intake 

(mg/d) 

Phytic acid 

intake (mg/d) 

Phytic 

acid:iron 

molar ratio 

30 29.2 (±5.7) 22.0 (±2.8) 41.6 (±40.9) 

Median=23.1 

IQR=54.7 

1827.6 

(±432.6)  

19.1 

(±5.5) 

48.0  

(24.6; 93.5) 

1717.9  

(970.1;3042.3) 

7.6  

 

All values are arithmetic means (±SD) for normally distributed data or geometric means (with –SD, +SD indicated in brackets) for skewed distribution, 

except for SF where median [IQR] is reported due to non-normality of data or log-transformed data. Phytic acid and ascorbic acid intakes are right skewed 

due to extremely high intakes in some few women. 

 

 

 



21 
 

Table 2. Estimated % iron absorption using observed serum ferritin concentrations 

and two different methods for calculating iron requirements 

 

 

 Iron absorption (%) 

Serum ferritin (µg/L) Cumulative 

prevalence (%) 

Hunt et al (2009) IOM (2001) 

<10 16.7 15.4 11.8 

<20 46.7 8.7 7.6 

<30 60.0 5.8 6.2 

<40 63.3 5.3 6.1 

<50 70.0 4.9 6.0 

<60 70.0 4.9 6.0 

<70 80.0 5.4 5.8 

<80 86.7 5.6 5.1 

<90 86.7 5.6 5.1 

<100 90.0 5.1 4.6 
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Table 3. Iron absorption from pearl millet meals in a former isotope study by 

Cercamondi et al.8. 

 

 

Meal Post-harvest iron-

fortified millet meal 

Regular-iron millet 

meal 

Iron-biofortified 

millet meal 

Number of 

participants 

13 13 13 

% iron absorption 10.4 8.0 7.8 
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Figure 1. Comparison of % iron absorption from African and Western diets.  

 

 

 

 

● data from Western diet using Hunt et al, 2009; ■ data from African diet using Hunt 

et al, 2009; ○ data from Western diet using IOM, 2001; □ data from African diet using 

IOM, 2001. 
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