
A hybrid approach to time series classification
with shapelets

David Guijo-Rubio1,2, Pedro A. Gutiérrez1, Romain Tavenard3 and Anthony
Bagnall2

1 Department of Computer Sciences, Universidad de Córdoba, Córdoba, Spain
2 University of East Anglia, Norwich, UK, NR47TJ.

3 Univ. Rennes, CNRS, LETG/IRISA

Abstract. Shapelets are phase independent subseries that can be used
to discriminate between time series. Shapelets have proved to be very
effective primitives for time series classification. The two most prominent
shapelet based classification algorithms are the shapelet transform (ST)
and learned shapelets (LS). One significant difference between these
approaches is that ST is data driven, whereas LS searches the entire
shapelet space through stochastic gradient descent. The weakness of
the former is that full enumeration of possible shapelets is very time
consuming. The problem with the latter is that it is very dependent on the
initialisation of the shapelets. We propose hybridising the two approaches
through a pipeline that includes a time constrained data driven shapelet
search which is then passed to a neural network architecture of learned
shapelets for tuning. The tuned shapelets are extracted and formed into
a transform, which is then classified with a rotation forest. We show
that this hybrid approach is significantly better than either approach in
isolation, and that the resulting classifier is not significantly worse than
a full shapelet search.

Keywords: Time series classification · Shapelets · Convolutional Neural
Networks.

1 Introduction

Shapelets [1] are discriminatory phase independent subsequences that form a
basic primitive in many time series algorithms. For classification, shapelets are
assessed using their distance to train set time series and the usefulness of these
distances in discriminating between classes. Shapelet based features define a
distinct form of discrimination which can be characterised as quantifying whether
a particular shape exists in a series or not (at any location). Shapelets have
proved an effective tool for classification [2] and have been a popular research
topic. One key distinction between research threads is whether shapelets are
extracted from the training data or whether the space of all possible shapelets is
searched. The data driven approach was used in early work with shapelets [1,3,4]
and has been employed to find effective classifiers [2,5]. The learned shapelet

2 D. Guijo-Rubio et al.

approach [6] was the first search based algorithm. Later work has bridged the
gap between the learning shapelets and convolutional neural networks (CNN)
through defining each shapelet as a variant of a convolutional filter [7]. Our
aim is to investigate whether we can create a better classifier by hybridising
data driven search and stochastic gradient descent learning. Our approach is
to randomly sample shapelets in the data for a fixed time using the method
described in [5], retain the best k found, then tune these shapelets with the
learning shapelet algorithm [6] implemented using a neural network library.
We test this on data from the UCR archive [8]. We demonstrate that, under
controlled parameterisation, this approach is better than either algorithm in
isolation. Furthermore, we show that a one hour search followed by tuning is not
significantly worse than the reported results using the full shapelet transform [9].

The rest of the paper is structured as follows. In Section 2 we provide an
overview of the shapelet transform and learning shapelets algorithm. In Section 3
we describe how we have hybridised the two approaches. Results are described in
Section 4, and we conclude in Section 5.

2 Shapelet Background

We denote a vector in bold and a matrix in capital bold. A case/instance is
a pair {x, y} with m observations x1, . . . , xm (the time series) and discrete
class variable y with c possible values. A list of n cases with associated class
labels is T = 〈X,y〉 = 〈(x1, y1), . . . , (xn, yn)〉. A shapelet s is a time series
〈s1, . . . , sl〉 where l ≤ m. Shapelet based classification requires a method of
finding and assessing shapelets, then an algorithm for using the selected shapelets
for classification. All shapelet finding algorithms require the measuring of the
distance between a candidate and a time series. This is done by sliding the
candidate along the series and calculating the Euclidean distance at each position
(after normalisation) to find the minimum. The distance between a shapelet s
and a time series case is then given by Equation 1,

sDist(s, t) = min
w∈W

(dist(s,w)), (1)

where W is the set of all subsequences which are the same length as s in t,
and dist is the Euclidean distance between two equal length series. The original
shapelet algorithm [1] constructed a decision tree by finding a shapelet at each
node. Subsequent research [10] demonstrated it was better to use shapelets as
a transformation. We can summarise the shapelet transform (ST) approach as:
search for the best k shapelets in the data; transform the data so that each
new attribute j represents distance between series i and shapelet j; construct
a standard classifier on the resulting transformed data. It has been shown that
there is little need to enumerate the possible space of shapelets in the data.
Random sampling of a tiny proportion of the shapelet space does not lead to a
significant decrease on accuracy [5]. The current shapelet transform algorithm
can be configured so that it searches for shapelets for a maximum amount of

A hybrid approach to classification with shapelets 3

time. We call this a contract classifier, since it is given a time contract it must
fulfill.

The ST pipeline can be summarised as follows:

1. Search: randomly sample shapelets from the train data for a fixed amount
of time, keeping the best.

2. Transform: create new train and test data where attributes are distances
between instances and shapelets (see Equation 1).

3. Fit Model: build the classifier on the train data.
4. Predict: estimate class values on the test data.

Another alternative to the enumeration of all possible shapelets is to use
optimization techniques to learn good shapelets. Learning shapelets (LS [6])
algorithm involves learning shapelet values as model parameters rather than
directly extracting them from the data. Hence, resulting shapelets are no longer
subseries from the training set. The LS algorithm adopts an initialisation stage
to find k shapelets through clustering shapelets observed in the data. It then
jointly learns the weights for a regularised logistic regression and the shapelet set
using a two stage iterative process for Shapelet Tranform representation to feed a
final logistic regression classifier. The LS pipeline can be summarised as follows:

1. Initialise: find initial shapelets from the train data through clustering
subsequences and initialise model weights.

2. Fit Model: For a given maximum number of iterations:
(a) Update Loss: adjust loss function.
(b) Update Model Weights: adjust weights to minimize loss.
(c) Update Shapelets: adjust shapelets to mimize loss.

3. Predict: estimate class values on the test data.

An experimental comparison of these algorithms found ST to be significantly
more accurate than LS [2]. LS suffers from three related problems that may
have caused this difference. Firstly, LS is very sensitive to the initialisation of
shapelets, and, secondly, the clustering algorithm adopted to partially overcome
this problem is memory intensive. Finally, the implementation is very complex;
despite communications with the LS author, we cannot rule out there being bugs
in the Java implementation4. One way of possibly mitigating these problems is
to use stable open source software.

3 Hybrid Shapelet Classifier

A shapelet distance sDist is evaluated by sliding the shapelet to each series as
would be done for a convolution filter (see Equation 1). The LS model can be

4 https://github.com/TonyBagnall/uea-tsc

4 D. Guijo-Rubio et al.

be implemented as a variant of a CNN [7] within a standard neural network
framework. A neural network model is defined that takes time series as inputs
and outputs class probabilities.

Fig. 1. Learning Time Series Shapelet (LS) model as a neural network architecture.

As shown in Figure 1, this model is composed of a first layer (called the
shapelet layer hereafter) that extracts a ST-like representation which then feeds
into a logistic regression layer. In practice, the shapelet layer is made of several
shapelet blocks (one block per shapelet length). Each shapelet block can be
decomposed into:

1. a feature extraction step that computes pairwise distances dist(s,w) between
the considered shapelets and all the subsequences with the same length as s
in t and

2. a pooling step that retains the minimum of all distances.

Note that this is very similar in spirit to a convolutional layer that would compute
dot products between filters and all the subsequences in t which would be typically
followed by a (max-)pooling layer. Finally, the optimization procedure consists
in tuning both the shapelet values and the parameters of the logistic regression
through stochastic gradient descent.

There are two ways we could combine the approaches: we could use the
transform to search for a better starting point for the LS classification algorithm
or use the LS algorithm to tune the shapelets found by ST, but retain the
classification method in ST. The first approach involves replacing the initialise
stage in LS with a time constrained search, then proceeding with LS as normal.
The second approach is to perform a tuning stage with LS’ fit model between
search and transform from ST. We evaluate both approaches and consider
three classifiers:

A hybrid approach to classification with shapelets 5

1. ST-RF: Shapelet transform contracted for one hour or ten hours, then build
and evaluate a rotation forest classifier on the transformed data

2. Hybrid-LR: Use the shapelets found for ST as an initialisation for the
neural network (LS model), then use the final logistic regression classifier on
the test data.

3. Hybrid-RF: As Hybrid-LR, but rather than use the logistic regression, use
rotation forest as a classifier, as with ST.

We use the rotation forest classifier [11] with fixed parameters for ST and Hybrid-
RF, since it has been shown to be very good at problems with continuous
attributes [12].

4 Results

The rotation forest has 200 trees, uses a group size of 3 and class selection
probability of 0.5. More details can be found in [12]. We set ST to find a maximum
of 100 shapelets in either one hour or ten hours. The LS model is optimised using
the Adagrad adaptive gradient optimisation algorithm [13]. The learning rate
parameter is fixed to 0.1 and the training will be run for 2000 epochs for all
datasets. Moreover the `2 regularisation parameter over classification weights is
0.01 and the batch size is fixed to 128. Note that for this first approximation,
all the parameters are fixed to default values for simplicity and to reduce the
computational cost.

We evaluate the shapelet approaches on a subset of 92 data of the 128 UCR
data [8]. The data that are omitted are done so for practical and implementation
reasons. 14 of the 128 data have missing values or are unequal length and our
system is not able to handle this characteristic. The LS is unable to handle 22 of
the remaining 114 data because of memory constraints; long shapelets require
a large amount of memory. All reported results are on the standard train test
splits. All learning and tuning are conducted exclusively on the train data, and
accuracy is assessed on the unseen test split.

We are interested in testing whether tuning the shapelets after a data driven
search significantly improves the overall classifier performance. To do this, we
control other factors that cause variation. We have intentionally set up ST-RF
and Hybrid-RF so that the only difference between the two experiments is the
tuning stage. Any improvement can be attributed to this, since in all other ways
ST-RF and Hybrid-RF are identical.

Figure 2(a) shows the scatter plot of test accuracy for ST-RF and Hybrid-RF
for a one hour shapelet search. Tuning makes a significant difference: 51 datasets
have improved accuracy, whereas just 32 have decreased performance (with 9
ties). The test of difference is significant with a binomial test, a paired T test
and a Wilcoxon sign rank test. Figure 2(b) shows the same results for a 10 hour
shapelet search. The pattern of results is the same; tuning improves accuracy
on 52 problems, makes things worse on 32 and makes no difference on 8. The
difference is also significant.

6 D. Guijo-Rubio et al.

0,2

0,4

0,6

0,8

1

0,2 0,4 0,6 0,8 1

H
yb

ri
d

-R
F

Te
st

 A
cc

u
ra

cy

ST-RF Test Accuracy

ST-RF BETTER HERE

Hybrid-RF BETTER HERE

(a) 1 hour shapelet transform search

0,2

0,4

0,6

0,8

1

0,2 0,4 0,6 0,8 1

H
yb

ri
d

-R
F

Te
st

 A
cc

u
ra

cy

ST-RF Test Accuracy

ST-RF BETTER HERE

Hybrid-RF BETTER HERE

(b) 10 hours shapelet transform search

Fig. 2. Test accuracy for the shapelet transform before and after tuning with LS.

Whilst significant, it is worth noting that the improvement is not guaranteed.
As a sanity check, it is worth checking whether it is better to use the logistic
regression from LS as a classifier itself rather than extracting the shapelets for
use with rotation forest. Figure 3 shows the critical difference diagrams [14] for
the ST and Hybrid-RF transform in comparison to those found with Hybrid-LR.
It demonstrates two things: firstly, tuning the shapelets then classifying with
the LS model (Hybrid-LR) makes no significant difference when compared to
ST alone; and secondly, that extracting shapelets from LS and using a rotation
forest (Hybrid-RF) is significantly better than both a logistic regression classifier
(Hybrid-LR) and using rotation forest with a transform generated by untuned
shapelets (ST-RF).

3 2 1

1.6576 Hybrid-RF
2.1141 ST-RF

2.2283Hybrid-LR

(a) 1 hour shapelet search

3 2 1

1.7174 Hybrid-RF
2.1033 ST-RF

2.1793Hybrid-LR

(b) 10 hours shapelet search

Fig. 3. Critical difference diagrams for three classifiers. The classifiers are: shapelet
transform with rotation forest (ST); Learning Time Series Shapelets using the transform
shapelets as a starting point (Hybrid-LR); and shapelet transform on shapelets extracted
from LS with a rotation forest (Hybrid-RF).

For context, it is useful to compare the results to previously published results.
ST is a key component of the meta-ensemble HIVE-COTE [9]. The ST results
for HIVE-COTE were found through a computationally expensive enumeration
of all possible shapelets. Figure 4 shows that we can achieve results that are not
significantly worse than the enumerative search by simply tuning the one hour
search shapelets.

A hybrid approach to classification with shapelets 7

4 3 2 1

2.0909 ST-HIVE-COTE
2.2013 Hybrid-RF2.8442Hybrid-LR

2.8636ST-RF

Fig. 4. Comparison of performance of three classifiers based on a one hour shapelet
search with an exhaustive search based shapelet classifier presented in [9].

5 Conclusion

We have demonstrated that the core concept of tuning shapelets found in the data
with a gradient descent algorithm has merit. Tuning significantly improved accu-
racy after both a one hour search and a ten hour search. Indeed, the improvement
was enough to achieve results not significantly worse than the state-of-the-art
shapelet approach. This is surprising and exceeded our expectation. However,
these experiments have limitations. Firstly, the neural network implementation of
learning shapelets is very memory intensive. This means we have not been able to
compare against using more shapelets in the transform nor with all the datasets.
Nor have we been able to evaluate on resamples rather than a single train test split.
Secondly, whilst comparing on all problems is desirable to remove any suspicion
of cherry picking, the presence of many smaller problems may mask the benefit of
the full enumeration: many of the problems can be fully enumerated in one hour.
Thirdly, we have not described the training time for the LS model in our results,
because at the time of writing we do not have an integrated solution: we search
for shapelets in the Java version [15] on CPU and train LS using a dedicated
pytorch implementation on GPU. This makes timing comparisons problematic.
A fully integrated version is in development using the sktime toolkit [16]. Results
and code are available from the associated website 5. Despite these limitations,
these results are promising and support the central hypothesis than tuning can
improve shapelets found in the data. The next stage is to evaluate the methods on
larger problems and to assess the relative merits of greater search time, retaining
more shapelets and selective tuning. Furthermore, an iterative search and tune
algorithm may prove better than our current sequential model of search then tune.

Acknowledgement. This research has been partially supported by the Ministe-
rio de Economı́a, Industria y Competitividad of Spain (Grant Refs. TIN2017-
85887-C2-1-P and TIN2017-90567-REDT) as well as Agence Nationale de la
Recherche through MATS project (ANR-18-CE23-0006). D. Guijo-Rubio’s re-
search has been supported by the FPU Predoctoral and Short Placements Pro-
grams from Ministerio de Educación y Ciencia of Spain (Grants Ref. FPU16/02128

5 http://www.timeseriesclassification.com/hybrid.php

8 D. Guijo-Rubio et al.

and EST18/00280, respectively). Some experiments used a Titan X Pascal do-
nated by the NVIDIA Corporation.

References

1. L. Ye and E. Keogh, “Time series shapelets: a novel technique that allows accurate,
interpretable and fast classification,” Data Mining and Knowledge Discovery, vol. 22,
no. 1-2, pp. 149–182, 2011.

2. A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances,” Data Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660,
2017.

3. A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: An expressive primitive for
time series classification,” in Proc. 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2011.

4. J. Lines, L. Davis, J. Hills, and A. Bagnall, “A shapelet transform for time se-
ries classification,” in Proc. the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2012.

5. A. Bostrom and A. Bagnall, “Binary shapelet transform for multiclass time series
classification,” Transactions on Large-Scale Data and Knowledge Centered Systems,
vol. 32, pp. 24–46, 2017.

6. J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learning time-
series shapelets,” in Proc. 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2014.

7. R. Tavenard, “tslearn: A machine learning toolkit dedicated to time-series data.”
https://github.com/rtavenar/tslearn, 2017.

8. H. Dau, A. Bagnall, K. Kamgar, M. Yeh, Y. Zhu, S. Gharghabi, and C. Ratanama-
hatana, “The UCR time series archive,” ArXiv e-prints, vol. arXiv:1810.07758,
2018.

9. J. Lines, S. Taylor, and A. Bagnall, “Time series classification with HIVE-COTE:
The hierarchical vote collective of transformation-based ensembles,” ACM Trans.
Knowledge Discovery from Data, vol. 12, no. 5, 2018.

10. J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time
series by shapelet transformation,” Data Mining and Knowledge Discovery, vol. 28,
no. 4, pp. 851–881, 2014.

11. J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new classifier en-
semble method,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 10, pp. 1619–1630, 2006.

12. A. Bagnall, A. Bostrom, G. Cawley, M. Flynn, J. Large, and J. Lines, “Is rotation
forest the best classifier for problems with continuous features?,” ArXiv e-prints,
vol. arXiv:1809.06705, 2018.

13. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

14. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal
of Machine Learning Research, vol. 7, pp. 1–30, 2006.

15. uea tsc, “A weka compatible toolkit for time series classification and clustering.”
https://github.com/TonyBagnall/uea-tsc, 2019.

16. sktime, “A toolbox for data science with time series.” https://github.com/

alan-turing-institute/sktime, 2019.

https://github.com/rtavenar/tslearn
https://github.com/TonyBagnall/uea-tsc
https://github.com/alan-turing-institute/sktime
https://github.com/alan-turing-institute/sktime

	A hybrid approach to time series classification with shapelets

