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Structured abstract 88 

Background:  Screening for renal cell carcinoma (RCC) has been identified as a key research 89 

priority; however, no randomised control trials have been performed. Value of information 90 

analysis can determine whether further research on this topic is of value. 91 

 92 

Objectives: To determine (a) whether current evidence suggests screening is potentially 93 

cost-effective. If so, (b) in which age/sex groups, (c) identify evidence gaps and (d) estimate 94 

the value of further research to close those gaps.  95 

 96 

Design, Setting, Participants: A decision model was developed evaluating screening in 97 

asymptomatic individuals in the UK. A National Health Service perspective was adopted. 98 

 99 

Intervention: A single focused renal ultrasound scan compared with standard of care (no 100 

screening). 101 

 102 

Outcome measures: Expected lifetime costs, quality adjusted life years (QALYs) and 103 

incremental cost-effectiveness ratio (ICER), discounted at 3.5%/annum. 104 

 105 

Results: Given a prevalence of RCC of 0.34% (0.18-0.54%), screening 60 year-old men 106 

resulted in an ICER of £18,092/QALY[€22,843/QALY]. Given a prevalence of RCC of 0.16% 107 

(0.08-0.25%), screening 60-year-old women resulted in an ICER of 108 

£37,327/QALY[€47,129/QALY]. In the one-way sensitivity analysis, the ICER was 109 

<£30,000/QALY so long as the prevalence of RCC was 0.25% for men and 0.2% for women 110 
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at age 60 years. Given a willingness to pay threshold of £30,000/QALY[€37,878/QALY], the 111 

population expected value of perfect information was £194 million[€244 million] 112 

and £97 million[€123 million] for 60-year-old men and women respectively. The expected 113 

value of perfect parameter information suggests the prevalence of RCC and stage shift 114 

associated with screening are key research priorities. 115 

 116 

Conclusion: Current evidence suggests one-off screening of 60-year old men is potentially 117 

cost-effective and that further research into this topic would be of value to society. 118 

 119 

Patient Summary: Economic modelling suggests that screening 60-year-old men for kidney 120 

cancer using ultrasound may be a good use of resources and that further research on this 121 

topic should be performed.  122 

 123 

 124 

Word count: 300/300 125 

 126 

127 
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Introduction 128 

Cost-effectiveness analyses (CEA) are classically performed to aid decisions regarding the 129 

value of implementing new interventions into a health service. More recently, value of 130 

information analyses (VOI) of screening interventions have been undertaken using the 131 

currently available evidence, prior to a large trial being undertaken, aiming to determine the 132 

value of investing future funds into further research[1]. Indeed, VOI has been used to 133 

examine uncertainty surrounding the optimal screening strategy for colorectal cancer and 134 

therefore prioritise future research efforts[2].  135 

 136 

Screening for renal cell carcinoma (RCC) has repeatedly been identified as a research 137 

priority[3-6]. Over a quarter of individuals diagnosed with RCC have metastases at 138 

presentation. Five-year age standardized relative survival for these individuals is 6% 139 

compared to 84% for those with stage I disease[7]. Ultrasound has been proposed as a 140 

screening tool, as it is well tolerated, inexpensive and widely available[8]. National 141 

abdominal aortic aneurysm (AAA) screening programs for 65-year-old men are established 142 

in the UK and Sweden and have demonstrated that an ultrasound-based screening program 143 

can be delivered in the community by trained technicians[9, 10]. Observational studies 144 

evaluating screening for RCC using ultrasound have been conducted. However, none were 145 

randomised, and all were published more than a decade ago[11-18]. Due to the relatively 146 

low prevalence of RCC in unselected asymptomatic individuals, a randomised controlled trial 147 

(RCT) sufficiently powered to detect an impact on survival would need to recruit hundreds 148 

of thousands of participants[11]. Therefore, we perform a decision analysis synthesizing the 149 
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currently available evidence, with the aim of determining the value of performing further 150 

research into this topic.  151 

 152 

153 
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Methods 154 

Scope of the decision model 155 

 156 

A cohort simulation model was developed adopting a UK National Health Service 157 

perspective, consistent with Consolidated Health Economic Evaluation Reporting Standards 158 

(Supplement)[19, 20]. The model compares screening (intervention) versus the standard of 159 

care (no screening) in asymptomatic individuals from the general population. Screening 160 

consists of a single focused renal ultrasound, delivered by technicians in the community, 161 

similar to AAA screening[21]. If the ultrasound is reported as normal or as a simple cyst, the 162 

patient is discharged. Any other abnormality is investigated with an outpatient urology clinic 163 

± CT as appropriate (Supplemental Figure 1). The primary outcomes are the incremental 164 

costs (2016 £GBP), incremental quality adjusted life years (QALYs) and incremental cost-165 

effectiveness ratio (ICER) comparing one-off screening with no screening. The ICER was 166 

defined as the mean incremental costs divided by the mean incremental QALYs. A cycle 167 

length of one year and a lifetime time horizon were adopted. Costs and QALYs were 168 

discounted at 3.5%/annum. The UK willingness to pay threshold of £20,000-£30,000/QALY 169 

gained [€25,252-€37,878/QALY] was used; therefore, an ICER>£30,000 was considered not 170 

to be cost-effective [19, 20].  171 

 172 

Model structure 173 

 174 

The model, which consisted of a decision tree with Markov models at each terminal node, 175 

was developed in Microsoft Excel (2016). The decision tree demonstrates the disease status 176 

(i.e. RCC, no RCC, benign incidental finding) and the test result (true positive/negative, false 177 
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positive/negative). Figure 1 represents a simplified schematic of the Markov models 178 

(Supplemental Figures 2-7). 179 

 180 

Model inputs 181 

 182 

Model inputs were derived through comprehensive literature reviews and where no data 183 

were available, through structured expert elicitation (Table 1) [8, 11, 22, 23].  Further details 184 

are available in the Supplemental Methods. 185 

A meta-analysis demonstrated that the pooled prevalence of RCC detected by ultrasound 186 

was more than twice as high in studies from Europe and North America compared to Asia 187 

(0.17% (0.09-0.27%) vs 0.06 (0.03-0.09%)) (n=29,938)[11]. Only one study, by Mihara et al., 188 

reported the prevalence of RCC by age and sex, which screened Japanese individuals from 189 

1983 to 1996 (overall prevalence of RCC: 0.09%)[14]. Although the study by Mihara et al. 190 

underestimates the true prevalence of RCC in a contemporary Western population, the 191 

relative prevalence by age and sex is likely to still be relevant[11, 14, 24]. Therefore, to 192 

derive likely prevalence rates in the UK by age and sex, the prevalence reported by Mihara 193 

et al. was used along with the results of the meta-analysis applied to the UK population 194 

reported by the Office for National Statistics (Table 1)[25]. 195 

 196 

The cost of AAA screening ultrasound in the UK is £37.53 [€47] [21]. In the base case, it was 197 

assumed screening renal ultrasound would have the same cost (Table 1). If ultrasound were 198 

to be performed by sonographers in secondary care, then it would be priced at £55 (IQR 199 

£38-£63) [€69], therefore this was evaluated in the sensitivity analysis[26]. 200 
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 201 

No studies have evaluated the impact of screening for RCC on quality of life (QoL)[22]. 202 

Ultrasound screening for AAA and ovarian cancer was not associated with a disutility[27-31]. 203 

Therefore, ultrasound screening for RCC was assigned a disutility of 0 and this assumption 204 

was tested in the sensitivity analysis. 205 

 206 

Model analysis 207 

 208 

The decision model was run with 3000 Monte Carlo simulations as this achieved stability of 209 

results, defined as a coefficient of variation <2% for the SE of the incremental net monetary 210 

benefit[32]. In brief, this means a set of inputs was sampled from the respective 211 

distributions, the model calculated and repeated 3000 times to generate an empirical 212 

estimate of the uncertainty in cost-effectiveness. The ICER was evaluated for males and 213 

females aged 40, 50 and 60 years as estimates for prevalence of RCC were available for 214 

these groups based on the study by Mihara et al[14]. The population in whom screening is 215 

most cost-effective was determined from this and used as the base case for all subsequent 216 

analyses.  217 

 218 

The expected value of perfect information (EVPI) and perfect parameter information (EVPPI) 219 

were determined. The EVPI summarises the value of eliminating all parameter uncertainty 220 

(i.e. perfect information), whereas the EVPPI summarises the value of eliminating individual 221 

parameter uncertainty[33, 34]. Thus, the EVPI provides an upper limit for all future research 222 

expenditure regarding the decision problem. The EVPPI determines the value of eliminating 223 

uncertainty in a parameter (or group of parameters), and so can be used to guide research 224 
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priorities[34]. The population VOI statistics were based on the number individuals eligible 225 

for screening[35]. The EVPPI was determined by running the simulation 1000 times for the 226 

inner loop and 2000 times for the outer loop. An approximation of the impact of screening 227 

was obtained by multiplying the incremental cost and QALYs of screening (per patient) by 228 

the number of individuals eligible for screening.  229 

 230 

231 
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Results 232 

Determining the most cost-effective screening population 233 

 234 

The point estimate ICER is <£30,000/QALY for 50-year-old men and <£20,000/QALY for 60-235 

year-old men (Table 2). The ICER is >£30,000/QALY for women of all ages, however the most 236 

favourable ICER is observed for 60-year-old women. Therefore, age 60 years (males and 237 

females) was chosen as the base case for all subsequent analyses.  238 

 239 

Analysis of uncertainty 240 

 241 

For 60-year-old males, there is a 62% probability that the ICER is <£20,000/QALY and a 66% 242 

probability that the ICER is <£30,000/QALY. For 60-year-old females, there is a 44% 243 

probability that the ICER is <£20,000/QALY and a 56% probability that the ICER is 244 

<£30,000/QALY (Supplemental Figure 8). 245 

 246 

Sensitivity analyses 247 

 248 

Cost-effectiveness improves as the prevalence increases and the cost of ultrasound 249 

decreases (Table 3). Using £37[€47] as the cost of ultrasound, the ICER remains 250 

<£30,000/QALY so long as the prevalence of RCC is ≥0.25% for men and ≥0.2% for women 251 

aged 60 years. Using our current estimates for the prevalence of RCC for 60-year-old 252 

women, the ICER is <£30,000/QALY if the cost of screening ultrasound was reduced from 253 

£37 to £30[€47 to €38].  254 
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For 60-year-old males, the ICER remains <£30,000/QALY so long as the disutility associated 255 

with screening is 0.05 for one week (Supplemental Table 6). The ICER is <£30,000/QALY, if 256 

the specificity of ultrasound is ≥85% (Supplemental Table 7). Furthermore, in the base case, 257 

it was assumed that the combined prevalence of incidental benign conditions detected by 258 

screening would be 2.7%[11, 17, 18]. The sensitivity analysis demonstrated that in 60-year-259 

old men, the ICER remains <£30,000/QALY so long as the combined prevalence of other 260 

incidentally detected renal conditions is 20% (Supplemental Table 8). Sensitivity analyses 261 

for 60-year-old females are available in Supplemental Tables 6-8. 262 

 263 

Value of information analysis 264 

 265 

The number of individuals aged 60 years eligible to receive screening in the UK is 362,766 266 

men/annum and 374,008 women/annum. Assuming a time horizon for which additional 267 

information is useful of ten years, this equates to a population that may benefit from 268 

screening of 3,122,576 men and 3,219,344 women (discounted at 3.5%)[36]. Given a 269 

willingness to pay threshold of £30,000/QALY, the population EVPI is £244,415,131 270 

[€209,133,931] and £97,263,108 [€122,804,400] for 60-year-old males and females 271 

respectively (Supplemental Figure 9). The three parameters with the highest population 272 

EVPPI are the prevalence of RCC, the stage distribution of screen detected disease and the 273 

stage distribution of false negatives at screening (Figure 2). 274 

 275 

 276 

 277 



 

 

15 

 

Impact on health services 278 

 279 

Compared with no screening, screening 60-year-old males results in an overall expected 280 

incremental cost per patient of £44.55 (cost of screening and treatment, discounted to 281 

present value) over a 30-year lifetime[€56]. The number of males eligible to receive 282 

screening in the UK is 362,766 per annum. Therefore, the present-value cost to the health 283 

service would be £16 million[€20 million] per cohort screened, over 30 years. However, the 284 

majority of screening costs are accrued up front when screening occurs. The expected 285 

incremental QALYs per patient is 0.0025 over 30 years (discounted to present value). 286 

Therefore, that equates to 893 QALYs gained per cohort screened. For 60-year-old women, 287 

screening would cost £17 million[€21 million] and would lead to 467 additional QALYs per 288 

cohort screened, over 30 years.289 

290 
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Discussion 291 

Screening for RCC has the potential to improve survival outcomes[4, 5]. However, as with 292 

any screening program, there is also a potential for harm, including over-diagnosis, as well 293 

as psychological and economic implications for patients and society. No RCTs of screening 294 

for RCC have been undertaken[8]. We demonstrate that the population EVPI is £194 million 295 

and £97 million for 60-year-old men and women respectively. This suggests further research 296 

is likely to be of good value to the funder, and should be focused on estimating the 297 

prevalence of RCC and the stage shift associated with screening.   298 

 299 

Determinants of cost-effectiveness 300 

 301 

Using current evidence, this decision model suggests screening may be cost-effective in 302 

males but not females, due to lower prevalence of RCC in the latter[11, 14]. The true 303 

prevalence of RCC by age/sex in the UK is unknown. Sensitivity analysis suggests that 304 

screening may be cost-effective if the prevalence is 0.25% for males and 0.2% for 305 

females. A meta-analysis demonstrated the prevalence of RCC detected in middle-aged 306 

Americans undergoing screening CT is 0.21%[24]. Once again, the prevalence was not 307 

reported by age/sex, however it may indeed be above the threshold identified by our 308 

sensitivity analysis. Although beyond the scope of the present analysis, risk-stratified 309 

screening may increase cost-effectiveness by targeting screening towards individuals with a 310 

higher prevalence. At present there is a lack of specific, validated models to predict the risk 311 

of RCC and further research is required to elucidate this[8, 37]. Similarly, screening for AAA 312 

has been deemed cost-effective in men and not women, as the latter have a lower 313 
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prevalence of the disease[28, 38]. However, there are important equity considerations 314 

associated with screening only one sex[39]. 315 

 316 

The cost of screening ultrasound is a modifiable factor which is a major determinant of cost-317 

effectiveness. Screening 60-year-old males remains cost-effective so long as the cost of 318 

ultrasound is <£60. This is very likely as it is below the current cost of ultrasound performed 319 

by a sonographer in secondary care[26]. When screening 60y females, the ICER drops 320 

<£30,000/QALY when the cost of ultrasound is reduced from £37 to £30. It is unclear 321 

whether the cost of technician-performed ultrasound may be reduced to this level. Renal 322 

ultrasound is technically more challenging to perform than aortic ultrasound. Accuracy is 323 

dependent on the size of the renal lesion and operator experience[40-42]. Our model 324 

suggests screening 60-year-old males remains cost-effective (i.e. ICER< £30,000) so long as 325 

the specificity of ultrasound is ≥85%, and the prevalence of benign incidental findings at 326 

ultrasound is ≤20%. All these conditions seem likely. 327 

 328 

Potential harms of screening 329 

 330 

Evidence on the impact of screening for RCC on QoL is lacking[8, 22]. In the base case, it was 331 

assumed that undergoing screening ultrasound was not associated with a disutility, and this 332 

may contribute to the results demonstrating that the EVPPI for utilities was £0. However, in 333 

the sensitivity analysis, we showed that for 60-year-old men if the disutility associated with 334 

screening renal ultrasound is ≥0.05 for one week, screening is no longer cost-effective. This 335 

is because a small reduction in utility would be applied to such a large number of individuals 336 

receiving screening that it would outweigh any benefit to the small minority of patients in 337 
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which RCC is detected. Therefore, it is essential that any future RCC screening studies 338 

evaluate the impact of screening on QoL. 339 

 340 

Strengths and limitations 341 

 342 

A strength of this work is that it is the first decision analysis of screening for RCC in 343 

asymptomatic individuals. The model was designed with input from a multidisciplinary team 344 

of RCC experts and a patient advocate. Importantly, the model incorporates the impact of 345 

incidental findings detected by screening on cost-effectiveness. Systematic reviews were 346 

undertaken to determine key model inputs and where data were not available, structured 347 

expert elicitation was performed[8, 11, 22, 23]. This ensures that uncertainty surrounding 348 

parameter estimates was captured accurately, enabling reliable VOI[35].   349 

 350 

The model represents a simplification of reality and shares some limitations inherent to all 351 

CEAs. Due to structural assumptions within the model, it was not appropriate to assess the 352 

impact of ultrasound sensitivity on the ICER, as the stage distribution of false positives was 353 

determined by evidence from the literature. Some CEAs in other disease areas have 354 

overcome this by modelling the natural history of undiagnosed disease[32]. However, there 355 

are no existing data on the transition probabilities between undiagnosed RCC stages. As 356 

there are eleven potential health states (diagnosed and undiagnosed stage I T1a, I T1b, II, III, 357 

IV, death) this would require 20 transition probabilities to be derived through expert 358 

elicitation. This would introduce undue uncertainty in the decision analysis, therefore it was 359 

felt that the current structure was the most appropriate. High profile CEAs in other disease 360 

areas, such as screening for breast cancer, have also chosen to develop less complex models 361 
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to minimize the assumptions and uncertainties arising from lack of data[43]. Life table 362 

models and discrete event simulation models of screening for breast cancer have achieved 363 

similar results[43, 44]. 364 

 365 

The CEA is limited by the absence of trial level data regarding certain model inputs. 366 

Conversely, a major indication for the CEA was to determine if undertaking a trial of 367 

screening was warranted on economic grounds. The prevalence of RCC was reported for a 368 

limited number of age groups[11, 14]. It was not possible to evaluate repeated screening at 369 

regular intervals, as screening studies scanned individuals only once. The model assumes 370 

that cancer-specific mortality is determined by RCC stage and is the same in the screening 371 

and no screening cohorts. Individuals with incidentally detected tumours have significantly 372 

better survival compared to symptomatic patients, after adjusting for tumour grade and 373 

stage[45]. Therefore, the model may underestimate the benefit of screening[46, 47]. 374 

However, as there are no RCTs demonstrating the effectiveness of screening, we do not 375 

know if screening in a contemporary population would lead to a stage shift nor whether it 376 

would impact survival. This consideration is particularly important as the number of 377 

individuals undergoing abdominal imaging for other indications is rising[48]. Further trial 378 

level data are required to quantify overdiagnosis and lead time bias.  Additionally, there 379 

were few data on the prevalence of benign incidental findings at screening, and their 380 

associated impact on QoL or cost. We assigned a cost but no gain or loss of QALYs from 381 

incidental findings. This simplification may underestimate the cost-effectiveness of 382 

screening.   383 

 384 
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Conclusion 385 

 386 

Given the available evidence and the current willingness to pay threshold, our model 387 

suggests that screening may be cost-effective in 60-year-old males. The prevalence of RCC 388 

by age/sex is a major determinant of cost-effectiveness and represents a key research 389 

priority, along with the stage shift associated with screening. Future work should focus on 390 

evaluating the potential harms of screening including the impact on QoL, incidental findings 391 

and overdiagnosis.  392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

405 
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Figures 406 

Figure 1: Structure of the Markov model  407 

Figure 1 represents a simplified schematic of the Markov models; further details can be 408 

found in the Supplement. In brief, individuals without RCC can have a number of benign 409 

incidental findings (asymptomatic calculi, hydronephrosis etc). Individuals with RCC can be 410 

undiagnosed or diagnosed, by one of two ways: diagnosed via screening or opportunistically 411 

within the health service. Once RCC is diagnosed, individuals can be classified into one of the 412 

following five RCC health states: stage I T1a, stage I T1b, stage II, stage III and stage IV 413 

based on established AJCC staging criteria. Newly diagnosed (ND) health states are tunnel 414 

states reflecting costs and QALYs associated with the first year of diagnosis and treatment of 415 

RCC, with follow up costs accrued and discounted up front, as previously described [49]. 416 

These tunnel states will transition into long-term health states, which represent metastasis 417 

free (MF) states. Individuals will remain in each of these MF states until they progress (i.e. 418 

metastatic progression). Stage IV disease (shown in the dotted box) encompasses both newly 419 

diagnosed stage IV and metastatic recurrence. Stage IV disease may be subdivided into one 420 

of the following health states based on treatment: individuals with no progression (NP) on 421 

first line systemic therapy (“Stage IV, NP 1st line ST”) and those with who do not receive 422 

systemic therapy (“Stage IV, no ST”). These can lead to no progression on second line 423 

therapy (“Stage IV, NP 2nd line ST”), no progression on third line therapy (“Stage IV, NP 3rd 424 

line ST”), or progressive disease (“Stage IV, PD”). All health states can lead to “non RCC 425 

death” (i.e. background mortality) or “RCC death” via the “Terminal” tunnel health state, 426 

representing costs associated with the final year of life [49]. Arrows to these death health 427 

states are not shown to maintain clarity in the diagram. 428 

429 
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Figure 1 430 

 431 

 432 

 433 

 434 
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Figure 2: Population expected value of perfect parameter information 437 

The population expected value of perfect parameter information (EVPPI) at a willingness to 438 

pay threshold of £30,000/QALY is shown for males and females aged 60 years. The 439 

parameters investigated were: screening parameters, costs, utilities, transition probabilities 440 

(TP) and stage distribution (SD) i.e. the proportion of individuals with RCC in each cancer 441 

stage. The “% receiving each therapy” refers to the proportion of individuals with RCC who 442 

undergo each management option, for example, ablation, active surveillance, surgery (open 443 

vs laparoscopic, partial vs radical) etc. “Utilities” refers to all utilities in the model, not just 444 

the utility associated with screening. Note, the EVPPIs do not sum to the EVPI due to 445 

parameter correlation. 446 

 447 

 448 

 449 

£2,105,397

£0 £0

£354,854

£3,013,373

£6,228,971

£0

£823,516

£0

£772,814

£0

£4,514,989

£6,819 £0

£2,142,866

£551,417

£4,652,431

£7,398 £815 £0

£685,522

£0

 £-

 £1,000,000

 £2,000,000

 £3,000,000

 £4,000,000

 £5,000,000

 £6,000,000

 £7,000,000

Pr
ev

al
en

ce
 o

f R
CC

Pr
ev

al
en

ce
 o

f i
nc

id
en

ta
lo

m
as

U
til

it
ie

s

Co
st

s

S.
D

. f
al

se
 n

eg
at

iv
es

 a
t 

sc
re

en
in

g
S.

D
 sc

re
en

 d
et

ec
te

d 
RC

C
S.

D
 R

C
C 

di
ag

no
se

d
 in

 th
e 

N
H

S
S.

D
. f

al
se

 p
os

iti
ve

s 
at

 s
cr

ee
n

in
g

T.
P.

 m
et

as
ta

tic
 R

CC
T.

P.
 n

on
-m

et
as

ta
ti

c 
RC

C
%

re
ce

iv
in

g 
ea

ch
 t

h
er

ap
y

Males age 60 years

Females age 60 years



24 

 

  

Tables 450 

Table 1: Model inputs 451 

For each model input, the mean estimate along with the 95% confidence interval (CI) or 452 

standard error (SE) is shown. For costs, the interquartile range (IQR) is reported as this is the 453 

data provided by the national schedule of referencing costs. Parameters of the distribution 454 

used in the probabilistic sensitivity analysis are demonstrated. For parameters derived 455 

through expert elicitation, the median estimate and 95% credibility intervals (CrI) are shown. 456 

For modified Connor Mosimann distributions (mCM), the a, b, L, U parameters are shown. 457 

Medians do not sum to 1, however means do (data not shown). The ordering of Zed 458 

parameters is critical to ensure correct calculation of probabilities, although this order may 459 

not be the same as the logical order (stages I-IV). Further details regarding how transition 460 

probabilities and summary costs were derived are available in the Supplement. 461 

 462 

Parameter Source Mean (95% CI) Distribution 

Screening parameters    

Sensitivity of ultrasound [16, 17, 50, 51] 81.8% (52.3%-94.9%) Beta (9,2) 

Specificity of ultrasound [16, 17] 98.2% (97.9%-98.5%) Beta (9771, 177) 

Specificity of CT following a positive 
ultrasound 

[17] 98.9% (96.0%-99.7%) Beta (175,2) 

Prevalence of asymptomatic 
hydronephrosis 

[11] 0.48% (0.21-0.87%) Beta (8.05, 1654.60) 

Prevalence of asymptomatic stones [11] 1.82% (0.59-3.64%) Beta (5.03, 275.51) 

Prevalence of other benign 
asymptomatic findings on screening~ 

[17, 18] 0.40% (0.30%-0.55%) Beta (40, 9919) 

    

Prevalence of RCC    

Prevalence in 40-year-old males 

Adapted from 
[11, 14, 25] 

0.14% (0.08-0.23%) Beta (14.24, 9780.69) 

Prevalence in 50-year-old males 0.23% (0.12-0.37%) Beta (12.58, 5502.85) 

Prevalence in 60-year-old males 0.34% (0.18-0.54%) Beta (13.17, 3905.89) 

Prevalence in 40-year-old females 0.07% (0.04-0.11%) Beta (15.49, 21892.72) 

Prevalence in 50-year-old females 0.09% (0.05-0.14%) Beta (14.97, 16729.45) 

Prevalence in 60-year-old females 0.16% (0.08-0.25%) Beta (12.30, 8011.51) 

    

    

Stage distribution    

Parameter Source Mean (95% CI or 95% CrI) Distribution 
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Screen detected RCC    

Stage I T1a [11] 45.45% (34.0%-57.4%)* 

Dirichlet (30, 27, 9) Stage I T1b [11] 40.91% (29.9%-53.0%)* 

Stage II [11] 13.64% (7.3%-23.9%)* 

 [11]   

Stages I-II [11] 84.39% (78.8%-88.7%) 
Dirichlet (173, 28 ,4) 

 
Stage III [11] 13.66% (9.6%-19.0%) 

Stage IV [11] 1.95% (0.8%-4.9%) 

    
RCC detected by the health service    

Stage I T1a [52] 55.58% (54.12%-57.0%)# Beta (2511, 2007) 
Stage I T1b [52] 44.42% (43.0%-45.9%) # Beta (2007,2511) 

    
Stage I [53] 44.21% (42.96%-45.46%) 

Dirichlet 
(2678,578,1116,1686) 

 

Stages II [53] 9.54% (8.83%-10.31%) 
Stage III [53] 18.42% (17.47%-19.42%) 
Stage IV [53] 27.83% (26.72%-28.97%) 

    
Stage distribution of false positives    

Stage I T1a [54-56] 60.7% (57.1%-64.1%) 
Dirichlet (451, 168, 124) 

 
Stage I T1b [54-56] 22.6% (19.7%-25.8%) 

Stages II [54-56] 16.7% (14.2%-19.5%) 
Stage III [54-56] 0%  
Stage IV [54-56] 0%  

    
    

False negatives at screening    
Stage I T1a 

Structured 
expert 

elicitation 
[23] 

76% (43%-95%) mCM (6.72, 2.41, 0, 1) 
Stage I T1b 9% (1%-44%) mCM (0.35, 0.49, 0.157, 1) 

Stage IV 4% (0-32%) mCM (0.64, 0.40, 0, 1) 
Stage II 1% (0%-14%) mCM (10, 10, 0, 1) 
Stage III 1% (0%-14%) mCM (-) 

    
Annual transition probabilities    

Parameter Source Mean (95% CI) Distribution 
Stage I T1a    

Stage I T1a > Stage I T1a  
1-sum of other 

probabilities 
 

Stage I T1a > Stage IV [57] 0.0110 (0.00552, 0.0183) Beta (11.04, 991.96) 
Stage I T1a > RCC death [58] 0.00424 (0.00346,0.00509) Beta (102.80, 24165.20) 

    
Stage I T1b    

Stage I T1b > Stage I T1b  
1-sum of other 

probabilities 
 

Stage I T1b > Stage IV [57] 0.0326 (0.0216-0.0457) Beta (26.91, 799.11) 
Stage I T1b > RCC death [58] 0.0198 (0.0178-0.0219) Beta (349.31, 17322.70) 

    
Stage II    

Stage II > Stage II  
1-sum of other 

probabilities 
 

Stage II > Stage IV [57] 0.0538 (0.0371, 0.0733) Beta (31.85, 560.15) 
Stage II > RCC death [7] 0.0306 (0.0131-0.0544)** Beta (7.86, 250.99) 

    
Stage III    

Stage III > Stage III  
1-sum of other 

probabilities 
 

Stage III > Stage IV [57] 0.104 (0.0810,0.129) Beta (64.69, 559.31) 
Stage III > RCC death [7] 0.105 (0.0828-0.131)** Beta (64.88, 547.54) 
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No progression (NP) on 1st line 
therapy 

NP on 1st line therapy> NP on 1st line 
therapy 

[59] 0.274 (0.242-0.307) 

Dirichlet (201, 181, 351) NP on 1st line therapy> progressive 
disease 

[59] 0.247 (0.216-0.278) 

NP on 1st line therapy> death$ [59] 0.479 (0.443-0.515) 
    

No progression (NP) on 2nd line 
therapy 

   

NP on 2nd line therapy> NP on 2nd line 
therapy 

[60] 0.186 (0.162- 0.211) Beta (177.04, 775.96) 

NP on 1st line therapy> progressive 
disease 

 
1-sum of other 

probabilities 
 

NP on 1st line therapy> death$ [61] 0.595 (0.577-0.613) Beta (1739.46, 1182.54) 
    

No progression (NP) on 3rd line 
therapy 

   

NP on 3rd line therapy> NP on 3rd line 
therapy 

 
1-sum of other 

probabilities 
 

NP on 3rd line therapy> progressive 
disease 

[62, 63] 0.451 (0.420-0.482) Beta (447.56, 545.44) 

NP on 3rd line therapy> death$ [62, 63] 0.489 (0.458-0.520) Beta (485.27, 507.73) 
    

Stage IV, No systemic therapy    
No systemic therapy> No systemic 

therapy 
 

1-sum of other 
probabilities 

 

No systemic therapy > death$ [64] 0.646 (0.616-0.677) Beta (605.07, 330.93) 
    

Progressive Disease (PD)    

PD>PD  
1-sum of other 

probabilities 
 

PD> death$ [65] 
0.908 (0.797-0.977) 

 
Beta (33.58, 3.42) 

    

Undiagnosed> Diagnosed RCC 
Opportunistic detection by health 

service 

Structured 
Expert 

elicitation 
[23] 

0.25 (0.01-0.76) Beta (1.07, 2.65) 

    
Proportion undergoing each 

management option 
   

Management option Source Proportion (n/N) Distribution 
Stage I RCC (T1a)    

Active Surveillance Expert opinion Age Dependent  

Percutaneous ablation [66] 0.024 (77/3158) Beta (77, 3081) 
Open partial nephrectomy [67] 0.145 (235/1617) 

Dirichlet (235, 223, 494, 52, 
588, 25) 

Laparoscopic partial nephrectomy [67] 0.138 (223/1617) 
Robotic partial nephrectomy [67] 0.306 (494/1617) 
Open radical nephrectomy [67] 0.032 (52/1617) 

Laparoscopic radical nephrectomy [67] 0.364 (588/1617) 
Robotic radical nephrectomy [67] 0.015 (25/1617) 

    
Stage I RCC (T1b)    

Open partial nephrectomy [67] 0.074 (108/1455) 

Dirichlet (108, 21, 81, 151, 
1040, 54) 

Laparoscopic partial nephrectomy [67] 0.014 (21/1455) 
Robotic partial nephrectomy [67] 0.056 (81/1455) 
Open radical nephrectomy [67] 0.104 (151/1455) 

Laparoscopic radical nephrectomy [67] 0.715 (1040/1455) 
Robotic radical nephrectomy [67] 0.037 (54/1455) 

    
Stage II RCC    

Open partial nephrectomy [67] 0.019 (27/1419) 
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Laparoscopic partial nephrectomy [67] 0.003 (4/1419) 

Dirichlet (27, 4, 16, 580, 
766, 26) 

Robotic partial nephrectomy [67] 0.011 (16/1419) 
Open radical nephrectomy [67] 0.409 (580/1419) 

Laparoscopic radical nephrectomy [67] 0.540 (766/1419) 
Robotic radical nephrectomy [67] 0.018 (26/1419) 

    
Stage III RCC    

Open radical nephrectomy 
Expert Opinion 

0.51 Uniform (0.35, 0.65) 
Laparoscopic or robotic radical 

nephrectomy 
0.49 Uniform (0.65, 0.35) 

    
Stage IV RCC    

Cytoreductive nephrectomy [68-74] 0.37 (18,831/50,895) Beta (18831, 32064) 

Metastasectomy [57, 75] 
0.17 (107/623)~~ 

 
Beta (107, 516) 

Palliative radiotherapy 
for bone pain 

[76, 77] 0.12 (137/1108) Beta (137,971) 

Proportion of patients receiving no 
systemic therapy 

[63, 78-83] 0.28 (104/365) 
 

Beta (104, 261) 
Proportion receiving first line therapy [83] 0.72 (261/365) Beta (261, 104) 
Proportion of individuals on first line 

therapy who receive sunitinib 
[84] 0.43 (527/1229) Beta (527, 702) 

Proportion of individuals on first line 
therapy who receive second line 

therapy 
[83] 0.47 (123/261) Beta (123, 138) 

Proportion of individuals on second 
line therapy who receive third line 

therapy 
[83] 0.33 (41/123) Beta (41, 82) 

    
Unit costs    
Parameter Source Mean (SE) or (IQR) Distribution 

Screening costs    
Invitation (clerical staff time, postage 

and stationery, cost of obtaining 
patient details, office space and 

equipment) 

[21] 
£1.94 [€2] (0.49) 

 

Gamma (16, 0.12) 
 
 

Technician performed ultrasound [21] 
£37.53 [€47] (9.38) 

 
Gamma (16, 2.35) 

CT Abdomen & Pelvis with contrast [26] £115 [145€] (£88-£134) Gamma (10.59, 10.66) 
    

Assessment    

Clinical biochemistry [26] 
£1 [1€] (£1-£1) 

 
Constant 

Haematology [26] 
£3 [€4] (£2-£4) 

 
Gamma (4.08, 0.77) 

Phlebotomy [26] 
£3 [€4] (£2-£4) 

 
Gamma (4.08, 0.77) 

Histopathology [26] 
£31 [€39] (£15-£36) 

 
Gamma (2.66, 10.25) 

CT chest with contrast [26] 
£102 [€129] (£71-£135) 

 
Gamma (4.70, 22.77) 

CT of three areas with contrast [26] 
£121 [€153] (£88-£139) 

 
Gamma (9.01, 12.86) 

CT brain [26] 
102 [€129] (£71-£135) 

 
Gamma (4.70, 22.77) 

Outpatient renal biopsy [26] 
£158 [€199] (£125-£194) 

 
Gamma (9.72, 16.72) 

Urology outpatient clinic [26] 
£ 105.19 [€133] (10.52) 

 
Gamma (100, 1.05) 

Oncology clinic [26] 
£151 [€191] (£125-£194) 

 
Gamma (9.72, 16.72) 

MDT discussion [26] 
£107 [€135] (£71-£131) 

 
Gamma (5.15, 20.33) 
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Management 
   

Percutaneous Cryoablation [26] 
£5,372 [€6,783]  
(£3,444-£6,563) 

 
Gamma (4.67, 1113.35) 

Percutaneous, Microwave or 
Radiofrequency Ablation 

[26] 
£2,952 [€3,727]  
(£1,706-£3,559) 

 
Gamma (3.66, 756.08) 

Laparoscopic nephrectomy (partial or 
radical) Cost of surgery and health 

care costs over one year 
[85] 

£6,581 [€8,309] 
 (£6,001- £7123) 

 

Gamma (62.33, 105.59) 
 

Open nephrectomy (partial or radical) 
Cost of surgery and health care costs 

over one year 
[85] 

£8,021 [€10,127]  
(£7,000-£8,946) 

 

Gamma (30.55, 262.55) 
 

Robotic nephrectomy (partial or 
radical) 

Cost of surgery and health care costs 
over one year 

[85] 
£6,534 [€8,250]  
(£5,972-£7,059) 

 

Gamma (65.32, 100.03) 
 

Cytoreductive nephrectomy 
Cost of surgery and health care costs 

over one year 

[26] 
Adapted from 

[85] 

£9,938 [€12,548]  
(993.8) 

 
Gamma (100, 99.38) 

Metastasectomy for thoracic 
metastases 

[26] 
£6,514 [€8,225]  
(£4,973-£7,655) 

 
Gamma (10.08, 637.65) 

Metastasectomy for abdominal 
metastases 

[26] 
£4,101 [€5,178]  
(£2,538-£5,345) 

 
Gamma (3.57, 1160.30) 

Radiotherapy (preparation and 
delivery) 

[26] 
£388 [€490]  
(£279-£483) 

 
Gamma (6.34, 61.79) 

    
Annual drug costs    

Sunitinib [81, 86] 
£16,120 

[€20,353] 
Constant 

Pazopanib [81, 86] 
£16,304 

[€20,585] 
Constant 

Everolimus [86, 87] 
£25,765 

[€32,531] 
Constant 

Axitinib [86, 88] 
£29,543 

[€37,301] 
Constant 

Cabozantinib [86, 89] 
£54,002 

[€68,183] 
Constant 

Nivolumab [86, 90] 
£57,625 

[€72,757] 
Constant 

Lenvatinib & Everolimus 
 

[86, 91] 
£51,668 

[€65,236] 
Constant 

Contact with the health services due 
to adverse events (annual cost for 

pazopanib) 
[81] 

£1,622 (162.2) 
[€2,048] 

Beta (100, 16.22) 

Contact with the health services due 
to adverse events (annual cost for all 

other therapies) 
[81] 

£2,144 (214.4) 
[€2,707] 

Beta (100, 21.44) 

    
Summary costs for health states    

Incidental hydronephrosis or renal 
stone 

 
£220 

[€278] 
 

Incidental congenital renal anomaly  £105  
  [€133]  

Newly diagnosed Stage I T1a  
£7,510 

[€9,482] 
 

Newly diagnosed Stage I T1b  
£6,821 

[€8,612] 
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Newly diagnosed Stage II  
£8,110 

[€10,240] 
 

Newly diagnosed Stage III  
£8,595 

[€10,852] 
 

    
Metastasis free Stage I-III  £0  

Undiagnosed RCC  £0  
    

False positive (<4cm)  
£6,889 

[€8,698] 
 

False positive (4-7cm)  
£7,259 

[€9,165] 
 

False positive (>7cm)  
£7,622 

[€9,624] 
 

    

Newly diagnosed stage IV  
£4,555 

[€5,751] 
 

Newly diagnosed metastatic 
recurrence 

 
£759 

[€958] 
 

No progression on 1st line ST  
£19,244 

[€24,297] 
 

No progression on 2nd line ST  
£47,041 

[€59,394] 
 

No progression on 3rd line ST  
£47,041 

[€59,394] 
 

Stage IV, no systemic therapy [77, 81] 
£1,428 

[€1,803] 
 

Progressive disease [77, 81] 
£1,690 

[€2,134] 
 

Terminal care costs [92] 
£11,616 

[€14,666] 
 

    
    

Utilities    
Parameter Source Mean Distribution 

Screening Ultrasound Assumption 
1 

Varied in sensitivity 
analysis 

Constant 

No cancer Assumption 1 Constant 
Undiagnosed Cancer Assumption 1 Constant 

Newly diagnosed Stage I T1a  
Clinical expert 
opinion based 

on [22, 93] 
 

0.934$$ Beta (5.64, 0.40) 
Newly diagnosed I T1b 0.934$$ Beta (5.64, 0.40) 

Newly diagnosed Stage II 0.869## Beta (12.28, 1.86) 
Newly diagnosed Stage III 0.869## Beta (12.28, 1.86) 
Metastasis free Stages I-III 1 Constant 

    
False positive Stage I T1a 

Assumption 
0.934$$ Beta (5.64, 0.40) 

False positive Stage I T1b 0.934$$ Beta (5.64, 0.40) 
False positive Stage II 0.869## Beta (12.28, 1.86) 

    
Stage IV, NP on 1st line therapy [94-98] 0.78 Beta (1337.7, 377.3) 
Stage IV, NP on 2nd line therapy [77] 0.70 Beta (29.3, 12.56) 

Stage IV, NP on 3rd line therapy 
Assumption 

based on [77] 
0.70 Beta (29.3, 12.56) 

Stage IV, NST [77] 0.69 Beta (500.31, 222.68) 
Progressive Disease [77] 0.61 Beta (441.03, 281.97) 

Terminal, RCC Death and Non-RCC 
Death 

Assumption 0 Constant 

~Small or atrophic kidneys, aplasia, dysplasia, duplication or horseshoe kidney 463 

*Proportions of those stage I-II 464 
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#Proportions of those stage I 465 

**Relative survival, therefore this was converted to absolute survival using the age dependent probability of 466 

background mortality (see Supplement for details). 467 

$Overall survival data was utilised to calculate the transition probability from each health state to death. This 468 

value was subsequently adjusted based on known age dependent background mortality to derive the 469 

transition probability for RCC death 470 

~~It was assumed 28.8% (17/59) of individuals undergo surgical management for thoracic metastases and 471 

71.2% (42/59) for abdominal metastases [75]. 472 

$$Equivalent to a utility of 0.737 for 3 months and a utility of 1 for 9 months 473 

##Equivalent to a utility of 0.737 for 6 months and a utility of 1 for 6 months474 

475 
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Table 2: Baseline results  476 

The incremental costs (cost of screening and treatment), quality adjusted life years (QALYs) 477 

and incremental cost-effectiveness ratio (ICER) per person screened is shown for each age 478 

and sex. 479 

 480 

 481 

 Males Females 

 40 years 50 years 60 years 40 years 50 years 60 years 

Prevalence  
of RCC 

0.14% 
(0.08-0.23%) 

0.23%  
(0.12-0.37%) 

0.34% 
 (0.18-0.54%) 

0.07% 
 (0.04-0.11%) 

0.09%  
(0.05-0.14%) 

0.16%  
(0.08-0.25%) 

Incremental costs £47.06 £45.69 £44.55 £47.61 £46.99 £46.56 
Incremental QALYs 0.00155 0.00205 0.00246 0.000809 0.000937 0.00125 

ICER £30,367 £22,277 £18,092 £58,819 £50,160 £37,327 



32 

 

  

Table 3: Results of the two-way sensitivity analysis of age, sex, prevalence of RCC and cost of screening ultrasound 482 

The incremental cost-effectiveness ratio (ICER) is shown for each age and sex. Values are highlighted in green if the ICER < £20,000/QALY, 483 

amber if the ICER £20,000-£30,000/QALY and red if the ICER > £30,000/QALY.  484 

485 
 Males Females 

Prevalence 40 years 50 years 60 years 40 years 50 years 60 years 

0.0005 £79,384 £99,763 £134,251 £77,526 £93,379 £123,795 
0.001 £41,969 £49,599 £69,003 £38,733 £44,318 £57,667 

0.0015 £30,359 £31,496 £46,545 £25,266 £28,901 £37,799 
0.002 £20,832 £25,143 £33,320 £18,935 £22,306 £29,603 

0.0025 £14,949 £18,784 £26,377 £14,592 £18,170 £22,058 
0.003 £12,969 £15,546 £21,163 £12,212 £14,615 £19,429 

0.0035 £9,961 £12,046 £16,676 £10,474 £12,308 £15,710 
0.004 £9,154 £11,830 £15,644 £8,920 £10,399 £13,846 

0.0045 £7,803 £9,990 £14,633 £7,533 £8,897 £11,548 
0.005 £6,862 £8,433 £12,774 £6,611 £7,957 £10,285 

0.0055 £6,209 £8,232 £11,438 £6,152 £7,413 £9,151 
0.006 £5,651 £7,786 £10,123 £5,716 £6,863 £8,862 

       
Cost of US       

£70 £47,863 £34,319 £34,000 £91,772 £85,491 £69,092 
£60 £40,587 £31,717 £29,317 £81,603 £76,915 £59,227 
£50 £35,309 £26,187 £24,134 £68,069 £62,299 £45,981 
£40 £29,199 £21,161 £18,443 £57,431 £52,414 £38,759 
£30 £23,165 £18,479 £16,061 £45,740 £42,234 £28,754 
£20 £16,371 £13,141 £11,340 £37,756 £34,387 £23,083 
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