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Abstract 34 

Eye tracking (ET) studies are becoming increasingly popular due to rapid 35 

methodological and technological advances as well as the development of cost efficient 36 

and portable eye trackers. Although historically ET has been mostly employed in 37 

psychophysics or developmental cognition studies, there is also promising scope to use 38 

ET for movement disorders and measuring cognitive processes in neurodegeneration. 39 

Particularly, ET can be a powerful tool for cognitive and neuropsychological 40 

assessments of patients with pathologies affecting motor and verbal abilities, as tasks 41 

can be adapted without requiring motor (except eye movements) or verbal responses. In 42 

this review, we will examine the existing evidence of ET methods in neurodegenerative 43 

conditions and its potential clinical impact for cognitive assessment. We highlight that 44 

current evidence for ET is mostly focused on diagnostics of cognitive impairments in 45 

neurodegenerative disorders, where it is debatable whether it has any more sensitivity or 46 

specificity than existing cognitive assessments. By contrast, there is currently a lack of 47 

ET studies in more advanced disease stages, when patients’ motor and verbal functions 48 

can be significantly affected, and standard cognitive assessments are challenging or 49 

often not possible. We conclude that ET is a promising method not only for cognitive 50 

diagnostics but more importantly, for potential cognitive disease tracking in progressive 51 

neurodegenerative conditions.  52 

 53 

Key words: Eye tracking; Cognition; Neurodegeneration.  54 
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1. Introduction 55 

Eye tracking (ET) technology is becoming increasingly popular due to the 56 

development of precise, cost efficient, portable and user-friendly eye trackers that can 57 

be used in different settings, facilitating studies in several populations. Indeed, ET has 58 

been shown to be a feasible and valid method used to study cognition in infants (Wass 59 

& Smith, 2014; Boardman & Fletcher-Watson, 2017), healthy adults (Perrin et al., 60 

2017) and several clinical populations  (Bours et al., 2018; Li et al., 2016; García-61 

Blanco et al., 2017). 62 

In addition, ET emerges as a successful communication tool for subjects 63 

suffering from significant verbal and motor impairments. An ET-based communication 64 

system has been tested in Rett syndrome (Vessoyan et al., 2018) and advanced high-65 

tech eye tracking computer systems (ETCS) are already in use as communication tools 66 

in amyotrophic lateral sclerosis (ALS). ETCS are suggested to be highly effective for 67 

locked-in patients, improving their social integration, interaction and quality of life 68 

(Caligari et al., 2013; Spataro et al., 2014; Hwang et al., 2014; Linse et al., 2018).  69 

Eye movement is not a direct measure of brain function, however it has been 70 

suggested that it can provide additional details into the association between brain and 71 

behaviour, rendering reliable information about higher-order processes that can be 72 

measured by eye position, duration of fixations, pupil size and other measures assumed 73 

to reflect neural mechanisms of learning, memory, attention, as well as other cognitive 74 

functions (Borys & Plechawska-Wójcik, 2017; for reviews see Eckstein et al., 2017; 75 

Luna et al., 2008).  76 

It is not difficult to find studies on eye movements per se in most 77 

neurodegenerative conditions (Meyniel et al., 2005; Garbutt et al., 2008; Chau et al., 78 

2016; Kang et al., 2018), but studies on cognition (Table 1) are much rarer. In part, this 79 
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lack of ET-based cognitive studies is due to the potential presence of oculomotor 80 

dysfunctions in neurodegenerative conditions. These dysfunctions represent real 81 

challenges for ET studies and can act as confounds. However, metrics of oculomotor 82 

function have been shown to correlate with cognitive functions (Shaunak et al., 1995; 83 

Donaghy et al., 2009) and despite the important discussion on the potential presence of 84 

oculomotor abnormalities, this review will focus on the proposal that ET can still be a 85 

useful tool so long as patients show preserved gross oculomotor function, but it is 86 

currently an overlooked methodology to study cognition in neurodegenerative diseases. 87 

In the following sections, we provide a brief overview of ET measures and 88 

applications, and then we summarize some cognitive studies using ET in mild cognitive 89 

impairment (MCI), Alzheimer’s disease (AD), frontotemporal dementia (FTD), ALS 90 

and Parkinson’s disease (PD). The objective is not to extensively go through the 91 

findings, but to show that ET is an underestimated technology in the study of cognition 92 

(with particular emphasis placed on the study of episodic memory) in neurodegenerative 93 

conditions, when neuropsychological assessment is necessary but limited by motor or 94 

verbal impairments. We have searched Pubmed database for the terms “eye tracking” 95 

and “cognition” in association with “MCI”, “AD”, “FTD”, “ALS” and “PD” and 96 

focused on studies published in the past 20 years, although earlier studies are also 97 

mentioned. 98 

 99 

Table 1 – Overview of ET-based cognitive studies in neurodegenerative diseases in 100 

the past 20 years. 101 

Neurodegenerative 
disorder 

Cognitive processes Recent ET-based cognitive studies 

Mild cognitive 
impairment 

Memory Crutcher et al., 2009; Lagun et al., 2011; 
Zola et al., 2013; Kawagoe et al., 2017; 
Granholm et al., 2015. 

 Inhibitory control Hellmuth et al., 2012; Alichniewicz et al., 
2013. 
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Alzheimer´s disease Wayfinding Davis & Ohman, 2016. 

 Memory Dragan et al., 2017; Crutcher et al., 2009; 
Lagun et al., 2011; Crawford et al., 2013; 
Crawford & Higham, 2016; Crawford et 
al., 2017; Brandão et al., 2014; 
Whitehead et al., 2018. 

 Attention Crawford et al., 2015; Chau et al., 2015; 
Chau et al., 2016; Mapstone et al., 2001; 
Viskontas et al., 2011; Rösler et al., 2000. 

 Inhibitory control Hellmut et al., 2012. 

 Perception Shakespeare et al., 2015a; Shakespeare et 
al., 2015b; Boucart et al., 2014; Pavisic et 
al., 2017. 

 Auditory semantic 
processing 

Fletcher et al., 2015a; Fletcher et al., 
2015b; Fletcher et al., 2016. 

      

Frontotemporal 
dementia 

Auditory semantic 
processing 

Fletcher et al., 2015a; Fletcher et al., 
2015b; Fletcher et al., 2016. 

 Spatial anticipation Primativo et al., 2017. 

 Emotion recognition Hutchings et al., 2018. 

 Inhibitory control Hellmut et al., 2012. 

 Attention Viskontas et al., 2011. 

 Word comprehension Faria et al., 2018; Seckin et al., 2016. 

      

Amyotrophic lateral 
sclerosis 

Executive function Hicks et al., 2013; Proudfoot et al., 2016; 
Keller et al., 2017; Keller et al., 2016; 
Keller et al., 2015; Poletti et al., 2017a; 
Poletti et al., 2017b; Poletti et al., 2018.  

 Verbal fluency Cipresso et al., 2013. 

      

Parkinson´s disease Memory Crutcher et al., 2009;  Fukushima et al., 
2015.  

 Attention Wong et al., 2018; Norton et al., 2016 

 Inhibitory control Wang et al., 2016; Ranchet et al., 2017;  
Turner et al., 2017. 

 Language Lee & Hsieh, 2017; Hochstad et al.,  
2009. 

 102 

2. The oculomotor functions 103 

The eyes make different types of movements when we look at a target: saccades 104 

are meant to be rapid eye movements that entail amplitude and direction, aiming to 105 

reposition the eyes from one target to another after a fixation, when the eyes remain still 106 

for very short period (although not completely still due to nystagmus, drifts and 107 
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microsaccades - small movements often considered noise; Duchowski, 2017). Fixations 108 

are considered to be voluntary manifestation of attention and it is suggested that new 109 

information is only acquired in this phase, while saccades indicate a change in the focus 110 

and as such no information is obtained due to the rapid eye movement and consequent 111 

suppression of vision (Rayner, 2009; Duchowski, 2017). Pursuit occurs when the eyes 112 

follow a moving object or target. Vergence are movements to adjust or accommodate 113 

the eyes (specifically the fovea) to objects at different distances from the observer. 114 

Finally, vestibular movements serve as a compensation for head and body motion, to 115 

accommodate and keep the direction of the gaze (Rayner, 1998). To these movements 116 

we can add pupil dilation, a non-positional measure associated with adaptation. 117 

Saccadic movements and fixations are the most relevant measures used in ET studies, 118 

although pursuit and pupil dilation studies are often found (Gooding et al. 2000; Garbutt 119 

et al., 2008; Gerven et al., 2004). 120 

Different muscles, brain structures and pathways command these eye 121 

movements and detailed discussion of this is beyond the scope of this review (for 122 

information on the oculomotor neuroanatomy, we refer the readers to Duchowski, 123 

2017). For obvious reasons, the integrity of the oculomotor system will be critical for 124 

eye movement control. However, despite the possibility that oculomotor dysfunction 125 

can be problematic in neurodegenerative disorders, ET studies are not impracticable as 126 

will be demonstrated here. 127 

3. Eye tracking methodology 128 

Today´s most commonly used ET method is based on infra-red light to track 129 

corneal reflection and the centre of the pupil (Cornsweet & Crane, 1973; Guestrin and 130 

Eizenman, 2006). This method requires the head to be stable so eye’s position relative 131 
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to the head and point of regard (POR) coincide, however modern eye trackers present a 132 

very fast recovery rate in the case of head movement. 133 

Importantly, this system requires calibration, a procedure necessary to allow the 134 

eye tracker to calculate the POR. Experiments should be short in order to allow frequent 135 

calibration. Calibration issues are common for several reasons and may compromise the 136 

accuracy of the data recorded, often causing the exclusion of data or participants. Visual 137 

acuity is required, and the use of varifocal or contact lenses can possibly cause 138 

reflections and therefore interfere with data collection (although some modern eye 139 

trackers can capture signal in the presence of corrective lenses). Other issues include 140 

eyelid dysfunction and obstruction, which are frequent problems found in aging (Salvi 141 

et al., 2006; Hamedani, 2017). Long eyelashes may also interfere with the ability of the 142 

eye tracker to locate the corneal reflection (Duchowski, 2017).  143 

An additional source of methodological issues is related to the analysis of the 144 

data. Care must be taken to eliminate noise (usually eye instability and blinks), to 145 

choose the approach to consider detection of fixations or saccades (a threshold needs to 146 

be established), and null POR may be recorded for one eye but not the other (a common 147 

problem due to poor calibration). Even the amount of data recorded can be a challenge, 148 

especially if the experiment has a large number of participants and the sampling rate is 149 

high (which can be a problem even if the experiment is short). 150 

 151 

4. Eye tracking and cognition 152 

Different approaches can be adopted to study cognition with ET. Traditional 153 

tasks measuring oculomotor movements that act as proxy markers of cognitive 154 

performance (e.g. the antisaccade task explained on section 4.1), ET-based cognitive 155 

tasks (e.g. the TMT or d2 tests mentioned on section 6.4) and other cognitive tasks 156 
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specifically designed to measure particular cognitive functions  (e.g. relational memory 157 

and binding tasks mentioned on section 4.2) can provide additional insights in the study 158 

of cognition. In addition, ET has the potential to be used as a communication tool to 159 

collect answers (as shown in Figure 1). The idea behind it is that for patients presenting 160 

with prominent language and motor dysfunctions which prevent them from verbally 161 

answering or clicking at a computer mouse or any other button, instead the answer 162 

could be written on the computer screen and the patient would simply fixate the gaze on 163 

the chosen answer. Talk and colleagues (2017) have studied source memory by showing 164 

objects in different quadrants on the screen and participants were later requested to 165 

indicate if the object was previously seen and in what position, however the answers 166 

were given verbally. Such a task could be easily adapted to ET to facilitate testing of 167 

patients with language and motor difficulties. Development of tasks that use ET as a 168 

simple communication tool would not depend on fine oculomotor movements and 169 

would not require the precision of typical ET metrics. Patients’ responses would be 170 

indicated by fixations on the written answer on the screen, but the practical simplicity of 171 

implementing this idea remains unexplored. 172 

 173 

Figure 1 – Potential use of ET as a communication tool to assess memory. 174 

 175 
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ET used as a communication tool to study cognition: in this hypothetical memory test, a figure is shown 176 

and later the patient is requested to answer if the figure was previously shown or not. The answer is 177 

obtained by the patient fixating their gaze on the answer (i.e. “NEW” or “OLD” answer).  178 

 179 

4.1 Executive function 180 

The antisaccade task (Hallet, 1977) is a classic example of a task to assess 181 

frontal lobe dysfunctions. In this task, the subject is requested to supress saccades 182 

towards a specific target and instead to generate saccades in the opposite direction.  This 183 

task measures inhibition and can therefore provide information on executive 184 

functioning. In turn, in the prosaccade task, the subject is requested to generate a 185 

saccades towards the target (Hellmuth et al., 2012). 186 

Interestingly, recent studies have used ET to adapt traditional 187 

neuropsychological executive functioning tests like the Iowa Gambling Task (IGT), the 188 

Modified Card Sorting Test (MCST), d2 test and the Trail Making Test (TMT; Poletti et 189 

al., 2017; Hicks et al., 2013). These studies have found substantial correlation between 190 

the ET-based assessments and standard paper and pencil administration of these tests, 191 

thus confirming the ET validity and reliability in establishing performance on executive 192 

functions. Moreover, these studies represent an important step towards 193 

neuropsychological assessment of populations presenting with verbal and motor 194 

dysfunction that hinder the use of traditional paper and pencil tests. 195 

 196 

4.2  Memory 197 

Converging evidence suggests that eye movement behaviour reveals different 198 

mnemonic processes,  including before or even in the absence of conscious recollection 199 

(for a review see Hannula et al, 2010). Several studies in healthy and clinical 200 

populations, from infants to the aging population have attempted to study memory 201 

processes using ET (Kafkas & Montaldi, 2012; Nemeth et al., 2016; Oakes et al., 2013; 202 
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Richmond & Nelson, 2009). Particularly interesting is the use of ET to study memory in 203 

preverbal infants as behavioural reports cannot be obtained in this population. Likewise, 204 

in some neurodegenerative conditions as ALS or late stages of AD, when verbal reports 205 

may not prevail or be reliable, ET emerges as a powerful method to study memory 206 

without elaborated task instructions, complex decision-making requirements or verbal 207 

skills required from patients. 208 

The   visual paired comparison task (VPC) appears as a compelling option to test 209 

episodic memory as it is suggested to be specific for declarative memory and sensitive 210 

to hippocampal damage (Crutcher et al., 2009; Zola et al., 2013). The VPC task consists 211 

of the presentation of an object (or image) and after a delay, the object is presented 212 

again side-by-side with a new one and the amount of time the participant spends 213 

exploring each object is measured.  Depending on the test delay, the participant is 214 

expected to spend more time looking at the novel object, due to the novelty preference. 215 

This task has been successfully tested in primates (Zola et al., 2000), rodents (Clark et 216 

al., 2000), infants (Oakes & Kovack-Lesh, 2013), healthy older adults (Manns et al., 217 

2000) and clinical populations (Chau et al., 2015). Primates with lesions in the 218 

hippocampal area have shown important recognition impairment detected by the VPC 219 

task, and the impairment was in fact more robust than during a nonmatching to sample 220 

task (Zola et al., 2000). Similarly, rodents with either thermocoagulation or excitotoxic 221 

lesions in hippocampus or surrounding areas showed no preference for the novel object 222 

(Clark et al., 2000). The novelty preference (Snyder et al., 2008) is consistently 223 

observed in infants and the VPC task is widely used in this population (Fagan, 1990). 224 

Recently, the Fagan Test of Infant Intelligence (a VPC task) was adapted to ET and 225 

tested in HIV exposed children (Boivin et al., 2017).  In adults, both in healthy and 226 

clinical populations the VPC task was found to be a good measure of recognition 227 
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memory with the potential to predict normal adults who will convert to MCI and 228 

patients with MCI who will convert to AD (Crutcher et al., 2009; Lagun et al., 2011; 229 

Zola et al., 2013). Although this task only investigates the recognition aspect of 230 

memory, it opens a new perspective to study memory in clinical populations. 231 

Some ET-based studies have attempted to investigate memory differentiating 232 

recollection and familiarity processes which are known to be two different aspects of 233 

episodic memory recognition (for a review see Yonelinas, 2002). Studying eye 234 

movement behaviour in young adults during encoding, and using a remember/know 235 

adapted paradigm after having trained the participants to identify the strength of the 236 

memory, Kafkas and Montaldi (2011) have shown different patterns of fixations that 237 

could differentiate recognition based on recollection from those based on familiarity. 238 

The method used relied on the subjective experience of the participant regarding 239 

feelings of “I remember” or “I know”, but distinct patterns of fixations were shown for 240 

each process (recollection or familiarity) and the number of fixations at encoding were 241 

shown to be associated later with the strength of the memory. Similar findings were 242 

reported in an elegant study using ET and functional magnetic resonance imaging 243 

(fMRI; Kafkas & Montaldi, 2012). In this study, the authors not only reported distinct 244 

patterns of fixations but also showed brain activation in areas that support recollection 245 

and familiarity (notably hippocampus and perirhinal cortex, respectively, although a 246 

discussion on the roles of these regions is beyond the scope of this work. For a review 247 

see  Diana et al., 2007).  248 

Different eye movement patterns have also been related to hippocampal activity 249 

associated with memory, even without overt accurate decisions (Hannula & Ranganath, 250 

2010; Liu et al., 2018), and the area is also reported as necessary to generate relational 251 

binding eye-movement effects (for review see Pathman & Ghetti, 2016) ). In fact, 252 
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relational binding, a critical component of episodic memory has been investigated in a 253 

number of studies using a variety of materials such as faces and scenes, and such eye 254 

movements have been demonstrated to be influenced by memory (Ryan et al., 2000; 255 

Ryan et al., 2007a; Ryan et al., 2007b). Inhibition of irrelevant information and 256 

impaired binding are suggested to be problematic in normal aging and contribute to 257 

memory decline (Ryan et al., 2007b), but most neurodegenerative diseases have not 258 

been studied using these methods and the reliability and feasibility of the tasks used in 259 

those studies still need to be elucidated in neurodegeneration. Likewise, studies of  the 260 

recognition of facial emotion expression in patients with amygdala damage (Adolphs et 261 

al., 2005) and recognition of familiar faces in patients with prosopagnosia (Stephan & 262 

Caine, 2009) have been linked to atypical face scan patterns, but this area also remains 263 

unexplored in neurodegeneration. 264 

 Moreover, pupil dilation, an involuntary reaction, not only related to the 265 

dark/light response, but also associated with cognitive effort or arousal, has been 266 

demonstrated in memory studies and is suggested to be a reliable memory measure 267 

(Irwin, Lippa, & Swearer, 2007; Võ et al., 2008; Goldinger & Papesh, 2014). Increases 268 

in pupil size are detected when the participant recognizes an object previously shown 269 

and these increases are suggested to be correlated with the strength of the memory 270 

(Kafkas et al., 2011). However, although experiments measuring pupil size require 271 

controlled conditions of light and the exclusion of certain medications (we refer the 272 

most curious readers to the works of Aston-jones & Cohen, 2005 and Usher et al., 273 

1999), it appears to be  an effective option to study memory (Papesh et al., 2012; 274 

Kucewicz et al., 2018).  275 

 276 

4.3  Language and social cognition 277 
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Recently, Poletti and colleagues (2017) have developed an ET-based version of 278 

the Token Test and the Reading the Mind in the Eyes Test. In their study, they observed 279 

significant correlations between the ET-based tests and the paper and pencil screening 280 

tests used: The Frontal Assessment Battery (FAB) and the Montreal Cognitive 281 

Assessment (MoCA). In addition, they investigated the usability of the method and 282 

found that the level of motivation of the subject could influence their performance while 283 

using a new technology. Although only tested in healthy participants and with 284 

questionable construct validity as both FAB and MoCA are bedside screening tests, the 285 

study represents an important step towards the development of a cognitive assessment 286 

battery that is not dependent on speech and motor function, which could be potentially 287 

used in several pathological conditions suffering from verbal or motor difficulties.   288 

 289 

4.4  Spatial navigation 290 

How people interact with the surrounding environment, and how they explore, 291 

interpret and make decisions regarding spatial navigation has long been studied using 292 

ET. Analyses of pupil size have been used to study navigation strategies as well as 293 

measures of fixations and gaze position, providing information about the allocation of 294 

perceptual attention and integration of information (Condappa & Wiener, 2014; Mueller 295 

et al., 2008; for a review see Kiefer et al., 2017). Interestingly, in the past, research was 296 

restricted to laboratories, but recent technologies provide now the possibility to study 297 

spatial navigation in real situations and in real time (Kiefer et al., 2014; Wenczel et 298 

al.,2017). 299 

5. Eye movement control in neurodegenerative disorders 300 

Abnormal oculomotor findings are frequent in neurodegenerative conditions as 301 

eye movement control depends on extensive brain structures and networks that are 302 
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frequently damaged during the course of the diseases (for reviews see Antoniades & 303 

Kennard, 2014; Gorges et al., 2014). Oculomotor dysfunction may be present from 304 

early disease stages as it is known to happen in PD (for a review see Gorges et al., 305 

2014), or may appear in late disease stages as it is traditionally regarded in ALS, 306 

although some studies show ALS can have impairments of eye movements from 307 

relatively early stages (Kang et al., 2018; for a review see Sharma et al., 2011). 308 

Importantly, eye movement disorders are suggested to be effective to track disease 309 

severity and progression in AD (Anderson & MacAskill, 2013; for a review see Pereira 310 

et al., 2014) and in movement disorders (for a review see Gorges et al., 2014).  311 

 312 

6. ET-based cognitive studies in neurodegeneration 313 

6.1 Mild cognitive impairment  314 

MCI is characterised by a cognitive decline that is not expected for the patient´s 315 

age, and episodic memory is particularly affected, while everyday functional abilities 316 

usually remain intact (for review see Portet et al., 2006). Although the cognitive decline 317 

is not great enough to meet diagnostic criteria for frank dementia, MCI patients are at an 318 

increased risk of developing dementia in the near future (Vega & Newhouse, 2014). 319 

Crutcher and colleagues (2009) studied memory in MCI patients using a VPC task. 320 

Patients performed worse on the VPC task compared with healthy controls and PD 321 

patients when the delay was increased. Interestingly, one MCI patient without 322 

significant brain or hippocampal changes in magnetic resonance imaging (MRI), 323 

showed low performance on the VPC task (characterising memory impairment), and the 324 

authors suggested that impairments in this task may be detectable before macroscopic 325 

structural damage to the hippocampus are apparent. However, this patient also showed 326 

signs of white matter changes that could explain the low performance on the test. The 327 

task has also been suggested by the authors to have some predictive power to show 328 
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which MCI patients will convert to AD (Zola et al., 2013). Further, impairments of 329 

inhibitory control were found in MCI patients performing an anti-sasccade task 330 

combined with fMRI (Alichniewicz et al., 2013). 331 

 332 

6.2 Alzheimer´s disease  333 

The most prevalent cause of dementia, AD is known to affect different cognitive 334 

processes, with significant episodic memory dysfunction from the early stages of the 335 

disease, but also with impairments in semantic knowledge, language and visuospatial 336 

abilities as well as executive dysfunctions (Bondi et al., 2017). Lagun and colleagues 337 

(2011) have used a VPC task combined with classification algorithms and machine 338 

learning methods to successfully distinguish between healthy participants, MCI and AD 339 

patients. Although the VPC task is suggested to be sensitive to hippocampal impairment 340 

(Manns et al., 2000), it is still underused in AD.  Pupil changes have been measured in 341 

AD in relation to light stimulus (Fotiou et al., 2009; Fotiou et al., 2007; Fotiou et al., 342 

2015) or to evaluate cholinergic deficits (Frost et al., 2017; Fotiou et al., 2009), but few 343 

studies have examined it in relation to memory (Dragan et al., 2017). Though evaluating 344 

episodic memory by the pupil size effect (Võ et al,  2008) is a method shown to be 345 

effective (Kucewicz et al., 2018; Naber & Marburg, 2018; for review see Goldinger & 346 

Papesh, 2014), it is also underexplored in AD. This method can be used when task 347 

comprehension or verbal response is impaired, which could be useful to study AD in 348 

later stages.  349 

Spatial disorientation is another important feature in AD (for a review see 350 

Coughlan et al., 2018) and ET-based spatial navigation research is well stablished (for a 351 

review see Kiefer et al., 2017). Wayfinding in AD has been investigated by Davis & 352 

Ohman (2016), but although modern eye trackers allow participants to walk or perform 353 
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other tasks during the experiment, making ET a powerful tool to study spatial 354 

navigation, the area remains virtually unexplored in AD.  355 

Attentional processes and working memory have been studied mostly using the 356 

prosaccade and antisaccade task (Crawford et al., 2015; Crawford et al., 2013; Crawford 357 

et al., 2017; Crawford & Higham, 2016), but also a variety of other tasks have been 358 

used (Brandão et al., 2014; Chau et al., 2015; Chau et al., 2016; Mapstone et al., 2001; 359 

Viskontas et al., 2011; Rösler et al., 2000), including reading (Fernández et al., 2016) 360 

and finding objects in a natural scene (Dragan et al., 2017). Given the several different 361 

cognitive domains affected in AD, ET is potentially a useful tool to further investigate 362 

cognition rather than relying only on classic paper and pencil tests. 363 

 364 

6.3 Frontotemporal dementia 365 

FTD is the general name given to a type of dementia known to affect 366 

predominantly the frontal and temporal lobes. The most common form of FTD is known 367 

as behavioural FTD (bvFTD), but FTD also includes three language variants - the 368 

primary progressive aphasias (PPA): semantic variant (svPPA), agramatic/nonfluent 369 

variant (anvPPA) and logopenic variant (lvPPA; Bonner & Grossman, 2011; for a 370 

review see Hodges & Piguet, 2018). Interestingly, based on the Brixton spatial 371 

anticipation test, Primativo and colleagues (2017) developed an ET-based spatial 372 

anticipation test and assessed bvFTD and svPPA patients. They found higher rates of 373 

impairment in bvFTD compared with healthy controls and svPPA patients, confirming 374 

previous results of spatial anticipation impairment in bvFTD, including those which 375 

used an antisaccade task (Burrell et al., 2012; Hornberger et al., 2011). Pupil responses 376 

were evaluated in a series of studies investigating auditory stimulus, comparing bvFTD, 377 

svPPA, anvPPA, AD and healthy controls (Fletcher et al., 2015a; Fletcher et al., 2015b; 378 

Fletcher et al., 2016). These studies demonstrated the utility of ET in the dementias to 379 
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study autonomic and behavioural responses to stimulus when language is impaired. 380 

Regarding language processing in the FTD language variants, two elegant studies show 381 

that ET is an interesting option showing superiority in demonstrating impairments over 382 

traditional tests, including distinguishing between the language variants (Seckin et al., 383 

2016; Faria et al., 2018). 384 

 385 

6.4 Amyotrophic lateral sclerosis 386 

ALS is a fatal disease of motor neurons, but a proportion of patients also present 387 

a variety of behavioural and cognitive changes (Strong et al., 2017), even when not 388 

meeting criteria for diagnosis of FTD (for reviews see Kiernan et al., 2011; Goldstein & 389 

Abrahams, 2013). However, studying cognition in ALS can be a challenge as the 390 

disease progresses and the patient’s language and motor functions become severely 391 

impaired. 392 

Particularly in ALS, ET methods have recently been applied with a different 393 

perspective, making it potentially possible to communicate with patients for 394 

neuropsychological assessment. In addition to the TMT study adapted by Hicks and 395 

colleagues (2013), another TMT study assessed executive functions and visual search in 396 

ALS patients (Proudfoot et al., 2016), who showed an impairment on the tasks, and 397 

interestingly the authors used the ET to show that there was no progression detected 398 

longitudinally. Moreover, this study shows that the stability of oculomotor function over 399 

time in ALS may accredit the usability of ET as a potential tool to study cognition 400 

longitudinally in this population as they get severely impaired physically with disease 401 

progression.  402 

Antisaccade tasks combined with fMRI have also been performed and the results 403 

suggested deficits of executive functioning (Witiuk et al, 2014). The Raven’s Coloured 404 

Progressive Matrices and the d2-test were also recently adapted to ET (Keller et al., 405 
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2015; Keller et al., 2016) and the ET-based versions of the tests showed reliability in 406 

distinguishing the patients who were more or less impaired. The widely used cognitive 407 

screening battery for ALS, the Edinburgh Cognitive and Behavioural ALS Screen 408 

(ECAS; Abrahams et al., 2014) also gained an ET version reliably able to distinguish 409 

impaired from non-impaired patients with high specificity (Keller et al., 2017).  The 410 

Phonemic and Semantic Verbal Fluency Test was tested in another feasibility study and 411 

the authors provided evidence of the effectiveness and usability of the method (Cipresso 412 

et al., 2013). Finally, an ET-based version of the Arrows and Colours Cognitive Test 413 

was recently developed and reported to be a potential tool to test cognitive flexibility, 414 

overcoming verbal and motor impairments present in ALS patients  (Poletti et al., 415 

2018). It is evident that recently great effort has been made to adapt traditional tests to 416 

ET, aiming to overcome verbal and motor impairments in ALS, however, despite the 417 

successful studies, several cognitive domains remain unexplored. 418 

 419 

6.5 Parkinson’s disease 420 

Parkinson’s disease (PD) is a progressive neurodegenerative condition affecting 421 

the basal ganglia, therefore presenting predominantly motor symptoms; however 422 

considerable cognitive impairments can also be present from early disease stages (for a 423 

review see Dubois & Pillon, 1997). As in other neurodegenerative diseases, ET-based 424 

cognitive studies are overlooked in PD, with few cognitive domains being explored 425 

using these methods. In the memory domain, smooth pursuit has been explored as well 426 

as saccades and fixations, showing impairments in different levels (Crutcher et al., 427 

2009; Fukushima et al., 2015; Fukushima et al., 2017; Wong et al., 2018). Executive 428 

functions such as attention (Norton et al., 2016) and inhibitory control (Wang et al., 429 

2016; Ranchet et al., 2017; Turner et al., 2017) were studied using measures including 430 

pupil response, fixations and saccades and using different tasks such as the prosaccade 431 
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and antisaccade tasks, as well as object tracking. These studies report impairments in 432 

PD associated with cognitive workload (Ranchet et al., 2017) and suggest that they are 433 

independent from oculomotor processing (Norton et al., 2016). Language planning and 434 

comprehension (Lee, 2017; Hochstadt, 2009) have also been assessed using ET in PD. 435 

Although some ET-based studies in PD can be found, Wong and colleagues (2018) 436 

nicely state that cognitive assessments in PD patients are often limited by their motor 437 

conditions, and as such a methodology like ET to study cognition in these cases is 438 

proven to be highly convenient. ET clearly shows the potential to study cognition 439 

longitudinally and further studies are warranted to elucidate disease progression in 440 

terms of cognitive aspects. 441 

7. Methodological challenges for ET use in neurodegeneration 442 

Notably, ET measures can offer additional information to complement and refine 443 

the study of cognition in neurodegeneration, though several challenges need to be 444 

addressed. Attentional dysfunction present in many neurodegenerative conditions may 445 

interfere with oculomotor control (Scinto, et al., 1994). Further, patients may require to 446 

be prompted as reported in the study of Proudfoot and colleagues (2016). Some drugs 447 

used to treat neurodegeneration patients  are known to affect the oculomotor function 448 

and can potentially interfere with the results (e.g. dopaminergic medication; Pinkhardt 449 

et al., 2012). Given considerable changes in eye movement latencies and other 450 

oculomotor dysfunctions, adaptation for stimulus presentation as well as for data 451 

analyses may also be considered, especially for patients in advanced disease stages. ET 452 

requires relatively stable head/eye position in order to sample data accurately, which 453 

might not be always possible even when using a chinrest, depending on the patients’ 454 

physical and/or psychological conditions. Although some modern eye trackers allow 455 

head movement and present a fast recovery rate, some data loss should be expected. 456 
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Lastly, the use of eyeglasses or contact lens is common in the aging population, so 457 

despite the relative simplicity of modern eye trackers, system calibration issues should 458 

be expected. 459 

8. Concluding remarks 460 

Despite confounding issues and difficulties from data acquisition to data 461 

analysis, the above reported studies show that ET opens a window to the study of 462 

cognition in neurodegeneration and presents areas that remain unexplored. In this 463 

review, we demonstrate the current evidence of ET´s advantages to assess cognitive 464 

functions in neurodegenerative conditions despite there being currently relatively few 465 

ET-based studies on cognition, either using oculomotor-based metrics or cognitive 466 

tasks. Notably, different eye measures can be obtained simultaneously in the same 467 

session and will offer different information for specific processes, providing 468 

complementary information in low cost experiments, compared with other techniques 469 

(e.g. fMRI).  470 

Eye movements provide valid measures of cognition, but few studies to date 471 

have explored ET as a communication tool to assess cognitive processes in 472 

neurodegeneration. This potential use of ET does not require precise oculomotor 473 

function and could be explored to establish the feasibility and reliability of ET to study 474 

cognition in neurodegenerative conditions.  475 

Despite efforts that have been made to adapt some executive functioning tests to 476 

ET, a variety of other cognitive domains and traditional neuropsychological batteries 477 

still need to be adapted and standardized, and their use in contexts where traditional 478 

tests are prevented due to verbal and motor impairments is yet to attract attention from 479 

researchers and clinicians. A complete battery of ET-based neuropsychological 480 

assessments would be highly convenient for patients, researchers and healthcare 481 
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professionals to reduce linguistic and motor demands on the patients or to overcome 482 

severe language and motor dysfunctions.  483 

Of note is that virtually all of the presented studies were conducted in early 484 

disease stage patients, while none have used ET in more advanced disease stages. 485 

Cognitive testing in advanced neurodegenerative patients is problematic, but ET can 486 

potentially overcome verbal and motor limitations, emerging as a potential tool to 487 

investigate cognition in advanced conditions, facilitating longitudinal disease tracking 488 

studies. There would be clearly a benefit to assess more advanced patients, not only in 489 

terms of research and better understanding of the pathophysiology of the conditions 490 

here discussed, but also for decisions on treatment and intervention plans. Although 491 

there are currently no disease-modifying therapies for these neurodegenerative 492 

conditions, understanding disease processes in later stages and how they might impact 493 

the patient´s well-being is critical to assist patients in their needs, offer appropriate 494 

support whenever possible and to develop novel supportive end of life care.   Despite 495 

some studies showing the potential of ET to investigate cognition in neurodegeneration, 496 

this area needs to be further explored to establish how feasible and reliable is the use of 497 

ET in advanced neurodegeneration stages, despite oculomotor dysfunction which may 498 

be present in some conditions in late disease stages.  499 

ET emerges as a useful and exciting tool to screen for and measure cognitive 500 

abnormalities, and to track disease severity and progression. The standardization of ET-501 

based tests can potentially reduce variability and inconsistency of results, benefiting 502 

researchers, healthcare professionals and patients, and specially offering the possibility 503 

of testing cognition longitudinally or in later disease stages, when patients can be 504 

severely compromised in verbal and motor functions. 505 

 506 
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Highlights 

 

• Neuropsychological assessments via eye tracking can potentially overcome 

verbal and motor dysfunctions present in neurodegenerative conditions. 

• Eye tracking can be used for cognitive diagnostics, but also for potentially 

tracking cognitive dysfunction in progressive neurodegenerative conditions. 

• Eye tracking may serve as a tool to investigate cognition in later stages of 

neurodegenerative diseases. 
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