
Price discovery in a continuous-time setting

Gustavo Fruet Dias*

School of Economics, University of East Anglia and CREATES

Marcelo Fernandes

Sao Paulo School of Economics, FGV

Cristina Mabel Scherrer

Norwich Business School, University of East Anglia and CREATES

* Corresponding author: 2.27, Registry, University of East Anglia, Norwich Research Park,

Norwich, Norfolk, NR4 7TJ, UK. Tel. : +44 (0) 1603 592941. E-mail address: g.fruet-

dias@uea.ac.uk.

1



Abstract: We formulate a continuous-time price discovery model and investigate how the

standard price discovery measures vary with respect to the sampling interval. We find that

the component share measure is invariant to the sampling interval, and hence, discrete-sampled

prices suffice to identify the continuous-time component share. In contrast, information share

estimates are not comparable across different sampling intervals because the contemporaneous

correlation between markets increases in magnitude as the sampling interval grows. We show

how to back out the continuous-time information share from discrete-sampled prices under cer-

tain assumptions on the contemporaneous correlation. We assess our continuous-time model by

comparing the estimates of the (continuous-time) component and information shares at different

sampling intervals for 30 stocks in the US. We find that both price discovery measures are typ-

ically stable across the different sampling intervals, suggesting that our continuous-time price

discovery model fits the data very well.

JEL classification numbers: C13, C32, C51, G14

Keywords: high-frequency data, price discovery, continuous-time model, sampling interval
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1 Introduction

Equity markets in the US and Europe have experienced an ongoing process of market fragmen-

tation following regulatory policy changes that aimed to increase competition (see Menkveld,

2014; O’Hara, 2015; Menkveld, 2016; among others).1 The immediate consequence of this pro-

cess was that the market share of the listing exchanges decreased dramatically, while the new

entrants have captured significant order flow. High-frequency trading has contributed to scatter

quotes across the different exchanges and has also made markets much quicker, with time scales

of microseconds or even nanoseconds (O’Hara, 2015; Hasbrouck, 2018). In turn, quotes, trades,

and information are now dispersed across a variety of exchanges and markets that are populated

by players possessing different strategic behaviours. It is thus important to investigate how ex-

changes and markets impound information on the efficient price of securities in an environment

of highly competitive fragmented markets that operate in extremely fast time frames.

This paper addresses this issue by formulating a price discovery model in continuous time. In

particular, we first investigate how the standard price discovery measures in discrete time vary

with the sampling interval and then show how to recover the continuous-time price discovery

measures from discrete-sampled prices. There are essentially two standard price discovery mea-

sures: information share (IS) and component share (CS). The former is ascribed to Hasbrouck

(1995), gauging the contribution of each market/venue to the total variation in the efficient

price innovation (see, for instance, Grammig, Melvin and Schlag, 2005; Lien and Shrestha, 2009;

de Jong and Schotman, 2010; Fernandes and Scherrer, 2018). The latter results from the appli-

cation of the permanent-transitory decomposition of Gonzalo and Granger (1995) and Gonzalo

and Ng (2001) to price discovery analysis (see, among others Booth, So and Tseh, 1999; Chu,

Hsieh and Tse, 1999; Figuerola-Ferretti and Gonzalo, 2010).

Both measures rely on the estimation of a vector error-correction model (VECM) for price

changes in discrete time, with the speed-of-adjustment parameter playing a major role in the

price discovery analysis. Baillie, Booth, Tse and Zabotina (2002), de Jong (2002) and Yan and

Zivot (2010) provide a formal comparison between CS and IS measures in a discrete-time setting.

They show they render similar results (up to a different normalization) if market innovations are

contemporaneously uncorrelated and market-specific variances are similar in value. However,
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these conditions are highly unlikely to hold in practice because time aggregation usually leads

to stronger contemporaneous correlation across markets. In addition, market-specific variances

often differ markedly for sufficiently small sampling intervals.

To examine both component and information shares in a continuous-time setting, we as-

sume that the prices of a homogeneous asset traded at k different venues follow a reduced-rank

multivariate Ornstein-Uhlenbeck process. We investigate how the component and information

shares vary with respect to the sampling interval under exact discretization. We find that the

component share is invariant, whereas the information share converges to the value of 1/k as

the sampling interval increases. This finding essentially means that price discovery analyses at

different sampling intervals are not directly comparable if based on discrete-time information

shares.

To circumvent this issue, we show how to back out a continuous-time IS measure from

discrete-sampled prices that is more appropriate for markets that operate with extremely fast

time frames. The latter setting is perhaps the main motivation for Hasbrouck (2018) to exam-

ine price discovery in higher resolutions, given that the contemporaneous correlation between

markets is still nonzero in the one-second resolution. Next, we extend the early comparison

between the CS and IS measures in discrete time (Baillie et al., 2002; de Jong, 2002; and Yan

and Zivot, 2010) to the continuous-time setting. We show that the conditions under which they

yield similar results in discrete time become less likely to hold as the sampling interval increases.

We empirically assess the implications of our continuous-time price discovery model by com-

paring the continuous-time CS and IS estimates across different sampling intervals using data

from 30 stocks in the US. We find that, although their standard errors increase, the CS estimates

remain stable for both thickly and thinly traded stocks as we increase the sampling interval from

one to up to five minutes. More formally, our bootstrap-based tests do not reject the null hy-

pothesis of CS invariance to the sampling interval, indicating that our continuous-time price

discovery model fits the data very well. We unveil similar evidence for the continuous-time IS

measures of heavily traded stocks. Although market leadership inference does not change much,

the pointwise estimates of the continuous-time IS measures vary significantly across sampling

intervals because illiquidity compromises the estimation of the contemporaneous correlation be-

tween markets in lower resolutions.
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The remainder of this paper proceeds as follows. Section 2 describes the continuous-time

setting for price discovery, whereas Section 3 discusses how the sampling interval affects the CS

and IS measures. Section 4 tests our continuous-time price discovery model by checking whether

the (continuous-time) CS and IS measures change as we increase the sampling interval from one

to five minutes. In addition, we investigate whether the relative informativeness of NYSE- and

Nasdaq-listed stock prices change with data frequency. Section 5 offers some concluding remarks.

Finally, the appendix not only outlines the residual-based bootstrap procedure we employ to

carry out the formal tests in Section 4 but also reports some simulation results.

2 A continuous-time setting for price discovery

In this section, we propose a continuous-time model for price discovery. Let prices for a given

asset that trades on multiple venues follow the process

dPt = ΠPt dt+ C dWt, with P0 = p0, (1)

where Pt = (p1,t, . . . , pk,t)
′ is a k × 1 vector of log prices with k denoting the number of trading

venues, Π = αβ′ is a k × k reduced-rank matrix with rank equal to r = k − 1, α and β are

k × r full-rank matrices, W is a k × 1 vector of Brownian motion, and C is a k × k matrix

such that the covariance matrix Σ = CC ′ is positive definite. Prices in the different markets

should not drift apart much, oscillating around the (latent) efficient price, as they refer to the

same asset. Accordingly, there are k − 1 cointegrating relationships (r = k − 1), with log prices

sharing the asset’s efficient price as the single common stochastic trend. We assume without loss

of generality that β is known and takes the form of β = (Ir,−ιr), where ιr denotes a r × 1 unit

vector. In turn, α determines how quickly each market reacts to deviations from the long-run

equilibria β′Pt.

The solution to (1) is a homogenous Gaussian Markov process given by

Pt+δ = exp(δΠ)

[
Pt +

∫ δ

0
exp(−uΠ)C dWu

]
, (2)

giving way to a homoskedastic Gaussian VAR(1) process in discrete time. Due to the reduced

rank, it will also admit a homoskedastic Gaussian VECM(0) representation as in Hasbrouck

(1995). Despite the restricted lag structure in the discrete-time VECM, the reduced-rank

Ornstein-Uhlenbeck (OU) process in (1) provides a useful framework to study the dynamics
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of a single asset traded at multiple venues, given that it ensures that the stochastic trend is a

martingale and that returns follow an infinitive VMA process. Nevertheless, it is possible to

contemplate reduced-rank continuous-time processes that yield more general lag structures to

their discrete-time counterparts by applying the Laplace transform function to the lag operator

as in Nguenang (2016).2 See also Cochrane (2012) for more details on ARMA processes in

continuous time.

We assume that prices are observed regularly and equidistantly over the unit interval [0, 1]

that characterizes, say, one trading day (calendar-time sampling, as discussed in Hansen and

Lunde, 2006). Denote each interval in [0, 1] as [ti−1, ti], where i = 1, 2, . . . , n and n is the total

number of intervals such that 0 = t0 < t1 < . . . < tn = 1. The length of each interval is

δ = ti − ti−1 = 1/n in [0, 1]. For instance, the usual trading day in the US market lasts for 6.5

hours (23,400 seconds), and thus, sampling one observation per minute yields n = 390 intraday

observations, with δ = 1/390. Denoting by exp(A) the matrix exponential of a k × k matrix A

such that exp(A) =
∑∞

`=0
1
`! A

`, the exact discretization of (1) at interval length δ reads

∆Pti = ΠδPti−1 + εti , (3)

where Πδ = αδβ
′ and αδ = α(β′α)−1 [exp(δβ′α)− Ir], with Ir denoting a r-dimensional identity

matrix, and Pti is a k × 1 vector of log prices observed at discrete time. The innovation εti is

iid Gaussian with zero mean and covariance matrix given by Σδ =
∫ δ
0 exp(uΠ)Σ exp(uΠ′) du.

Kessler and Rahbek (2004) provide the conditions under which the mapping given θ =

(Π,Σ)
ψ7−→ ψ(θ) = (Πδ,Σδ) is unique, θ is identifiable, and the space spanned by the columns

of α is equal to the one spanned by the columns of αδ. Specifically, if all eigenvalues of Π

are real and no elementary divisor of Π occurs more than once, Proposition 1 in Kessler and

Rahbek (2004) shows that the mapping ψ is injective and θ is identifiable. It is important to

note that temporal aggregation preserves the cointegration rank, i.e., rank Πδ = rank Π, and

that the definition of (co)integration for OU processes in continuous time is consistent with the

definition in discrete time (Kessler and Rahbek, 2004). Therefore, one may conduct inferences

about rank and cointegrating space using discrete-time procedures and then interpret the results

in a continuous-time setting.

To compute price discovery measures, one must decompose the price vector into a permanent
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I(1) component and a transitory covariance-stationary I(0) component. There are essentially

two alternative decompositions in the price discovery literature: Gonzalo and Granger’s (1995)

permanent-transitory decomposition (PTD) and the Granger representation theorem (GRT).

Although they have different implications for the permanent component in a general VECM(p)

setting, the resulting price discovery measures coincide up to a scale factor (de Jong, 2002), due

to their common reliance on the orthogonal complements of β and α (or αδ if in discrete time).

Let A be a k× r matrix with full column rank r ≤ k. We define the orthogonal complement

of A as any matrix A⊥ with dimensions k × (k − r) and rank k − r such that A′A⊥ = 0.3 In

particular, let the k × 1 vectors α⊥ and αδ,⊥ respectively denote the orthogonal complements

of the vector of speed-of-adjustment parameters in continuous and discrete time, whereas we

fix the orthogonal complement of β = (Ir,−ιr) to β⊥ = ιr (any multiple would do). These

orthogonal complements relate to the nonstationary directions of the processes and hence to the

permanent component that reflects the efficient price.

The PTD posits that Pti = affti +azzti , where the common factor fti is a linear combination

of the elements of Pti . Identification requires the absence of long-run Granger causality from

the transitory component zti to fti , implying af = β⊥ and fti =
(
α′δ,⊥β⊥

)−1
α′δ,⊥Pti . The GRT

extends the Beveridge-Nelson decomposition to a multivariate setting (Stock and Watson, 1988;

Johansen, 1991; Hansen, 2005), resulting in a permanent component that follows a random walk

process with serially uncorrelated increments (and, hence, a martingale). In turn, the transitory

term admits a covariance-stationary VMA(∞) representation, thus inheriting all the remaining

serial correlation.

In general, the permanent components of the PTD and GRT differ, given that there is

no guarantee that the former is a martingale. However, in the particular case of (3), there

is no autocorrelation in ∆fti =
(
α′δ,⊥β⊥

)−1
α′δ,⊥∆Pti because α′δ,⊥∆Pti = α′δ,⊥εti given that

α′δ,⊥αδ = 0. Accordingly, both decompositions yield the same martingale process for the efficient

price underlying (3). This means there is no instantaneous risk premium, which is, in practice,

a very reasonable assumption for intraday returns (see discussion in Hansen and Lunde, 2006).

To formally establish a bridge between the continuous- and discrete-time price discovery

measures, we first establish that the GRT holds in both settings. Kessler and Rahbek (2001)

show that the GRT follows in continuous time directly by assuming that α and β have full
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column ranks r, β′α has full rank r, and all eigenvalues of β′α have negative real parts. Under

these assumptions,

Ik = β⊥(α′⊥β⊥)−1α′⊥ + α(β′α)−1β′, (4)

and hence a straightforward application of (4) to the solution of (1) yields

Pt = Ξ(CWt + P0) + ηt, (5)

where Ξ = β⊥ (α′⊥β⊥)−1 α′⊥, P0 contains initial values, and ηt = α (β′α)−1 Zt, with Zt = β′Pt

denoting a stationary OU process given by dZt = β′αZt dt+ β′C dWt.

The exact discretization in (3) is such that

(i) prices are not explosive in that the roots of the characteristic polynomial |Ik − (Πδ + Ik)z| =

0 are either outside the unit circle or equal to one;

(ii) Πδ = αδβ
′ has reduced rank r < k, with both αδ and β having full column rank r; and

(iii) the number of unit roots equals k − r.

It then follows from Johansen’s (1995) Theorem 4.2 that the GRT holds in discrete time irre-

spective of the distribution of the innovations in (3). Moreover, conditions (i) to (iii) ensure

that the projection identity in (4) holds in discrete time, namely,

Ik = β⊥(α′δ,⊥β⊥)−1α′δ,⊥ + αδ(β
′αδ)

−1β′. (6)

Pre-multiplying (3) by β′ yields the r-dimensional stationary process β′Pti =
∑∞

h=0(Ir+β
′αδ)

hβ′εti−h ,

whereas pre-multiplying by α′δ,⊥ entails the nonstationary component α′δ,⊥Pti = α′δ,⊥Pt0 +∑n
i=1 α

′
δ,⊥εti .

Using the projection identity in (6), the GRT in discrete time reads

Pti = Ξδ

i∑
h=1

εth +
∞∑
h=0

Υδ,hεti−h + ΞδPt0 , (7)

or, alternatively,

∆Pti = Ξδεti +

[
Υδ,0εti +

∞∑
h=1

(Υδ,h −Υδ,h−1) εti−h

]
, (8)

where Ξδ = β⊥(α′δ,⊥β⊥)−1α′δ,⊥, Υδ,h = (Ik − Ξδ)(Ik + αδβ
′)h such that

∑∞
h=0 Υδ,hεti−h is a

stationary process, and Pt0 is a vector of initial values.4 The stochastic common trend given by
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the first term on the right-hand side of (7) reflects the efficient price of the asset. As β⊥ = ιr,

not only does Ξδ have common rows, but the efficient price also relates to a weighted-average

of the prices at the different trading venues. Finally, as mentioned above, the stochastic trend

given by
(
α′δ,⊥β⊥

)−1
α′δ,⊥

∑i
h=1 εth forms a martingale sequence of efficient prices in that its

difference
(
α′δ,⊥β⊥

)−1
α′δ,⊥εti is serially uncorrelated.

It is apparent from the above discussion that αδ and αδ,⊥ are key parameters in any price

discovery analysis. For instance, αδ reflects the adjustment that each market implements such

that their prices do not deviate from the latent efficient price. The closer αδ,m is to zero, the

less the market m adjusts to the efficient price. In particular, αδ,m = 0 means that the price at

market m coincides with the efficient price, therefore leading the price discovery.

3 The effect of the sampling interval

A natural step forward is to investigate how the sampling interval affects the component and

information shares. In this section, we first establish how both measures behave under temporal

aggregation starting from the continuous-time setting. We then show how to identify them in

continuous time from prices at any sampling interval. Next, we compare the information content

of the CS and IS measures in continuous time and wrap up the discussion with a simple example.

For simplicity, we consider a single asset traded on two trading venues (i.e., k = 2 and r = 1).

3.1 Component share

The component share relies on the orthogonal complement of αδ, namely, αδ,⊥ such that α′δ,⊥αδ =

0 (see, among others, Booth et al., 1999; Chu et al., 1999; Harris, McInish and Wood, 2002;

Hansen and Lunde, 2006). Because αδ,⊥ is not unique, one typically imposes αδ,⊥,1 +αδ,⊥,2 = 1.

Whereas αδ corresponds to the stationary direction of the process in (3), αδ,⊥ relates to the

nonstationary direction. Thus, αδ,⊥ is a natural quantity to assess how the efficient price relates

to each market innovation. The market with the highest αδ,⊥ has the lowest need to adjust

towards the latent efficient price, and hence, it is the one that leads the price discovery process.

Under the normalization αδ,⊥,1 + αδ,⊥,2 = 1, it follows from the exact discretization of the

reduced-rank OU process in (3) that

αδ,⊥ =

(
αδ,2

αδ,2 − αδ,1
,−

αδ,1
αδ,2 − αδ,1

)′
=

(
α2

α2 − α1
,− α1

α2 − α1

)′
, (9)
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given that (β′α)−1[exp(δβ′α) − Ir] cancels out for appearing in both numerators and denomi-

nators. It is now clear that αδ,⊥ is invariant to the sampling interval in that αδ,⊥ = α⊥ for any

0 < δ < 1.5

Allowing for a stochastic covariance matrix Σt does not affect the CS measure. In particular,

exact discretization would still yield Markovian price processes, with the same autoregressive

matrix as in (2). See, for instance, Proposition 1 in Nguenang (2016). As a result, CS remains

so that α⊥ = αδ,⊥ for any 0 < δ < 1. This means that identification and inference of the

continuous-time price discovery measure arise directly from estimating αδ,⊥ at any sampling

interval. From an empirical perspective, (9) allows us to learn about the continuous-time price

discovery mechanism even if using data at a higher sampling interval.

3.2 Information share

Hasbrouck’s (1995) IS measure gives the share of each market contribution to the total variance

of the efficient price (see, among others, Baillie et al., 2002; de Jong, 2002; Grammig, Melvin

and Schlag, 2005; Yan and Zivot, 2010). Using the exact discretization of (1), the IS measure

of a given market m ∈ {1, 2} for 0 < δ < 1 is

ISδ,m =
[ξδCδ]

2
m

ξδΣδξ
′
δ

, (10)

where Σδ = CδC
′
δ =

∫ δ
0 exp(uΠ)Σ exp(uΠ′) du, ξδ is the common row of Ξδ in (7) that follows

from β⊥ = (1, 1)′, and [ · ]m denotes the mth element of a vector.

We now investigate the effect of δ on the IS measure. Considering the two-market case, we

can re-write (10) as a function of the market-specific variances and correlations. Specifically, let

Σδ =

(
σ2δ,1 σδ,1σδ,2ρδ

σδ,1σδ,2ρδ σ2δ,2

)
¯
Cδ =

(
σδ,1 0

σδ,2ρδ σδ,2

√
1− ρ2δ

)
C̄δ =

(
σδ,1

√
1− ρ2δ σδ,1ρδ

0 σδ,2

)
,

where
¯
Cδ and C̄δ are the Cholesky decompositions of Σδ resulting from the different orderings

of the variables such that Σδ =
¯
Cδ

¯
C ′δ = C̄δC̄

′
δ. We denote the variance in market m ∈ {1, 2} by

σ2δ,m and the contemporaneous correlation between the two markets by ρδ for any δ.

As the Cholesky decomposition depends on the ordering of the variables, most studies average

the maximum and minimum IS measures across all possible orderings. As αδ,⊥,m = α⊥,m for
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any 0 < δ < 1, the average IS measure in a given market m ∈ {1, 2} for 0 < δ < 1 then reads

ISδ,m =
1

2

(
[ξδ

¯
Cδ]

2
m

ξδΣδξ
′
δ

+

[
ξδC̄δ

]2
m

ξδΣδξ
′
δ

)
=


(α⊥,1σδ,1+α⊥,2σδ,2ρδ)

2+α2
⊥,1σ

2
δ,1(1−ρ

2
δ)

2(α2
⊥,1σ

2
δ,1+α

2
⊥,2σ

2
δ,2+2α⊥,1α⊥,2σδ,1σδ,2ρδ)

, if m = 1,

(α⊥,2σδ,2+α⊥,1σδ,1ρδ)
2+α2

⊥,2σ
2
δ,2(1−ρ

2
δ)

2(α2
⊥,1σ

2
δ,1+α

2
⊥,2σ

2
δ,2+2α⊥,1α⊥,2σδ,1σδ,2ρδ)

, if m = 2.

(11)

It is apparent from (11) that, unlike the component share, ISδ,m is not invariant to the sampling

interval because the market-specific variances and correlation across markets depend on δ. In

particular, the contemporaneous correlation absorbs most of the lead-lag patterns as δ increases

because both markets have now sufficient time to impound the news. In fact, exact discretization

yields |ρδ| → 1 as δ → 1, and thus, limδ→1 ISδ,1 = limδ→1 ISδ,2 = 1/2. Accordingly, a fair

comparison of IS measures should account for the sampling interval.

A possible solution of how to avoid the IS measures in discrete time to converge to 1/2

consists of using data sampled in higher resolutions (e.g., in milliseconds). Hasbrouck (2018)

finds that the bounds of the discrete-time IS measures are very wide at the one-second sampling

interval. Although they become narrower as resolution increases, they become sufficiently tight

only at the sampling frequency of one observation per ten microseconds. This happens because

markets are currently not only very fast but also highly interconnected due to the rise of high-

frequency trading and statistical cross-market arbitrage (see, among others, Menkveld, 2014,

2016; O’Hara, 2015). As such, the contemporaneous correlation between markets is nonzero

even at the very high frequency, such that the IS measures converge to 1/2 at faster rates.

A natural step forward is to define an IS measure in continuous time. Using the GRT in (5),

the continuous-time IS measure of a given market m ∈ (1, 2) reads

ISm =
[ξC]2m
ξΣξ′

, (12)

where Σ = CC ′, ξ is the common row of Ξ in (5), and [.]m denotes the mth element of a vector.

As in the discrete-time setting, the decomposition Σ = CC ′ is not unique, so we average the IS

measures over all possible orderings. The average continuous-time IS measure in a given market

m ∈ (1, 2) then reads

ISm =
1

2

(
[ξ

¯
C]2m
ξΣξ′

+

[
ξC̄
]2
m

ξΣξ′

)
, (13)

where
¯
C and C̄ are the Cholesky decompositions of Σ resulting from the different orderings of

the variables such that Σ =
¯
C

¯
C ′ = C̄C̄ ′.
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The continuous-time IS measure is immune to the sampling interval and, most importantly,

fits well the current trading environment (i.e., fast and furious markets). Finally, it is possible

to make inferences about the continuous-time IS measure in (13) using discrete-sampled prices.

Indeed, ξ̂ readily follows from the VECM parameter estimates and Σ̂ from realized measures

of covariation (Barndorff-Nielsen and Shephard, 2004; Barndorff-Nielsen, Hansen, Lunde and

Shephard, 2011).

Assuming a time-varying covariance matrix now matters because the exact discretization of

IS depends heavily on how the stochastic process that governs the dynamics of the instantaneous

covariance matrix aggregates over time. As the standard practice in the literature is to estimate

daily IS measures, an alternative is to compute the continuous-time IS measures based on daily

integrated covariance matrices: Σd =
∫ d+1
d exp(uΠ)Σu exp(uΠ′) du, where d = 1, . . . , D with D

denoting the number of days in the sample. Simulation results in Appendix B indicate that the

median estimates are very close to the IS measures that the exact discretization of (1) would

imply, so that they still converge to 1/2 as the sampling interval increases due to the increase

in the contemporaneous correlation.

3.3 A continuous-time comparison of CS and IS

Next, we investigate the relationship between the CS and IS measures in continuous time. First,

rewrite the continuous-time IS measure in a given market m ∈ (1, 2) as

ISm =


(α⊥,1σ1+α⊥,2σ2ρ)

2+α2
⊥,1σ

2
1(1−ρ2)

2(α2
⊥,1σ

2
1+α

2
⊥,2σ

2
2+2α⊥,1α⊥,2σ1σ2ρ)

, if m = 1,

(α⊥,2σ2+α⊥,1σ1ρ)
2+α2

⊥,2σ
2
2(1−ρ2)

2(α2
⊥,1σ

2
1+α

2
⊥,2σ

2
2+2α⊥,1α⊥,2σ1σ2ρ)

, if m = 2.

(14)

where σ21 and σ22 are the market-specific variances and ρ denotes the correlation between the

two markets in continuous time. There is a direct link between CS and IS only if ρ = 0 and

σ1 = σ2. In this case, the information share in continuous time reads

ISm =
α2
⊥,mσ

2
m

α2
⊥,1σ

2
1 + α2

⊥,2σ
2
2

, m = 1, 2. (15)

This essentially reproduces in continuous time the results that Baillie et al. (2002) and de

Jong (2002) obtain in discrete time by imposing ρδ = 0 and σδ,1 = σδ,2. It is worth stressing,

however, that these conditions are highly unlikely to hold in either continuous or discrete time.

Given that limδ→1 |ρδ| = 1, it becomes increasingly more unrealistic to assume that ρδ = 0 as
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the sampling interval increases. On the other hand, the market-specific variances should diverge

as the sampling interval declines due to the different market microstructure features and trading

clientele (Dias, Scherrer and Papailias, 2016). We thus conclude that the continuous-time CS

and IS measures will most often produce different empirical results.

3.4 A simple illustration

In this section, we illustrate our theoretical findings using a continuous-time version of the Has-

brouck’s (1995) example. Suppose that a homogeneous asset trades on two markets. Market 1

is the leading trading venue with prices fully reflecting the efficient price, whereas the price on

market 2 reacts to deviations with respect to the (efficient) price on market 1. The absence of

adjustment in market 1 (α1 = 0) implies that p1,t coincides with the stochastic trend, and hence,

price discovery measures should identify market 1 as the sole contributor to the price discovery

process, regardless of the sampling interval.

In this setting, prices cointegrate with α = (0, α2)
′ and β′ = (1,−1):

d

(
p1,t
p2,t

)
=

(
0
α2

)(
1 −1

)(p1,t
p2,t

)
dt+ C dWt, (16)

where C and W are defined as in (1). In particular, we entertain the exact discretization of

(16) for σ21 = σ22 and ρ ∈ {0, 0.3, 0.5, 0.7, 0.9}, with δ ranging from 1/23, 400 to 1/13 (implying

frequencies of one observation per second to one observation per 30 minutes in a trading day of

6.5 hours).

The left panel of Figure 1 displays the CS and IS measures for market 1, whereas the

right panel plots the contemporaneous correlation at each sampling interval. As expected,

discretization affects the price discovery measures in different manners. While CS is completely

immune to the sampling interval, IS converges to 1/2 as δ increases because |ρδ| converges to

one. If the sampling interval is large enough, information hits both markets at the same time,

preventing the IS measure from identifying market 1 in (16) as the unique contributor to the

price discovery process. As expected, given that σ21 = σ22, CS and IS yield the same result in

continuous time only in the absence of contemporaneous correlation between markets.
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4 Empirical application: testing the continuous-time price dis-
covery model implications

Our continuous-time setting has sharp testable implications for price discovery measures in

discrete time. First, it implies that the CS measure is invariant to the sampling interval, even

in the presence of a stochastic instantaneous covariance matrix. This means that we should

find no significant differences in CS estimates across sampling intervals. Second, under correct

specification of the continuous-time model, the same should apply to the continuous-time IS

measures we compute from different sampling intervals. In the following subsection, we first

describe the data and estimation details and then discuss our empirical findings.

4.1 Data description

Our high-frequency dataset refers to 30 stocks that differ markedly in terms of industry, listing

venue, and trading activity. We group them into three subsamples: 10 Nasdaq-listed stocks, 10

thickly traded NYSE-listed stocks, and 10 thinly traded NYSE-listed stocks. The first group

consists of a random sample from the Nasdaq-100 stock market index constituents that have been

trading since January 2013: Adobe Systems (ADBE), Align Technology (ALGN), Amazon.com

(AMZN), CA Technologies (CA), Expedia (EXPE), Alphabet (GOOG), Micron Technology

(MU), Starbucks Corporation (SBUX), Vodafone Group (VOD), and Wendy’s (WEN).

As for the actively traded NYSE-listed stocks, we select at random from the S&P 500 index

constituents: Bank of America (BAC), General Electric (GE), Hewlett-Packard (HPQ), Inter-

national Business Machines (IBM), J.C. Penney Company (JCP), JP Morgan Chase (JPM),

Coca-Cola Company (KO), Altria Group (MO), Verizon Communications (VZ), and ExxonMo-

bil (XOM). Finally, we randomly select 10 less-liquid NYSE-listed stocks from the Russell 1000

index constituents: Canon (CAJ), Cooper Companies (COO), Dolby Laboratories (DLB), Dun

& Bradstreet Corp (DNB), Corporate Office Properties Trust (OFC), Regal Beloit Corp (RBC),

Everest Re Group (RE), RPC Inc (RES), Rollins (ROL), and Thor Industries (THO). These

stocks exhibit, on average, 70% less trading intensity, as measured by the number of trades,

than the actively traded stocks in the previous group.

We extract quote data from TAQ for the year of 2013 because our simulation study in

Appendix B shows that reliable inference requires a large sample period if markets operate in
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extremely fast time frames. We implement the same cleaning filters as in Barndorff-Nielsen,

Hansen, Lunde and Shephard (2009), excluding any observation with a zero quote, negative

bid-ask spread, or outside the main trading hours (9:30 to 16:00). We also discard any data

point, either with a bid-ask spread higher than 50 times the median spread on that day or with a

midquote deviating by more than 10 mean absolute deviations from the median value of the last

50 observations. We then consider the median bid and ask quotes in the presence of multiple

ticks for a given second and synchronize NYSE/Arca and Nasdaq midquotes by sampling at

regularly spaced intervals of 1 to 5 minutes. Table 1 provides the final number of time-series

observations for each stock before and after data handling.

4.2 Estimation of the continuous-time price discovery measures

Because we observe prices intradaily over different days, denote by T = nD the total number

of observations, where n is the number of intraday observations and D is the number of trading

days. It then follows that ∆Pτ = αδβ
′Pτ−1 + ετ , with τ = 1, . . . , T . Consistent estimation of

the CS measure requires only a consistent estimator of the speed-of-adjustment parameters for

any sampling interval given that β = (1,−1)′ is known. The continuous-time IS measure also

calls for a consistent estimator of the covariance matrix.

As standard in the literature, we estimate αδ by least squares. In view that β = (1,−1)′, we

impose that α̂δ,1 ≤ 0 and α̂δ,2 ≥ 0, so that the roots of |I2 − (α̂δβ
′ + I2) z| = 0 are either outside

the unit circle or equal to one for every δ ∈ (1/390, 1/195, 1/130, 1/97, 1/78). The asymptotic

normality of α̂δ follows from standard regularity conditions (see, for instance, Proposition 7.1

in Lütkepohl, 2007), and so we back out the limiting distribution of the continuous-time CS

measures by the delta method. In particular, it follows from (9) that the Jacobian matrix of

partial derivatives reads

∂α⊥
∂α′δ

=

 αδ,2

(−αδ,1+αδ,2)
2 −

αδ,1

(−αδ,1+αδ,2)
2

− αδ,2

(−αδ,1+αδ,2)
2

αδ,1

(−αδ,1+αδ,2)
2

 , for δ = 1/390, 1/195, 1/130, 1/97, 1/78. (17)

By construction, the asymptotic standard errors of α̂δ,⊥,1 and α̂δ,⊥,2 are identical.

To obtain daily IS measures in continuous time, we estimate the integrated covariance matrix

over a day employing Barndorff-Nielsen and Shephard’s (2004) realized covariance estimator Σ̂δ,d

15



using prices at the sampling interval δ.6 The resulting daily continuous-time IS estimate is

IS(α̂δ,⊥, Σ̂δ,d) =
1

2


[
α̂′δ,⊥

̂̄Cδ,d]2
m

α̂′δ,⊥Σ̂δ,dα̂δ,⊥
+

[
α̂′δ,⊥

̂̄Cδ,d]2
m

α̂′δ,⊥Σ̂δ,dα̂δ,⊥

 (18)

where ̂̄Cδ,d and ̂̄Cδ,d are the Cholesky decompositions of Σ̂δ,d resulting from the different orderings

of the variables such that Σ̂δ,d = ̂̄Cδ,d ̂̄C ′δ,d = ̂̄Cδ,d ̂̄C ′δ,d.
Before discussing the IS and CS estimates, it is important to provide some details about

model selection and specification. As expected, we find only one cointegrating vector for every

pair of stock prices using Johansen’s maximum eigenvalue and trace tests at the 1% signifi-

cance level. In addition, the Ljung-Box test with 30 lags cannot reject the absence of residual

autocorrelation at the 1% significance level for every stock.7 More importantly, we find only

weak evidence against the martingale property of the efficient price implied by the GRT in

(7). In particular, we test for the presence of serial correlation in (α′δ,⊥β⊥)−1α′δ,⊥ετ using the

heteroskedastic-robust Ljung-Box tests with 1, 10, and 30 lags. Across all sampling intervals,

we cannot reject the null hypothesis of no serial correlation at the 1% significance level for ap-

proximately 80% of the stocks, regardless of how many lags we contemplate. This proportion

increases to over 85% if restricting attention to thickly traded stocks, irrespective of the sampling

interval.8

4.3 Are the estimates indeed stable across sampling intervals?

In this section, we test whether the continuous-time price discovery measures computed from

prices sampled at alternative sampling intervals are indeed stable using the residual bootstrap

resampling method we describe in Appendix A. Specifically, we first construct bootstrap-based

confidence intervals for the continuous-time price discovery measures using bootstrapped data at

2-, 3-, 4-, and 5-minute sampling intervals, based on the continuous-time estimates using prices

at the 1-minute sampling interval. We then reject the null hypothesis that α1/390,⊥ = αδ,⊥ for

δ ∈ {1/195, 1/130, 1/97, 1/78} if α̂δ,⊥ lies outside the bootstrap-based confidence interval for a

given percentile p ∈ {1%, 5%, 10%}.

Table 2 reveals the CS estimates and their asymptotic-based standard errors across sampling

intervals, as well as whether the bootstrap-based test rejects the null hypothesis that α1/390,⊥ =

αδ,⊥ for δ ∈ {1/195, 1/130, 1/97, 1/78}. In particular, we denote by *, **, and *** rejections
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at the 10%, 5%, and 1% significance levels, respectively. The results provide strong evidence in

favor of our continuous-time price discovery model irrespective of industry, listing venue, and

trading activity. Indeed, we cannot reject the null hypothesis that the CS measures are the same

across the different sampling intervals for almost all stocks. The continuous-time CS estimates

are extremely similar, especially for the Nasdaq-listed stocks and for the less-liquid stocks.

Market leadership remains the same across the alternative sampling interval for virtually

every stock in our sample. The listing exchange is the main driver for every stock, apart from

JPM, VOD and WEN, regardless of the sampling interval. This effect is stronger for less-

liquid stocks, whose average NYSE contribution to price discovery is approximately 88% across

sampling intervals (in contrast to 71% and 74% for heavily traded Nasdaq- and NYSE-listed

stocks, respectively). To conclude, we find strong statistical evidence supporting the continuous-

time price discovery model put forward in the paper in that the CS measures are invariant to

the sampling interval and these continuous-time price discovery measures can be inferred from

discrete sampled prices.

In line with the simulations in Appendix B, we find that the standard errors generally

increase with the sampling interval, reflecting that the noise-to-signal ratio increases with the

sampling interval. In addition, we also find a substantial difference in the magnitude of the

standard errors across heavily and thinly traded stocks. This finding suggests that the faster

the adjustment, the higher the noise-to-signal ratio at larger sampling intervals. In particular,

identification of the continuous-time CS measure is remarkably good for the thinly traded stocks

up to the frequency of 1 observation per 5 minutes.

Table 3 reports the different estimates of the continuous-time IS measures. We document

the median and standard errors (in brackets) of the daily continuous-time IS measures over the

entire sample period. Test results now refer to the null hypothesis that IS(α̂1/390,⊥, Σ̂1/390,d) =

IS(α̂δ,⊥, Σ̂δ,d) for δ ∈ {1/195, 1/130, 1/97, 1/78}.

For virtually every heavily traded stock, we do not reject the null hypotheses that the IS

measures are the same across the different sampling intervals. We find that their continuous-

time IS measures are mostly equal to 1/2, regardless of the listing exchange. This happens

essentially because the estimates of the continuous-time correlation between markets are, on

average, 0.96, 0.98, 0.99, 0.99, and 0.99 for the 1-, 2-, 3-, 4-, and 5-minute sampling intervals,
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respectively.9 This finding is consistent with our simulation study, whose results indicate the

upward bias in the estimation of the continuous-time correlation increases with the sampling

interval. The continuous-time IS estimates at the one-minute sampling interval seem reasonable,

however. They indicate the same leading markets as the CS estimates, with the listing exchange

again playing a major role. In addition, these estimates are also in line with Hasbrouck’s (2018)

estimates in higher resolutions for IBM and NVIDIA, despite the differences in sample period and

sampling interval. For instance, Hasbrouck’s (2018)’s average estimate of the NYSE information

share for IBM at the 10-microsecond interval is 0.52, exactly the same as ours.

A different picture arises for thinly traded stocks. We reject the null hypothesis that the

continuous-time IS measures using data at different sampling intervals are the same for all stocks

except for CAJ and ROL. These stocks appear biased towards 1/2 for sampling frequencies lower

than one observation per minute. We believe that this result occurs mainly because of the bias

in the estimation of the instantaneous correlation. The latter estimates monotonically increase

from 0.61 to 0.86 as the sampling interval grows from 1 to 5 minutes. This finding is clearly in

line with our simulation results in Appendix B, which document a very similar impact of the

bias in the correlation estimation on the continuous-time IS measures. Nevertheless, we find

that market leadership inference based on the IS estimates agrees with the indications given by

the CS estimates, regardless of the sampling interval.

5 Conclusion

This paper entertains price discovery in a continuous-time setting. We first show that the

component share measure of price discovery is invariant to the length of the discretization

interval, allowing us to make inference on the continuous-time price discovery mechanism from

discrete sampled prices. This finding is in contrast with Hasbrouck’s (1995) information share,

which depends on the contemporaneous correlation across markets, which naturally increases in

magnitude as the sampling interval increases. As a result, the discrete-time IS measure converges

to 1/k as the sampling interval increases at a rate that increases with the speed-of-adjustment

parameter α. We nonetheless show how to recover the continuous-time counterpart of the IS

measure, which is naturally immune to temporal aggregation.

A testable implication of our continuous-time price discovery model is that the continuous-
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time CS and IS estimates should not differ across sampling intervals. We empirically test this

implication for a panel of 30 stocks listed on NYSE and Nasdaq. Overall, we find that the

continuous-time CS estimates are very stable across sampling intervals, whereas the continuous-

time IS estimates seem invariant to the sampling interval only for the thickly traded stocks.

Both price discovery measures nonetheless agree that the listing exchange typically leads the

price discovery process.
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Footnotes

1 Specifically, Regulation ATS (alternative trading systems; RegATS) in 2000, the Regulation National Market
System (Reg NMS) in 2007 in the US, and the Markets in Financial Instruments Directive (MiFiDin) in 2007 in
Europe set the foundation for the existence of multiple trading venues linked together and competing for liquidity
and trades.

2 Nguenang (2016) assumes a baseline process similar to (1), but with a stochastic covariance matrix, to
introduce a version of the information share measure based on Pesaran and Shin’s (1998) generalized impulse
response function in both continuous and discrete times. However, he does not examine how it changes once
moving from continuous to discrete time.

3 Alternatively, denoting by sp(A) the subspace in Rk spanned by the columns of A, A⊥ is any matrix with
dimensions k × (k − r) such that sp(A⊥) = sp(A)⊥.

4 Apart from closed-form expressions for the MA component, Hansen (2005) also provides an alternative proof
for the GRT (see Theorem 1 and Corollary 2 herein).

5 It is straightforward to consider k markets. Consider αδ,⊥ = α⊥ − α (α′δα)
−1
α′δα⊥, so that α′δαδ,⊥ = 0.

It follows from αδ = ακδ, with κδ = (β′α)−1 [exp(δβ′α)− Ir], that αδ,⊥ = α⊥ − α (α′α)
−1
α′α⊥ = α⊥ for any

0 < δ < 1, given that α′α⊥ = 0.
6Alternatively, we could estimate the instantaneous covariance matrix using realized measures of spot variance

and covariation (Bibinger, Hautsch, Malec and Reiss, 2019; Zu and Boswijk, 2014) to obtain intraday IS estimates.
Given that the standard practice in the price discovery literature is to estimate daily VECMs (under the implicit
assumption that the covariance matrix is constant within each day), we consider the realized covariance estimator
of the integrated covariance matrix as a compromise.

7 The only stock for which we find evidence of residual autocorrelation at the 5% significance level is ALGN,
with a p-value of 0.03.

8 The results of the cointegration analyses and specification diagnostics are available upon request.
9 These very high values reflect that information becomes available very quickly to market participants in

each market because markets are currently very fast and interconnected (O’Hara, 2015).
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Table 1: Data description

We report summary statistics for raw and cleaned data for Nasdaq and NYSE/Arca. For the Nasdaq-listed
stocks in the top panel, we report the number of Nasdaq and Arca observations, whereas we consider Nasdaq and
NYSE for the heavily- and thinly-traded stocks listed at NYSE. In particular, we display the number of quotes
(in millions) for each stock on the two trading venues before any cleaning filter (raw data) as well as after the
implementation of the cleaning procedure (clean data). We also report the daily average number of quotes (in
thousands) for both trading venues. The sample period spans from January 2013 to December 2013 and totals
251 trading days.

raw (’000,000) clean (’000,000) obs per day (’000)
Nasdaq NYSE/Arca Nasdaq NYSE/Arca Nasdaq NYSE/Arca

Nasdaq-listed stocks
ADBE 28.66 9.08 2.65 2.01 10.54 7.99
ALGN 6.28 2.64 1.28 0.98 5.09 3.91
AMZN 12.29 12.75 2.31 2.15 9.20 8.58
CA 22.74 6.84 2.50 1.69 9.94 6.72
EXPE 14.78 5.93 1.99 1.65 7.93 6.58
GOOG 9.81 11.00 1.98 1.82 7.90 7.23
MU 59.96 15.42 3.21 2.70 12.78 10.75
SBUX 27.72 10.14 2.94 2.23 11.72 8.87
VOD 43.01 15.69 2.59 2.12 10.30 8.43
WEN 9.56 3.62 1.59 1.26 6.33 5.03
heavily-traded NYSE-listed stocks
BAC 62.92 91.36 3.88 4.53 15.47 18.04
GE 47.01 72.42 3.37 4.22 13.41 16.83
HPQ 56.47 50.00 3.09 3.89 12.31 15.48
IBM 10.52 20.35 2.28 3.38 9.07 13.48
JCP 33.96 30.46 2.50 3.04 9.97 12.13
JPM 107.50 119.33 4.40 4.98 17.54 19.84
KO 46.92 42.14 3.18 3.81 12.68 15.17
MO 29.51 34.27 2.79 3.52 11.12 14.01
VZ 50.37 46.18 3.37 4.02 13.41 16.02
XOM 64.11 80.53 4.17 4.89 16.61 19.50
thinly-traded NYSE-listed stocks
CAJ 3.21 2.88 0.87 0.89 3.47 3.56
COO 2.19 4.95 0.82 1.24 3.25 4.94
DLB 1.78 4.04 0.58 1.14 2.32 4.54
DNB 2.48 4.67 0.84 1.20 3.34 4.80
OFC 3.37 5.05 0.94 1.28 3.75 5.12
RBC 1.64 3.59 0.64 1.01 2.56 4.02
RE 1.73 4.65 0.71 1.26 2.81 5.04
RES 2.46 4.18 0.69 1.17 2.75 4.67
ROL 1.16 6.29 0.48 0.95 1.90 3.78
THO 3.32 5.27 0.97 1.22 3.85 4.86
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Figure 1: Information share and contemporaneous correlation as sampling interval increases

The first plot displays the information and component shares of market 1 in continuous time and for δ ranging from 1/23, 400 (frequency of one observation per second) to
1/13 (frequency of one observation per 30 minutes). The second plot depicts the exact correlation across markets at each sampling interval. We consider a range of values for
the correlation across markets in continuous time, and then compute their discrete-time counterparts using the exact discretization of the reduced-rank OU process as in (3),
with α = (0, 522)′ so that α1/390 = (0, 0.74)′ at the 1-minute sampling interval.
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Table 2: Estimates of the continuous-time CS measures at alternative sampling intervals

We report the LS estimates and asymptotic standard errors (in brackets) of the continuous-time CS measure
of Nasdaq computed from prices at alternative sampling intervals. Specifically, we denote α̂1/390,1,⊥, α̂1/195,1,⊥,
α̂1/130,1,⊥, α̂1/97,1,⊥, α̂1/78,1,⊥ the estimates of the continuous-time CS measure of Nasdaq computed from prices
sampled at one-, two-, three-, four-, and five-minutes intervals, respectively. The continuous-time CS measures are
normalized such that the element wise estimates sum up to one, i.e., α̂δ,⊥,1 + α̂δ,⊥,2 = 1 with subscripts 1 and 2
denoting Nasdaq and NYSE/Arca, respectively. Finally, *, **, and *** denote rejections at the 10%, 5%, and 1%
significance levels, respectively, of the bootstrap-based invariance test with a null hypothesis of α1/390,⊥,1 = αδ,⊥,1
for δ ∈ {1/195, 1/130, 1/97, 1/78}.

α̂1/390,1,⊥ α̂1/195,1,⊥ α̂1/130,1,⊥ α̂1/97,1,⊥ α̂1/78,1,⊥
ADBE 0.67 (0.04) 0.73 (0.08) 0.73 (0.12) 0.78 (0.11) 0.83 (0.15)
ALGN 0.81 (0.08) 0.84 (0.11) 0.82 (0.06) 0.88 (0.09) 0.85 (0.10)
AMZN 0.70 (0.03) 0.70 (0.04) 0.71 (0.06) 0.66 (0.07) 0.67 (0.09)
CA 0.74 (0.06) 0.68 (0.11) 0.86 (0.15) 0.77 (0.16) 1.00∗∗ (0.30)
EXPE 1.00 (0.14) 1.00 (0.21) 1.00 (0.29) 1.00 (0.42) 1.00 (0.39)
GOOG 0.62 (0.04) 0.62 (0.04) 0.65 (0.06) 0.61 (0.07) 0.70 (0.08)
MU 0.61 (0.11) 0.67 (0.12) 0.70 (0.14) 0.77 (0.20) 0.80 (0.17)
SBUX 0.77 (0.05) 0.73 (0.07) 0.75 (0.08) 0.60∗ (0.10) 0.78 (0.10)
VOD 0.31 (0.19) 0.66∗∗ (0.12) 0.41 (0.18) 0.38 (0.24) 0.75∗ (0.19)
WEN 0.37 (0.14) 0.42 (0.15) 0.37 (0.17) 0.33 (0.15) 0.46 (0.15)

BAC 0.20 (0.09) 0.15 (0.14) 0.00 (0.21) 0.00 (0.27) 0.16 (0.29)
GE 0.18 (0.09) 0.13 (0.14) 0.18 (0.18) 0.25 (0.21) 0.32 (0.26)
HPQ 0.29 (0.09) 0.18 (0.15) 0.00∗ (0.18) 0.30 (0.21) 0.00∗∗∗ (0.24)
IBM 0.32 (0.13) 0.30 (0.05) 0.46∗ (0.21) 0.22 (0.08) 0.24 (0.08)
JCP 0.43 (0.09) 0.48 (0.14) 0.31 (0.17) 0.41 (0.25) 0.31 (0.23)
JPM 0.55 (0.10) 0.62 (0.16) 0.60 (0.22) 0.33 (0.28) 0.40 (0.34)
KO 0.44 (0.13) 0.08 (0.12) 0.24 (0.28) 0.00∗∗ (0.14) 0.03 (0.17)
MO 0.45 (0.09) 0.40 (0.12) 0.39 (0.16) 0.28 (0.20) 0.29 (0.24)
VZ 0.23 (0.10) 0.06 (0.10) 0.38 (0.14) 0.23 (0.12) 0.16 (0.12)
XOM 0.33 (0.07) 0.15∗ (0.14) 0.07∗∗ (0.18) 0.26 (0.22) 0.09 (0.26)

CAJ 0.29 (0.02) 0.32 (0.04) 0.33 (0.04) 0.29 (0.05) 0.32 (0.05)
COO 0.07 (0.01) 0.04∗∗ (0.01) 0.06 (0.02) 0.05 (0.02) 0.02∗∗∗ (0.02)
DLB 0.10 (0.01) 0.12 (0.02) 0.11 (0.02) 0.10 (0.03) 0.16∗∗ (0.03)
DNB 0.16 (0.02) 0.17 (0.03) 0.18 (0.03) 0.14 (0.04) 0.20 (0.04)
OFC 0.09 (0.01) 0.10 (0.02) 0.14∗ (0.03) 0.07 (0.03) 0.09 (0.04)
RBC 0.04 (0.01) 0.04 (0.02) 0.05 (0.01) 0.03 (0.02) 0.06 (0.02)
RE 0.05 (0.01) 0.05 (0.01) 0.06 (0.02) 0.04 (0.02) 0.04 (0.03)
RES 0.19 (0.02) 0.18 (0.03) 0.18 (0.04) 0.22 (0.03) 0.21 (0.05)
ROL 0.07 (0.01) 0.06 (0.01) 0.06 (0.02) 0.05 (0.02) 0.06 (0.02)
THO 0.13 (0.01) 0.13 (0.02) 0.12 (0.02) 0.12 (0.03) 0.12 (0.02)
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Table 3: Estimates of the continuous-time IS measures at alternative sampling intervals

We report the median of the daily estimates and their standard errors (in brackets) of the
continuous-time IS measure of Nasdaq computed from prices at alternative sampling intervals. Specifi-
cally, we denote IS(α̂1/390,⊥, Σ̂1/390,d)1, IS(α̂1/195,⊥, Σ̂1/195,d)1, IS(α̂1/130,⊥, Σ̂1/130,d)1, IS(α̂1/97,⊥, Σ̂1/97,d)1,

IS(α̂1/78,⊥, Σ̂1/78,d)1 the estimates of the continuous-time IS measure of Nasdaq computed from prices sam-
pled at one-, two-, three-, four-, and five-minutes intervals, respectively. The continuous-time IS measures sum
up to one, i.e., IS(α̂δ,⊥, Σ̂δ,d)1 + α̂δ,⊥, Σ̂δ,d)2 = 1 with subscripts 1 and 2 denoting Nasdaq and NYSE/Arca,
respectively. Finally, *, **, and *** denote rejections at the 10%, 5%, and 1% significance levels, respectively,
of the bootstrap-based invariance test with a null hypothesis of IS(α̂1/390,⊥, Σ̂1/390,d)1 = IS(α̂δ,⊥, Σ̂δ,d)1 for
δ ∈ {1/195, 1/130, 1/97, 1/78}.

IS(α̂1/390,⊥, Σ̂1/390,d)1 IS(α̂1/195,⊥, Σ̂1/195,d)1 IS(α̂1/130,⊥, Σ̂1/130,d)1 IS(α̂1/97,⊥, Σ̂1/97,d)1 IS(α̂1/78,⊥, Σ̂1/78,d)1
ADBE 0.51 (0.01) 0.51 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01)
ALGN 0.63 (0.06) 0.59 (0.06) 0.56∗∗ (0.05) 0.55∗∗∗ (0.06) 0.54∗∗ (0.06)
AMZN 0.53 (0.02) 0.51 (0.02) 0.51 (0.01) 0.51 (0.02) 0.51 (0.01)
CA 0.51 (0.02) 0.51 (0.01) 0.51 (0.02) 0.50 (0.01) 0.51 (0.02)
EXPE 0.56 (0.04) 0.53 (0.03) 0.52 (0.03) 0.52 (0.02) 0.51 (0.03)
GOOG 0.52 (0.01) 0.51 (0.01) 0.51 (0.01) 0.51 (0.01) 0.51 (0.01)
MU 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.02) 0.50 (0.02)
SBUX 0.52 (0.02) 0.51 (0.01) 0.51 (0.01) 0.50∗ (0.00) 0.50 (0.01)
VOD 0.49 (0.02) 0.50∗∗ (0.01) 0.50 (0.00) 0.50 (0.00) 0.50 (0.01)
WEN 0.49 (0.02) 0.50 (0.02) 0.50 (0.02) 0.50 (0.03) 0.50 (0.03)

BAC 0.49 (0.01) 0.50 (0.01) 0.50∗ (0.01) 0.50∗ (0.01) 0.50 (0.01)
GE 0.49 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00)
HPQ 0.50 (0.00) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.01)
IBM 0.48 (0.01) 0.49 (0.01) 0.50∗∗ (0.01) 0.49 (0.01) 0.49 (0.01)
JCP 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
JPM 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
KO 0.50 (0.00) 0.50 (0.01) 0.50 (0.01) 0.50 (0.02) 0.50 (0.02)
MO 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
VZ 0.49 (0.01) 0.50 (0.03) 0.50 (0.00) 0.50 (0.01) 0.50 (0.02)
XOM 0.50 (0.00) 0.50 (0.01) 0.50 (0.01) 0.50 (0.00) 0.50 (0.01)

CAJ 0.38 (0.05) 0.42 (0.05) 0.45 (0.04) 0.44 (0.05) 0.46 (0.04)
COO 0.18 (0.10) 0.23 (0.12) 0.31∗∗∗ (0.12) 0.32∗∗∗ (0.13) 0.37∗∗∗ (0.13)
DLB 0.27 (0.07) 0.33∗∗∗ (0.07) 0.36∗∗∗ (0.08) 0.39∗∗∗ (0.07) 0.42∗∗∗ (0.06)
DNB 0.32 (0.06) 0.38∗∗∗ (0.05) 0.42∗∗∗ (0.05) 0.43∗∗∗ (0.06) 0.44∗∗∗ (0.04)
OFC 0.29 (0.08) 0.37∗∗∗ (0.08) 0.42∗∗∗ (0.06) 0.42∗∗∗ (0.08) 0.44∗∗∗ (0.08)
RBC 0.20 (0.10) 0.27 (0.12) 0.34∗∗∗ (0.12) 0.36∗∗∗ (0.13) 0.40∗∗∗ (0.12)
RE 0.22 (0.09) 0.30∗∗ (0.10) 0.36∗∗∗ (0.11) 0.37∗∗∗ (0.11) 0.39∗∗∗ (0.11)
RES 0.37 (0.06) 0.41∗ (0.06) 0.43∗∗∗ (0.04) 0.45∗∗∗ (0.04) 0.46∗∗∗ (0.03)
ROL 0.12 (0.07) 0.15 (0.09) 0.19 (0.10) 0.20 (0.10) 0.24∗∗∗ (0.10)
THO 0.27 (0.07) 0.32∗ (0.07) 0.37∗∗∗ (0.08) 0.39∗∗∗ (0.08) 0.41∗∗∗ (0.07)
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Appendices

A Bootstrap algorithm

This section details how we construct bootstrap-based confidence intervals to test for the equality

of the continuous-time price discovery measures across sampling intervals. See, for instance,

Appendix D in Lütkepohl (2007) for more details on resampling methods.

The steps of the bootstrap algorithm are as follows.

(i) Estimate the daily integrated covariance matrix Σd =
∫ d+1
d exp(uΠ)Σu exp(uΠ′) du us-

ing the realized covariance estimator based on intraday prices at the 1-minute sampling

interval. Denote these estimates as Σ̂1/390,d, with d = 1, . . . , D.

(ii) After estimating α1/390 by least squares, compute the residuals ε̂τ for τ = 1, . . . , T and

their sample covariance matrix Σ̂1/390.

(iii) Inverting the matrix exponential operator in the exact discretization of (1) evaluated at

α̂1/390 yields Π̂ = α̂β′ = 390 log
(
α̂1/390 β

′ + Ik
)
, where Z = log(A) if Z is such that

exp(Z) = A for any square matrix A. The first column of Π̂ then yields α̂.

(iv) Using the exact discretization of (1) and estimates obtained from prices sampled at the 1-

minute sampling interval, compute αδ(α̂) = α̂(β′α̂)−1 [exp(δβ′α̂)− Ir], and Σ̂δ,d(α̂, Σ̂1/390,d) =∫ δ
0 exp(uΠ̂)Σ̂1/390,d exp(uΠ̂)′ du for δ ∈ {1/195, 1/130, 1/97, 1/78} and d = 1, . . . , D.

(v) Demean the residuals to obtain ε̂τ − ε̄T , where ε̄T denotes the sample average of ε̂τ over

time.

(vii) Standardize the demeaned residuals to obtain ε̃τ = Σ̂
−1/2
1/390,d(α̂, Σ̂1/390,d) (ε̂τ − ε̄T ) for each

d = 1, . . . , D.

(vi) Draw randomly with replacement from the standardized centered residuals {ε̃τ ; τ = 1, . . . , T}

to form B bootstrap samples
{
ε
(b)
τ ; τ = 1, . . . , T

}
, with b = 1, . . . , B.

(viii) Compute recursively bootstrap samples of the k-dimensional price vector as

P
(b)
δ,τ = αδ(α̂)β′P

(b)
δ,τ−1 + Σ̂

1/2
δ,d (α̂, Σ̂1/390,d)ε

(b)
τ , with Pδ,0 = P0,

for δ ∈ {1/390, 1/195, 1/130, 1/97, 1/78}, τ = 1, . . . , T , d = 1, . . . , D, and b = 1, . . . , B.
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(ix) Compute the continuous-time CS and IS measures for each bootstrap sample at the dif-

ferent sampling intervals. For the daily IS measures, compute their median value over the

sample period.

(x) Compute the bootstrap-based confidence intervals using the p/2- and (1− p)/2-quantiles

of the B continuous-time CS and IS estimates, with p ∈ {1%, 5%, 10%}.

B Simulation study

Let prices follow

dPt = ΠPt dt+ Ct dWt, with P0 = p0, (B.1)

where Ct is a cadlag stochastic volatility process that evolves intradaily such that the covariance

matrix Σt = CtC
′
t is positive definite. Although the exact discretization in Section 2 no longer

holds, the price process remains Markovian, with a discrete-time solution given by

Pt+δ = exp(δΠ)

[
Pt +

∫ δ

0
exp(−uΠ)Cu dWu

]
. (B.2)

Given that allowing for stochastic covariation does not affect the autoregressive matrix exp(δΠ),

CS continues to remain invariant to the sampling interval such that α⊥ = αδ,⊥ for any 0 < δ <

1. In contrast, the exact discretization of the IS measure depends on the specification of the

stochastic process that governs the dynamics of the instantaneous covariance matrix.

We next illustrate how the price discovery measures change with the sampling interval by

simulating the price process in (B.1), with k = 2 trading venues, α = (0, 522)′ and β′ = (1,−1)

as in (16). As for Ct, we assume that the instantaneous correlation is constant and takes values

ρ ∈ {0, 0.3, 0.5, 0.7, 0.9}, whereas the market-specific variances follow a single-factor stochastic

volatility (SV1F) process as in, e.g., Huang and Tauchen (2005), Gonçalves and Meddahi (2009)

and Barndorff-Nielsen, Hansen, Lunde and Shephard (2008). We let σ2m,t = exp(ς0 + ς1 Vm,t),

with dVm,t = γV Vm,t dt+ dBm,t for m = 1, 2. In addition, we consider that corr( dWt, dBm,t) =

νW for m = 1, 2 and that corr( dB1,t, dB2,t) = νB, where νW and νB are (possibly nonzero)

constants. Note that (ς0, ς1, γV , νW ) are the same for both markets, so that their variance

processes exhibit the same time series properties and unconditional distributions.

We set ς1 = 0.125, γV = −0.025, and νW = −0.30 as in Barndorff-Nielsen et al. (2008),

whereas we impose ς0 = ς21/(2γV ), so that the instantaneous variances integrate to one in both
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markets. In addition, we fix νB to 0.95. Overall, this specification is convenient because it

makes the results directly comparable to the ones in Figure 1, given that the IS is essentially

driven by the amount of correlation if the market-specific variances do not differ considerably.

We run simulations using an iterative method based on an Euler scheme that accounts for the

exact discretization of the stochastic volatility process to obtain prices at the 1-second sampling

interval. We set n = 23, 400 to match the number of seconds on a trading day of 6.5 hours.

For each replication, we estimate the speed-of-adjustment parameters by least squares and

then compute the corresponding CS measures at the 1-, 5-, 10-, 30-, 60-, 300-, 600-, and 1,800-

second intervals, corresponding to samples of 23,400, 4,680, 2,340, 1,170, 780, 390, 78, 39,

and 13 observations, respectively. We compute the continuous-time IS measure using realized

covariances and α⊥ estimates at the highest frequency (i.e., one observation per second). Finally,

for the sake of comparison, we also estimate the traditional discrete-time IS measures based on

the sample covariance matrix as if it did not change over time.

Figure B.1 displays the box plots of the CS and IS estimates as well as those of the contem-

poraneous correlation between markets at the different sampling intervals across 50,000 replica-

tions. The patterns are very similar to those in Figure 1, confirming that the CS measures are

invariant to the sampling interval, with their median values coinciding with the continuous-time

CS, regardless of the contemporaneous correlation between markets. The median IS estimates

are very close to the IS measures that the exact discretization of (16) would imply in that they

still converge to 1/2 as the sampling interval increases due to the increase in the discrete-time

contemporaneous correlation.

Next, we assess the finite sample performance of the estimates of the continuous-time CS

and IS measures at increasing sampling intervals for different timespans. As before, we simulate

prices on k = 2 trading venues according to the same specification of (B.1) at the 1-second

sampling interval for D ∈ {1, 22, 252} trading days and then sample them at fixed intervals of 1

to 5 minutes.10 To fully reflect the empirical environment of markets operating at extremely fast

time frames, we fix the continuous-time speed-of-adjustment parameters as the median estimate

for the heavily traded NYSE-listed stocks in Section 4 adjusted so that the first market impounds

all the information to the efficient price: α = (0, 96)′ or, equivalently, α1/390 = (0, 0.22)′ at the

1-minute sampling interval.
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To accommodate multiple trading days, we allow the daily integrated variances to follow

lnσ2m,d = φ0 + φ1 lnσ2m,d−1 + ςυm,d, for m = 1, 2 and d = 1, . . . , D (B.3)

with σ2m,d denoting the market-specific daily integrated variances. The volatility innovations υm,d

are Gaussian white noises with a constant correlation of 0.95 and unit variances. As in Jacquier,

Polson and Rossi (1994), we fix the autoregressive parameter to 0.98 and calibrate φ0 and ς

in (B.3) such that the expected annual volatility is 20% and the coefficient of variation given

by V(σ2m,d)/E(σ2m,d) = exp
(
ς/(1− φ21)

)
− 1 is equal to 1/2. We then allow the instantaneous

market-specific variances integrate to σ2m,d with m = 1, 2.

We estimate αδ for δ ∈ {1/390, 1/195, 1/130, 1/97, 1/78} by LS using every day in the sam-

ple and then compute the (continuous-time) CS estimates. By construction, as we normalize

the elements of α̂δ,⊥ to sum up to one, their bias and standard errors have exactly the same

magnitude. As for the IS measures, we compute daily estimates of continuous-time IS measures

using α̂δ,⊥ and Σ̂δ,d for δ ∈ {1/390, 1/195, 1/130, 1/97, 1/78}.

Tables B.1 and B.2 document the bias and root mean squared error (RMSE) of the CS and IS

measures over 1,000 replications. The sample biases of the CS estimates are very close to zero in

magnitude, regardless of the sampling interval. As expected, the magnitude of the bias decreases

uniformly as the number of days D increases, whereas it seems to increase with the amount

of correlation between markets and with the sampling interval. This finding suggests that it

becomes more difficult to estimate the speed-of-adjustment parameters from prices sampled at

lower frequencies, especially if correlation is high, due to a higher noise-to-signal ratio.

Table B.1 also reveals that there is a sharp decline in the RMSE as D increases. For D = 1,

the RMSE is uniformly large over the correlation value and alternative sampling intervals because

estimating daily VECM models becomes more difficult not only at lower frequencies (due to

the smaller sample sizes) but also for highly correlated markets (due to the lesser amount of

information). The improvement in the RMSE as the timespan increases to D = 22 or D =

252 indicates that the reliable estimation of very high speed-of-adjustment parameters, which

characterize low noise-to-signal ratios, call for a substantially large sample size. Furthermore,

we find that the RMSE increases with the sampling interval because the identification of the

speed-of-adjustment parameters weakens as the sampling interval increases and, hence, the LS
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estimates become noisier. Overall, our simulation results indicate that data for one trading year

suffice to ensure reliable CS estimates.

Table B.2 displays the results for the continuous-time IS estimates based on prices sampled

at increasing sampling intervals. Unlike the CS measures, the IS measures are severely biased

for prices sampled at frequencies lower than one observation per minute. As expected, the

realized variances σ̂2m,d and α̂δ,⊥ are unbiased, implying that the upward bias in the estimation

of the constant correlation between markets biases the continuous-time IS estimates towards 1/2.

Moreover, the bias increases with the sampling interval, meaning that the drift contaminates

the identification of the instantaneous correlation coefficient as the sampling interval increases.

Finally, the RMSE figures are driven mainly by the magnitude of the bias, given the relatively

small standard errors.
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Figure B.1: Information share and contemporaneous correlation as sampling interval increases with stochastic covariance matrix

The first plot in the upper panel displays the theoretical information share based on the exact discretization of (1) and the box plots of the estimates of the IS measures at the
different sample intervals based on the simulations of (B.1). The second plot on the upper panel portrays the exact correlation across markets in continuous time and the box
plots of the corresponding estimates at the different sampling intervals. Finally, the bottom panel plots depict the theoretical continuous-time CS measures (solid markers in
black) and the box plot of the estimates obtained at the different sampling intervals from the simulations. As for the continuous-time parameters, we set α = (0, 522)′ so that
α1/390 = (0, 0.74)′ at the 1-minute sampling interval. The edges of boxes in the box plots refer to the 25% and 75% percentiles, whereas the black dot inside a white circle
represents the median.
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Table B.1: Estimation performance of component share measure

We report the bias and root mean squared error (RMSE) for the continuous-time information and component share measures for sample sizes of D = 1, D = 22, and D = 252

days over 1,000 replications. Estimates of the continuous-time information share measure for market one, ÎS1, are constructed by combining the estimates of the integrated
variance and α⊥ obtained with the realized variance (RV) and LS estimators, respectively, from prices sampled at one observation per minute. Estimates of the component
share measure of market one, αδ,⊥,1, are computed with the LS estimator from prices at sampling frequencies ranging from one observation per 1 minute to one observation
per 5 minutes: δ ∈ {1/390, 1/195, 1/130, 1/97, 1/78}. The instantaneous correlation between markets ρ ranges from 0 to 0.90 and the diagonal elements of the continuous-time
covariance matrix follow a single-factor stochastic volatility (SV1F).

100× bias(α̂⊥,1) RMSE(α̂⊥,1)
ρ δ = 1/390 δ = 1/195 δ = 1/130 δ = 1/97 δ = 1/78 δ = 1/390 δ = 1/195 δ = 1/130 δ = 1/97 δ = 1/78

D = 1 0.00 1.28 1.50 1.56 0.67 1.23 0.11 0.13 0.14 0.16 0.18
0.30 1.36 1.24 1.67 1.91 2.03 0.14 0.16 0.18 0.20 0.22
0.50 1.44 1.75 1.76 2.35 2.01 0.16 0.18 0.20 0.23 0.25
0.70 0.53 0.09 0.34 -0.52 0.70 0.21 0.24 0.26 0.30 0.35
0.90 -0.17 -0.66 0.66 2.02 3.52 0.38 0.41 0.47 0.54 0.58

D = 22 0.00 0.00 0.01 -0.01 0.02 -0.03 0.02 0.03 0.03 0.03 0.04
0.30 0.06 0.00 0.05 -0.02 -0.02 0.03 0.03 0.04 0.04 0.05
0.50 -0.03 0.01 -0.05 0.04 0.09 0.03 0.04 0.04 0.05 0.06
0.70 -0.06 -0.05 -0.11 0.04 -0.26 0.05 0.05 0.06 0.06 0.07
0.90 0.12 0.10 -0.42 -0.05 -0.18 0.08 0.08 0.10 0.11 0.12

D = 252 0.00 -0.01 -0.02 -0.02 0.01 -0.04 0.01 0.01 0.01 0.01 0.01
0.30 0.02 0.01 0.00 0.03 0.01 0.01 0.01 0.01 0.01 0.01
0.50 0.02 0.01 -0.01 0.01 -0.01 0.01 0.01 0.01 0.01 0.02
0.70 0.00 -0.01 0.00 0.04 -0.08 0.01 0.02 0.02 0.02 0.02
0.90 0.03 0.05 0.00 0.11 0.06 0.02 0.03 0.03 0.03 0.04
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Table B.2: Estimation performance of information measure

We report the bias and root mean squared error (RMSE) for the continuous-time information and component share measures for sample sizes of D = 1, D = 22, and D = 252

days over 1,000 replications. Estimates of the continuous-time information share measure for market one, ÎS1, are constructed by combining the estimates of the integrated
variance and α⊥ obtained with the realized variance (RV) and LS estimators, respectively, from prices sampled at one observation per minute. Estimates of the component
share measure of market one, αδ,⊥,1, are computed with the LS estimator from prices at sampling frequencies ranging from one observation per 1 minute to one observation
per 5 minutes: δ ∈ {1/390, 1/195, 1/130, 1/97, 1/78}. The instantaneous correlation between markets ρ ranges from 0 to 0.90 and the diagonal elements of the continuous-time
covariance matrix follow a single-factor stochastic volatility (SV1F).

100×bias(ÎS1) RMSE(ÎS1)
ρ δ = 1/390 δ = 1/195 δ = 1/130 δ = 1/97 δ = 1/78 δ = 1/390 δ = 1/195 δ = 1/130 δ = 1/97 δ = 1/78

D = 1 0.00 1.91 3.70 5.85 8.49 10.97 0.03 0.05 0.07 0.10 0.12
0.30 4.35 7.39 10.45 12.99 15.35 0.07 0.09 0.12 0.15 0.17
0.50 4.39 7.23 9.97 12.21 14.36 0.08 0.10 0.12 0.14 0.16
0.70 3.83 6.00 7.78 9.79 11.07 0.08 0.09 0.11 0.12 0.13
0.90 1.50 2.37 3.15 3.91 4.53 0.06 0.06 0.07 0.07 0.07

D = 22 0.00 0.80 2.46 4.63 7.02 9.43 0.01 0.03 0.05 0.08 0.10
0.30 2.79 5.63 8.41 11.06 13.51 0.03 0.06 0.09 0.12 0.14
0.50 2.92 5.76 8.38 10.74 12.89 0.04 0.07 0.09 0.12 0.14
0.70 2.36 4.54 6.51 8.14 9.65 0.03 0.05 0.07 0.09 0.10
0.90 1.05 1.90 2.68 3.28 3.87 0.02 0.02 0.03 0.04 0.04

D = 252 0.00 0.75 2.41 4.56 6.96 9.37 0.01 0.03 0.05 0.08 0.10
0.30 2.72 5.57 8.35 10.98 13.45 0.03 0.06 0.09 0.12 0.14
0.50 2.97 5.81 8.41 10.75 12.86 0.04 0.06 0.09 0.11 0.14
0.70 2.37 4.54 6.46 8.14 9.63 0.03 0.05 0.07 0.09 0.10
0.90 0.99 1.88 2.63 3.28 3.87 0.01 0.02 0.03 0.04 0.04
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