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Abstract 

Human behavior is the focus of many studies in the social, health, and behavioral 

sciences. Yet, few studies use behavioral observation methods to collect objective measures of 

behavior as it occurs in daily life, out in the real world – presumably the context of ultimate 

interest. Here we provide a review of recent studies focused on measuring human behavior using 

smartphones and their embedded mobile sensors. To draw attention to current advances in the 

field of smartphone sensing, we describe the daily behaviors captured using these methods, 

which include movement behaviors (physical activity, mobility patterns), social behaviors (face-

to-face encounters, computer-mediated communications), and other daily activities (non-

mediated and mediated activities). We conclude by pointing to promising areas of future research 

for studies using Smartphone Sensing Methods (SSMs) in the behavioral sciences.  
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Human behavior is the focus of many studies in the social, health, and behavioral 

sciences. Behavior is important because it can serve four main roles in research (Furr, 2009): 

Behavior can serve as a primary phenomenon to be explained (e.g., What causes or predicts a 

behavior?), the foundation of theoretical phenomena (e.g., How do observations of behavior 

inform theoretical investigations?), a mechanism in psychological processes (e.g., How does 

behavior affect psychological outcomes?), and a consequential outcome (e.g., What are the 

behavioral implications of a construct or measure?). As such, behaviors constitute the 

independent or dependent variables in many research studies. When studies of behavior are done 

in the laboratory they are often designed to recreate real-world conditions (e.g., Funder & Sneed, 

1993; Gosling, John, Craik, & Robins, 1998; Letzring, Wells, & Funder, 2006). However, few 

studies use behavioral observation methods to measure behavior as it occurs in daily life, out in 

the real world – presumably the context of ultimate interest (Reis, 2012). 

The lack of research using behavioral observation in daily life is driven by the fact that 

collecting data on behaviors as they unfold has been almost impossible to do, especially if it 

must be done without affecting the behavior one is trying to record. The rare studies that have 

collected objective measures of behavior in everyday life tend to have sampled behaviors just 

once or on only a few occasions (e.g., Craik, 2000; Mehl, Gosling, & Pennebaker, 2006). 

Moreover, past approaches have been enormously time consuming such that they cannot be 

deployed at scale and they capture only a small percentage of the behaviors emitted and the 

contexts in which they occur. Consequently, most studies have relied almost entirely on 

subjective self-report measures of past or typical behavior (Baumeister, Vohs, & Funder, 2007; 

Furr, 2009; Paulhus & Vazire, 2007; Vazire, 2006). This is a problem because self-report data 



SENSING BEHAVIOR IN EVERYDAY LIFE 

4 

have significant drawbacks (e.g., being disruptive, time consuming, leading to expectancy 

effects, being subject to recall biases, memory limitations, and socially desirable responding).  

One relatively underused big data approach for behavioral observation is the use of 

mobile sensors, such as those embedded in smartphones and wearable devices (e.g., 

smartwatches, fitness bands), as data collection tools for inferring everyday behavior. 

Smartphones provide an especially useful tool because they enable researchers to measure 

individuals’ thoughts and feelings (via notifications to respond to self-report surveys or by 

collecting language-based data), and behaviors (via phone logs and mobile sensor data) as they 

naturally occur in daily life. Furthermore, with their powerful sensing and computational 

capabilities, smartphones have the potential to passively collect social and behavioral data nearly 

continuously, providing valuable objective, granular, and longitudinal real-world and real-time 

information (Campbell et al., 2008; Lane et al., 2010; Lathia, Rachuri, Mascolo, & Rentfrow, 

2013; Miller, 2012). Thus, Smartphone Sensing Methods (SSMs) hold much promise for 

behavioral science because smartphones have become the central communication and computing 

device used in the daily lives of people around the world (Harari et al., 2016; Pew Research 

Center, 2016). Moreover, mobile sensors operate imperceptibly, allowing for unobtrusive, 

naturalistic observational records that reduce the likelihood that participants will behave 

reactively (e.g., Craik, 2000; Mehl et al., 2006; Miller, 2012; Rachuri, Mascolo, Musolesi, & 

Rentfrow, 2011).   

SSMs can be applied in several research domains (e.g., clinical psychology, health 

sciences, organizational psychology) and are particularly useful for studying topics that are not 

easily assessed using retrospective surveys. For example, past research has used SSMs to 

investigate day-to-day variations in emotional experience (Sandstrom, Lathia, Mascolo, & 
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Rentfrow, 2016), sleeping patterns and postures (Wrzus et al., 2012), and interpersonal behaviors 

in group settings (Mast, Gatica-Perez, Frauendorfer, Nguyen, & Choudhury, 2015). SSMs may 

also be used in studies focused on patterns of behavioral stability and change over time (Harari et 

al., 2017), towards the development of mobile interventions targeting mental health changes 

(Wang et al., 2016), and for the examination of social network systems (Kobayashi, Boase, 

Suzuki, & Suzuki, 2015). 

To draw attention to current advances in the field of smartphone sensing, here we provide 

a review of recent studies focused on measuring human behavior using smartphones. Our aim is 

to provide a common framework for describing the behaviors captured using SSMs, and point to 

promising areas of future research for studies using SSMs in the behavioral sciences. A 

discussion of the practical considerations and key methodological features of SSM studies is out 

of scope for the present article, however we point interested readers to Harari et al., 2016 for a 

summary of key issues to consider when setting up an SSM study. 

Which Behaviors Can Be Measured Using Smartphone Sensing Methods?  

 Smartphones can be used to measure several different types of behavior. In particular, 

SSMs are well-suited to objective assessment of people’s daily behaviors, such as physical 

movement behaviors (activity, mobility patterns), social interactions (face-to-face encounters, 

computer-mediated communications), and other activities (e.g., household chores, using 

smartphone applications to play games; Harari et al., 2016). Table 1 provides a summary of 

smartphone data sources and the behaviors they are used to measure.  
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Table 1 

Overview of Smartphone Data Sources and the Behaviors They Measure 

 
Behaviors 

 

Data Source 

Physical 

Movement 

Social 

Interactions 

Daily 

Activities References 

   Accelerometer    

Tseng et al. (2016); Abdullah, 

Matthews et al. (2016); Lu et al. 

(2010); Wang et al. (2014, 2015); 

Wang et al., (2016); Rabbi et al. (2011) 

   Bluetooth radio (BT)    Chen et al., (2014); Yan et al. (2013) 

   Global-positioning 

   system scans (GPS) 
   

Tseng et al. (2016); Abdullah, 

Matthews et al. (2016); Canzian et al. 

(2015); Lu et al. (2010); Saeb et al. 

(2015); Wang et al. (2014, 2015); 

Wang et al., 2016) 

   Light sensor    
Tseng et al. (2016); Abdullah, 

Matthews et al. (2016); Wang et al. 

(2014, 2015); Wang et al., (2016) 

   Microphone    

Tseng et al. (2016); Abdullah, 

Matthews et al. (2016); Lu et al. (2009, 

2010, 2012); Wang et al. (2014, 2015); 

Wang et al., 2016); Rabbi et al. (2011) 

   WiFi scans    Abdullah, Matthews et al. (2016) 

   Cameras    Werner et al. (2011) 

   Phone use logs    

Tseng et al. (2016); Abdullah, 

Matthews et al. (2016); Murnane et al. 

(2015, 2016); Abdullah et al. (2014); 

Abdullah, Murnane et al. (2016); Saeb 

et al. (2015); Wang et al. (2014, 2015); 

Wang et al., (2016) 

   App use logs    

Ferdous, Osmani, & Mayora (2015); 

Murnane et al. (2015, 2016); Jones, 

Ferreira, Hosio, Goncalves, & 

Kostakos (2015); Wang et al. (2014, 

2015); Wang et al., (2016); Welke, 

Andone, Blaszkiewicz, & Markowetz 

(2016); Zhao et al. (2016) 

Note.  = data source can be used to collect the behavior,  = data source is not typically used to 

collect the behavior. 

Physical Movement: Activity and Mobility Patterns  
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 Many studies using SSMs focus on the assessment and prediction of human movement. 

The movement behaviors typically measured are physical activity and mobility patterns (see 

Table 2 for a summary of these behavioral features).  

Physical activity refers to behaviors that describe movement of the human body. Physical 

activity is primarily measured using accelerometer sensors. Accelerometers assess varying 

degrees of physical activity, from being sedentary to walking or running (e.g., Lane et al., 2010; 

Lu et al., 2009; Miluzzo et al., 2008). Such physical activity behaviors are inferred by applying 

classifiers to the data. The classifiers are developed based on a “training” dataset, which consists 

of accelerometer data that has been labeled to indicate when different activities occurred (e.g., 

stationary, walking, running). For example, a classifier would be trained to recognize the 

characteristic magnitude patterns in accelerometer data that are associated with being stationary 

(very low to no amplitude), walking (low amplitude), and running (high amplitude; Lu et al., 

2010). Training classifiers that robustly infer user behavior is challenging. For example, a 

classifier trained to identify cycling may have been trained on data collected while a phone was 

carried in a person’s pants pocket. However, if a person were to take a call while cycling and 

then transferred the phone to their backpack, the accuracy of detecting the cycling activity would 

decrease (Lu et al., 2010).  

Frequently, the physical activity inferences are aggregated to obtain the duration of time 

spent engaged in sedentary or moving behaviors in a given day. Longitudinal studies using SSMs 

to assess physical activity have examined patterns of change in activity among students during an 

academic semester (Harari et al., 2017), and during weekends, weekdays, and academic breaks 

(Tseng et al., 2016). Studies have also examined relationships between sensed physical activity 
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and well-being (Wang et al., 2014), happiness (Lathia et al., 2017), and academic performance 

outcomes (Wang et al., 2015). 

Mobility patterns refer to behaviors that describe trajectories of human travel. Mobility 

patterns are typically measured using accelerometers, GPS, and WiFi network data. For example, 

accelerometers can assess modes of transportation (e.g., bus, train, metro; Hemminki, Nurmi, & 

Tarkoma, 2013), and have been combined with GPS and other smartphone data (e.g., 

microphone, orientation) to infer other transportation (e.g., cycling, driving in a car, taking a bus 

or the subway; Mun et al., 2009) and pedestrian behaviors (e.g., crossing roads, waiting for 

traffic lights; Wang et al., 2016) when traveling to different locations. GPS data assesses how far 

a person travels (i.e., distance travelled in kilometers or miles), the locations visited in a given 

day (e.g., café, shopping mall, work place), and the routes taken (e.g., Biagioni & Krumm, 2013; 

Eagle & Pentland, 2009; Saeb et al., 2015, 2016). These GPS-based mobility behaviors are 

inferred by processing latitude and longitude coordinates into broader location clusters that 

capture the locations a person has been. GPS data can also be combined with other types of data 

(e.g., Wi-Fi scans, digital compass data) to capture information about the routes people take 

when traveling to different outdoor and indoor locations, such as the amount of time in transit 

between locations and travel patterns that assess a person’s location with room-level accuracy 

within a given building (Chon & Cha, 2011). Mobility patterns assessed using SSMs have been 

linked to mental health outcomes, such as depressive mood (Canzian & Musolesi, 2015; Chow et 

al., 2017; Saeb et al., 2015, 2016), positive and negative affect (Chow et al., 2017; Sandstrom et 

al., 2016), schizophrenic symptoms (Wang et al., 2016), and social rhythms in bipolar disorder 

(Abdullah et al., 2016).  
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Social Interactions: Face-to-Face Encounters and Computer-Mediated Communication 

 A second area of behavioral research using SSMs is focused on the assessment of social 

interactions. The social interactions measured are face-to-face encounters and computer-

mediated communications (see Table 2 for a summary of these behavioral features). 

Face-to-face encounters refer to social interactions carried out in-person without a 

mediating technology. Face-to-face encounters are typically measured using microphone sensors 

and Bluetooth data. Microphones assess whether a person is engaged in conversation, the 

frequency of conversations and their duration, the content of conversations, and turn-taking in 

conversations (e.g., Lu, Pan, Lane, Choudhury, & Campbell, 2009; Mehl et al., 2001; Miluzzo et 

al., 2008; Wang et al., 2014). In addition, microphones provide information about features of 

speech during in-person conversations such as a speaker’s voice pitch, voice frequencies, and 

speaking rates (Lu et al., 2012; Rachuri et al., 2010). These face-to-face encounters are inferred 

by applying classifiers to microphone data to identify when an in-person conversation occurs 

(e.g., instances when a person is around silence, noise, or other voices; Lu et al., 2009).  An 

example limitation of this approach is that conversation classifiers may have difficulty 

distinguishing in-person conversation from conversations occurring on a TV that is around the 

user. Bluetooth data assesses whether a person is physically isolated (or “co-present” with other 

people), the number of other co-present people, and the number of unique and repeated 

interaction partners (Chen et al. 2014; Wang et al., 2014). WiFi data has also been used to 

identify the size of co-present groups and the duration of such encounters (Vanderhulst et al., 

2015). One limitation of this approach is the possibility of under or over estimating the number 

of people around the user. Specifically, it can be difficult to identify how many other people a 

person is around vs. how many other devices the person is around. This presents a problem 
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because people may carry both a phone and laptop that transmit these signals, which could lead 

to over estimates. Longitudinal studies using SSMs to assess face-to-face encounters have 

examined change in students’ conversation patterns before and after their midterm exam period 

(Harari et al., 2017), and examined relationships between face-to-face encounters and well-being 

(Wang et al., 2014), academic performance (Wang et al., 2015), and symptoms of bipolar 

disorder (Abdullah et al., 2016) and schizophrenia (Wang et al., 2016).  

Computer-mediated communication refers to social interactions carried out through an 

electronic device. Computer-mediated communications are measured using data from 

smartphone application-use logs. Application use logs can assess the frequency and duration of 

incoming and outgoing calls, the frequency and content of text messages, and the number of 

unique and repeated interaction partners a person communicates with (e.g., Boase & Ling, 2013; 

Chittaranjan et al., 2011, 2013; Eagle & Pentland, 2006; Kobayashi et al., 2015). In addition, 

application use logs assess the frequency of using email and other communication applications 

(e.g., Facebook, Twitter) to interact with others (e.g., Mehrotra et al., 2017). Such 

communication measures have been used to understand people’s social, family, and work 

networks (Min et al., 2013), identify different types of smartphone users (Welke, Andone, 

Blaszkiewicz, & Markowetz, 2016; Zhao et al., 2016), predict personality traits (Chittaranjan et 

al., 2011; 2013), stress levels (Ferdous, Osmani, & Mayora, 2015), and sleeping patterns 

(Murnane et al., 2015). 

Other Daily Activities: Non-Mediated and Mediated Activities 

 A third area of behavioral research using SSMs is focused on the assessment of non-

mediated activities and mediated daily activities (see Table 2 for a summary of these behavioral 

features). Non-mediated activities refer to behaviors that people engage in on a day-to-day basis 
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that are not carried out through an electronic device (e.g., household chores, grooming 

behaviors). Non-mediated activities are typically measured using a combination of multiple types 

of sensor data, which are processed to infer an activity using classifiers or algorithms designed 

for the task. For example, accelerometers and microphone data can be combined to assess 

vacuuming, clapping, and taking out the trash (Lu et al., 2009) by training a classifier to 

recognize these activities based on characteristic patterns observed in example data obtained 

while performing the activity in question. Microphones can also assess health-related behaviors 

including respiratory symptoms (e.g., coughing, sneezing, throat clearing; Barata et al., 2016; 

Casaseca-de-la-Higuera et al., 2015; Sun et al., 2015), oral hygiene behaviors (e.g., brushing 

teeth; Korpela et al., 2015), and whether a person smokes (Jebara, 2014). Sleeping patterns can 

also be obtained from phone usage logs (Abdullah et al., 2014) and from combinations of several 

sensors (e.g., by integrating information from the phones to determine whether it is night time 

and the phone is charging, ambient light sensor to determine whether it is dark, accelerometer to 

determine if the phone is stationary, and microphone to determine if it quiet; Chen et al., 2013). 

Such sleeping pattern measures have been used to quantify circadian rhythms and disruptions 

(Abdullah et al., 2014), and predict next-day computer-mediated communication behaviors 

(Murnane et al., 2015). However, most of the research in this area to date has focused on the 

development of classifiers and algorithms needed to infer such behaviors, not on their 

relationship to other outcomes. 

Mediated activities refer to daily behaviors that are carried out through an electronic 

device. Mediated activities are measured using smartphone application use logs. For example, 

application use logs assess whether a person is using their smartphone for entertainment or 

productivity  (Abdullah et al., 2016; Murnane et al., 2016), or for listening to music, reading, or 
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playing (Mehrotra, Hendley, & Musolesi, 2016; Mehrotra et al., 2017). Application use patterns 

have been used to predict people’s moods (LiKamWa, Liu, Lane, & Zhong, 2013), depressive 

states (Mehrotra, Hendley, Musolesi, 2016), alertness (Abdullah et al., 2016), boredom (Pielot et 

al., 2015), and sleeping patterns (Abdullah et al., 2014).  

Conclusions  

Smartphones and their embedded mobile sensors hold much promise as assessment tools 

for measuring behavior in daily life. In particular, SSMs address limitations of survey-based 

approaches to behavioral measurement by permitting the naturalistic observation of daily 

behaviors (e.g., physical movement, social interactions, other activities). SSMs are promising for 

behavioral research because they can be used to obtain objective and automated measures of 

behavior, and allow researchers to recruit participants around the world. However, there are also 

some practical considerations to be kept in mind when designing a study that uses SSMs, such as 

decisions about the logistical setup and running of the study (e.g. duration, sampling rate, devices 

and application used, server setup, data management; see Harari et al., 2016 for a detailed 

discussion of such considerations). 

Limitations of SSMs in practice also include technical constraints (e.g. device capacities 

regarding battery, memory, or sampling frequency), data security issues (e.g. anonymization of 

personally identifying data), and privacy concerns (e.g. respecting participants’ privacy, 

institutional ethical standards, and laws). More generally, research is needed to identify the 

psychometric properties of sensor data (e.g., reliability, validity), develop additional automated 

behavioral classifiers (e.g., to predict complex behaviors like watching TV alone at home), and 

examine the relationships between sensed behaviors and consequential life outcomes (e.g., 

mental health, physical health, performance). As these methods become widespread in 
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behavioral research, attention should also be directed to exploring the ethical implications of 

sensor-based behavioral observation for people’s privacy and surveillance concerns. Finally, 

many of the existing SSM studies built proof-of-concept systems that are not designed to scale or 

be used by other researchers. In the coming years, we expect reliable SSM systems will be 

developed that alleviate the practical challenges facing researchers interested in SSMs for the 

study of behavior in daily life. 
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Table 2 

Summary of Behavioral Features used to Measure Physical Movement, Social Interactions, and Daily Activities 

Physical Movement Social Interactions Daily Activities 

Features References Features References Features References 

Physical Activity 

Sedentariness 

Movement  

Acceleration 

Standing  

Walking 

Running 

Step counts 

Climbing stairs 

Lane et al., 2010; 

Miluzzo et al., 

2008; Tseng et al., 

2016; Wang et al., 

2014 

Face-to-face Encounters 

Number of conversations 

Duration of conversations 

Content of conversations 

Turn-taking in conversations 

Speaking rates 

Speaker’s voice pitch 

Voice frequencies 

 Co-presence with others 

Size of co-present groups 

Duration of co-presence 

Number of unique and 

repeated interaction partners 

Chen et al. 2014; 

Lu, Pan, Lane, 

Choudhury, & 

Campbell, 2009; 

Lu et al., 2012; 

Mehl et al., 2001; 

Miluzzo et al., 

2008; Rachuri et 

al., 2010; Wang 

et al., 2014 

 

Non-Mediated Activities 

Vacuuming 

Taking out the trash 

Clapping 

Coughing 

Sneezing 

Throat clearing 

Brushing teeth 

Internal time (inferred 

chronotype using sleep 

tracking) 

Total sleep duration 

Wake times and bed times  

Sleep debt 

Abdullah et 

al., 2016; 

Barata et al., 

2016; 

Casaseca-de-

la-Higuera et 

al., 2015; 

Korpela et al., 

2015; Lu et 

al., 2009; 

Murnane et 

al., 2015; 

2016; Sun et 

al., 2015;  

Mobility Patterns 

Distance travelled 

Radius of gyration  

Maximum distance travelled 

between two tracked points 

Standard deviation of 

displacements 

Max distance from home 

Number of different places 

visited 

Canzian et al., 

2015; Hemminki, 

Nurmi, & 

Tarkoma, 2013;  

Saeb et al., 2015; 

Wang et al., 2016 

Computer-Mediated 

Communication 

Number of mediated social 

interactions in a given day 

Maximum number of 

mediated social interactions 

in a given hour 

Number of hours between 

successive interactions 

Number of incoming and 

outgoing calls 

Chittaranjan et 

al., 2011, 2013; 

Eagle & Pentland, 

2006; Mehrotra et 

al., under review 

Mediated Activities 

Frequency of locking and 

unlocking phone 

Duration of phone usage 

sessions 

Total number of phone 

use sessions in a given 

hour 

Average time between 

consecutive phone use 

sessions 

Abdullah et 

al., 2016; 

Murnane et 

al., 2016; 

LiKamWa, 

Liu, Lane, & 

Zhong, 2013; 

Mehrotra, 

Hendley, 

Musolesi, 

2016 
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Number of significant 

places visited  

Duration of time spent at 

primary and secondary 

locations  

Locational Routine index 

Normalized entropy 

(mobility between favorite 

locations) 

Location variance 

Mode of transportation (bus, 

cycling, driving, bus, 

subway) 

Duration of calls 

Number of unique and 

repeated call interaction 

partners 

Number of incoming and 

outgoing text messages 

Length of text messages 

Number of unique and 

repeated text message 

interaction partners 

Frequency of using social 

media applications 

Frequency of short phone 

use sessions (under 30 

seconds) 

Number of unique 

applications used 

Switching between 

applications during use 

 

Note. The columns labelled “Features” list the behavioral information extracted from smartphone data to infer physical movement, 

social interactions, and other daily activities. The columns labelled “References” list example publications that describe how to 

compute the behavioral features. 
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