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Abstract. tl;dr: no, it cannot, at least not on average on the standard
archive problems. We assess whether using six smoothing algorithms
(moving average, exponential smoothing, Gaussian filter, Savitzky-Golay
filter, Fourier approximation and a recursive median sieve) could be auto-
matically applied to time series classification problems as a preprocessing
step to improve the performance of three benchmark classifiers (1-Nearest
Neighbour with Euclidean and Dynamic Time Warping distances, and
Rotation Forest). We found no significant improvement over unsmoothed
data even when we set the smoothing parameter through cross validation.
We are not claiming smoothing has no worth. It has an important role
in exploratory analysis and helps with specific classification problems
where domain knowledge can be exploited. What we observe is that the
automatic application does not help to improve classification performance
and that we cannot explain the improvement of other time series classifi-
cation algorithms over the baseline classifiers simply as a function of the
absence of smoothing.
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1 Introduction

Time Series Classification (TSC) is differentiated from standard classification
by the fact that the ordering of the attributes may be important in finding
discriminatory features. Standard vector classifiers such as rotation forest and
standard time dependent approaches such dynamic time warping with 1-NN
are strong benchmark algorithms to compare against the range of bespoke TSC
algorithms that have been proposed in recent years. Some of these achieve impres-
sive performance and are significantly better than the benchmarks. Nevertheless,
there has always been a suspicion that sensible standard preprocessing of the
data would perhaps increase the accuracy of benchmark classifiers and that would
make at least some of the bespoke algorithms redundant [1]. Broadly speaking,
there are four types of preprocessing that may improve classifier performance:
normalisation; smoothing; dimensionality reduction; and discretization. We ad-
dress the question of whether smoothing series can significantly improve the
accuracy of benchmark classifiers. Smoothing is the process of reducing the noise
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in the series to make patterns in the data more apparent and is generally used as
part of an exploratory analysis.

It is important to stress we are only concerned with class independent noise,
since class dependent noise is possibly useful as a discriminatory feature. This
is where we diverge from the majority of signal processing research into noise
modeling and reduction. We are not necessarily trying to “clean up” a signal.
Instead, we are trying to remove artifacts that may confound the classifier.

We test whether six smoothing algorithms improve three base classifiers.
These are described in detail in Section 2. It is clearly important to set the
parameters of the algorithm when smoothing so that it is relevant to a specific
problem. Because we are attempting to smooth to improve classification, we set
parameters through cross validation on the train data using the base classifier we
are testing. The experimental design is described in Section 3. Our experiments
address the following two questions.

1. Does smoothing with default parameters increase the accuracy of benchmark
classifiers?

2. Can we learn smoothing parameters on the train data to significantly improve
benchmark TSC algorithms?

A priori, we believed it unlikely that systematic smoothing would improve
accuracy over the diverse data sets in the archive, since many of the series
have very little noise. However, we thought that supervised smoothing, where
no smoothing was an option, would improve performance albeit at the large
computational cost of the parameter search. Our results, presented in Section 4
show that in fact smoothing makes very little difference, even when supervised.
We discuss these results in Section 5 and conclude in Section 6.

2 Background

2.1 Time Series Classification

A large number of new classification problems have been proposed in the last ten
years. While not exhaustive by itself, it is important to evaluate new algorithms
against sensible benchmark classifiers on standard test problems in order to
ascertain the usefulness of new research. The UCR archive is a widely used
archive of test problems [8]. The archive is a continually growing collection of
real valued TSC datasets1 which come from a range of different domains and
have a range of characteristics, in terms of size, number of classes, imbalances,
etc. Most TSC publications benchmark against a 1-NN classifier using either
Euclidean distance (ED) or Dynamic Time Warping (DTW) distance. DTW
compensates for potential misalignments amongst series of the same class. DTW
has a single parameter, the maximum warping window, and DTW performs
significantly better when this parameter is set through cross validation. A recent
comparative study [2] found that the classifier rotation forest [16] (RotF) was

1 http://www.timeseriesclassification.com
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also a strong benchmark. It is able to discover relationships in time through the
internal principle component transformation it uses, and is not significantly worse
than DTW with window set through cross validation (DTWCV henceforth). The
same study compared 22 TSC algorithms on 85 of the UCR archive data and
found that just nine out of twenty two TSC algorithms were significantly more
accurate than both a rotation forest and DTW classifier. Some of these TSC
algorithms are highly complex and both memory and computationally expensive.
A case was made that the superior algorithms achieved higher accuracy because
the representation they use allows for the detection of discriminatory features
that the benchmarks cannot find. This was further demonstrated on the archive
and through data simulation [14]. We wish to test whether simple preprocessing
can significantly improve the benchmarks and hence narrow the gap between
DTW and rotation forest and the nine significantly better TSC algorithms.

2.2 Time Series Smoothing

Given a time series T =< t0, . . . , tm−1 >, a smoothing function produces a
new series S =< s0, . . . , sp−1 >, where p ≤ m (we index from zero to make
the equations simpler). Most algorithms employ a sliding window, of length w,
along the series, resulting in a series of length p = m− w. The simplest form of
smoothing is to take the moving average (MA) [9], often called the Simple
Moving Average,

sj =

∑j
i=j−w ti

w
for j = w . . .m− 1,

where w is the single parameter, window size. Exponential smoothing (EXP) [9]
is a generalisaton of moving average smoothing that assigns a decaying weight to
each element rather than averaging over a window.

s0 = t0 and sj = α · tj + (1 − α) · tj−1

where 0 ≤ α ≤ 1. For consistency with other smoothing algorithms, EXP is
often given a window size w, then the decay weight is set as α = 2

w+1 .

A Gaussian filter (GF) [9] applies a fixed convolution over a window

sj =

j∑
i=j−w

ti · ci,

where the convolution values ci are derived from a standard normal distribution
over the window w, the single parameter.

Like GF, the Savitzky-Golay (SG) filtering method is a convolutional
method of smoothing. Instead of using a fixed convolution, it estimates a different
convolution on each window based on local least-squares polynomial approxima-
tion.
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sj =

j∑
i=j−w

ti · ci,j

Since its initial introduction [17], it has been used successfully and pervasively
across many signal processing domains for different purposes, particularly in
chemometrics [7, 12]. SG has two parameters, window size w and polynomial order
n. For accessible explanations of how the polynomial coefficients are calculated,
we refer the reader to [18].

Discrete Fourier Approximation (DFT)[10] smooths the series by first
transforming into the frequency domain, discarding the high frequency terms,
then transforming back to the time domain. DFT has a single parameter, r, the
proportion of Fourier terms to retain.

The Recursive Median Sieve (SIV) is a one-dimensional recursive median
filter [3] that filters the data by removing extrema of specific scales. The sieve
uses morphological scale-space operations, specifically openings and closings, or
combinations of them, to filter an input signal. It does this by applying flat
structuring elements to an input signal, which unlike conventional morphological
operators such as those used in granulometries, have a fixed size but variable shape.
They were introduced as a one-dimensional non-linear scale-space decomposition
algorithm in [5], but can be extend to n-dimensions by adopting techniques from
graph morphology [4].
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Fig. 1. An example sieve decomposition of a 1D signal. Green vertices are the vertices
affected at each scale level.

The sieve performs a decomposition removing extrema (both maxima and
minima) at different scales as shown in Figure 1. At the scale c1 the maxima
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and minima at points 6,7 and 10 are smoothed to equal the nearest value of
the neighbours. At scale c2 the pairs at (4,5) and (12,13) are smoothed. At the
highest scale, the series is uniform. The sieve takes in a single parameter, c, which
is the scale to smooth the signal to.

3 Experimental Setup

Table 1. The parameter spaces searched for each filtering method over the course of
our experiments (default value in bold). m is the series length. For Savitzky-Golay (SG),
all combinations of w, n are searched where w > 2n.

Method Parameters and default values in bold

Moving Average (MA) w ∈ {2, 3,5, 10, 25, 50, 100,
√
m, log2(m)}

Exponential Smoothing (EXP) w ∈ {2, 3,5, 10, 25, 50, 100,
√
m, log2(m)}

Gaussian Filtering (GF) w ∈ {2, 3,5, 10, 25, 50, 100,
√
m, log2(m)}

Savitzky-Golay (SG)
w ∈ {5, 9, 17, 33, 65}
n ∈ {2, 3, 4, 8, 16, 32}

Fourier Approximation (DFT) r ∈ {0.01, 0.05,0.1, 0.25, 0.5, log2(m)/m}
Sieve (SIV) c ∈ { 1

15
· log10(m), . . . , 5

15
· log10(m), . . . , log10(m)}

For each of pair of filter+classifier combination, we perform 10 stratified
random resamples of each data set and report the average results across those
resamples. The first resample, fold 0, is always the exact train/test split published
on the UCR archive, to allow for easier comparison to existing work. To avoid
ambiguity, we stress that in all cases the training of a classifier, including any
parameter tuning and model selection required, is performed independently on
the train set of a given fold, and the trained classifier is evaluated exactly once
on the corresponding test set. We conduct 10 resamples on 76 of the (at the
time of experimentation) 85 UCR archive TSC problems. We have omitted the
largest problems - ElectricDevices, FordA, FordB, HandOutlines, NonInvasive-
FatalECGThorax1, NonInvasiveFatalECGThorax2, PhalangesOutlinesCorrect,
StarlightCurves, and UWaveGestureLibraryAll - as well as problems recently
introduced into the expanded archive due to time constraints and a desire to
maintain comparability with the results of [2]. Table 2 summarises the datasets
used.

We average test accuracy over the 10 resamples, then present results in critical
difference diagrams, which display the average ranks of the classifiers over all
problems and group classifiers into cliques, within which there is no significant
difference. For each resample, we perform a 10 fold cross validation (CV) on
that resamples’ train data to find smoothing parameters, such that no transfer
learning of optimal parameters is performed.

For comparing multiple classifiers on multiple datasets, we follow the recom-
mendation of Demšar [11] and use the Friedmann test to determine if there are
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Table 2. The 76 UCR time series classification problems used in the experiments.

Dataset Atts Classes Train Test Dataset Atts Classes Train Test
Adiac 176 37 390 391 Meat 448 3 60 60

ArrowHead 251 3 36 175 MedicalImages 99 10 381 760
Beef 470 5 30 30 MidPhalOutAgeGroup 80 3 400 154

BeetleFly 512 2 20 20 MidPhalOutCorrect 80 2 600 291
BirdChicken 512 2 20 20 MiddlePhalanxTW 80 6 399 154

Car 577 4 60 60 MoteStrain 84 2 20 1252
CBF 128 3 30 900 OliveOil 570 4 30 30

ChlorineConcentration 166 3 467 3840 OSULeaf 427 6 200 242
CinCECGtorso 1639 4 40 1380 Phoneme 1024 39 214 1896

Coffee 286 2 28 28 Plane 144 7 105 105
Computers 720 2 250 250 ProxPhalOutAgeGroup 80 3 400 205

CricketX 300 12 390 390 ProxPhalOutCorrect 80 2 600 291
CricketY 300 12 390 390 ProximalPhalanxTW 80 6 400 205
CricketZ 300 12 390 390 RefrigerationDevices 720 3 375 375

DiatomSizeReduction 345 4 16 306 ScreenType 720 3 375 375
DisPhalOutAgeGroup 80 3 400 139 ShapeletSim 500 2 20 180

DisPhalOutCor 80 2 600 276 ShapesAll 512 60 600 600
DislPhalTW 80 6 400 139 SmallKitchApps 720 3 375 375
Earthquakes 512 2 322 139 SonyAIBORSurface1 70 2 20 601

ECG200 96 2 100 100 SonyAIBORSurface2 65 2 27 953
ECG5000 140 5 500 4500 Strawberry 235 2 613 370

ECGFiveDays 136 2 23 861 SwedishLeaf 128 15 500 625
FaceAll 131 14 560 1690 Symbols 398 6 25 995

FaceFour 350 4 24 88 SyntheticControl 60 6 300 300
FacesUCR 131 14 200 2050 ToeSegmentation1 277 2 40 228

FiftyWords 270 50 450 455 ToeSegmentation2 343 2 36 130
Fish 463 7 175 175 Trace 275 4 100 100

GunPoint 150 2 50 150 TwoLeadECG 82 2 23 1139
Ham 431 2 109 105 TwoPatterns 128 4 1000 4000

Haptics 1092 5 155 308 UWaveX 315 8 896 3582
Herring 512 2 64 64 UWaveY 315 8 896 3582

InlineSkate 1882 7 100 550 UWaveZ 315 8 896 3582
InsectWingbeatSound 256 11 220 1980 Wafer 152 2 1000 6164

ItalyPowerDemand 24 2 67 1029 Wine 234 2 57 54
LargeKitchApps 720 3 375 375 WordSynonyms 270 25 267 638

Lightning2 637 2 60 61 Worms 900 5 181 77
Lightning7 319 7 70 73 WormsTwoClass 900 2 181 77

Mallat 1024 8 55 2345 Yoga 426 2 300 3000

any statistically significant differences in the rankings of the classifiers. However,
following recommendations in [6] and [13], we have abandoned the Nemenyi
post-hoc test originally used by [11] to form cliques (groups of classifiers within
which there is no significant difference in ranks). Instead, we compare all classi-
fiers with pairwise Wilcoxon signed-rank tests, and form cliques using the Holm
correction (which adjusts family-wise error less conservatively than a Bonferonni
adjustment).

Our code2 reproduces the splits used in this evaluation exactly, and full,
reproducible results are available3. For all smoothing algorithms except the sieve,
we used the standard MATLAB implementations and performed the smoothing
and classification in separate stages. The default parameters given in Table 1 are
those of the Matlab implementations. The sieve is implemented in C and was
similarly isolated from the classification stage.

2 https://github.com/TonyBagnall/uea-tsc
3 http://www.timeseriesclassification.com/Smoothing.php
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We use three baseline classifiers. 1-NN with Euclidean distance is a weak
baseline in a TSC context, but it is still frequently used in research. 1-NN with
DTW is the most common benchmark, although it is important to set the window
through cross validation [15]. This is computationally expensive, although we
use the DTW version described in [19] which speeds up the calculation by orders
of magnitude. All the UCR data are normalised. For consistency, we renormalise
each series after smoothing.

4 Results

We present results for three baseline classifiers with both default smoothing and
tuned smoothing through critical difference diagrams in Figure 2, and average
accuracies are summarised in Table 3. For all three classifiers, smoothing of any
kind provides no benefit. Tuning provides no benefit over using default values,
and in many cases makes things worse due to overfitting.

7 6 5 4 3 2 1

3.6645 ED-MA
3.7237 ED-SIV
3.9474 ED
4.0592 ED-DFT

4.0658ED-SG
4.2632ED-GF
4.2763ED-EXP

7 6 5 4 3 2 1

3.4145 ED
3.5592 ED-SG
3.5855 ED-GF
3.9211 ED-EXP

3.9276ED-MA
4.0724ED-SIV
5.5197ED-DFT

(a) (b)

7 6 5 4 3 2 1

3.1118 DTWCV-SG
3.1118 DTWCV-GF
3.1711 DTWCV
4.0197 DTWCV-MA

4.2303DTWCV-DFT
4.5789DTWCV-EXP
5.7763DTWCV-SIV

7 6 5 4 3 2 1

2.7434 DTWCV
2.875 DTWCV-GF
3.625 DTWCV-SG

4.1053 DTWCV-MA
4.3158DTWCV-EXP
5.0395DTWCV-SIV
5.2961DTWCV-DFT

(c) (d)

7 6 5 4 3 2 1

3.6053 RotF
3.6645 RotF-GF
3.9013 RotF-SG
3.9803 RotF-MA

4.0066RotF-EXP
4.3816RotF-SIV
4.4605RotF-DFT

7 6 5 4 3 2 1

3.3882 RotF
3.4671 RotF-GF
3.5526 RotF-EXP
3.6711 RotF-SG

4.2368RotF-MA
4.4079RotF-SIV
5.2763RotF-DFT

(e) (f)

Fig. 2. Average ranks on 76 UCR problems while smoothing with the six methods
described in Section 2, with default (left) and tuned (right) parameters using the
parameters given in Table 1, for Euclidean distance ((a) and (b)), dynamic time warping
((c) and (d)) and rotation forest ((e) and (f)).

For all six experiments, the classifiers built on unsmoothed data are in the
top clique. For four of the experiments, the unsmoothed classifier is the highest
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Table 3. Average accuracies across the 76 datasets of the default (top) and tuned
(bottom) smoothing methods when using the three benchmark classifiers. Within each
group, classifier are ordered by rank to mirror Figure 2.

Untuned smoothing filters

Accuracy Accuracy Accuracy

ED-MA 0.718 DTWCV-SG 0.77 RotF 0.769
ED-SIV 0.714 DTWCV-GF 0.769 RotF-GF 0.768

ED 0.714 DTWCV 0.771 RotF-SG 0.768
ED-DFT 0.716 DTWCV-MA 0.765 RotF-MA 0.767

ED-SG 0.716 DTWCV-DFT 0.764 RotF-EXP 0.768
ED-GF 0.716 DTWCV-EXP 0.763 RotF-SIV 0.761

ED-EXP 0.717 DTWCV-SIV 0.74 RotF-DFT 0.761

Tuned smoothing filters

Accuracy Accuracy Accuracy

ED 0.714 DTWCV 0.771 RotF 0.769
ED-SG 0.717 DTWCV-GF 0.771 RotF-GF 0.769
ED-GF 0.716 DTWCV-SG 0.769 RotF-EXP 0.77
ED-MA 0.718 DTWCV-MA 0.763 RotF-SG 0.769

ED-EXP 0.719 DTWCV-EXP 0.764 RotF-MA 0.768
ED-SIV 0.716 DTWCV-SIV 0.748 RotF-SIV 0.76

ED-DFT 0.689 DTWCV-DFT 0.735 RotF-DFT 0.753

ranked. Setting the parameter through cross validation is if anything worse than
using a default parameter. Given the order of magnitude more computation
required to tune these parameters, this is surprising, particularly as no smoothing
was one of the options. Further analysis shows that no smoothing was selected
approximately 25% of the time. This could be an indication that the archive
data are simply not suited to smoothing, however even in that case this suggests
that the improvements being found by complex TSC classifiers cannot be easily
explained away by simple, or even costly, attempts to smooth the data.

5 Analysis

We examine whether there are any characteristics of the data that could help
determine whether any of the six types of smoothing would improve performance.
We would expect that smoothing might be more useful for longer series. Figures 3
and 4 show the scatter plot of length against classifier rank for DTWCV and
rotation forest. We find no obvious relationship between the performance of
the unsmoothed classifier and series length. We repeated a similar analysis for
number of instances and classes, but again found no correlation as one should
expect when considering smoothing. Further, we find no significant areas where
particular smoothing methods improve over the others.
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Fig. 3. Ranks per dataset on 76 UCR problems of unsmoothed DTWCV compared to
six untuned smoothed versions plotted against series length. No obvious correlation is
found.
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Fig. 4. Ranks per dataset on 76 UCR problems of unsmoothed rotation forest compared
to six untuned smoothed versions plotted against series length. No obvious correlation
is found.
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6 Conclusion

It has long been a suspicion of many researchers in this field that much of the
improvement seen in complex TSC algorithms could equally be achieved with
comparatively simple preprocessing. Our experiments indicate for the case of
smoothing, this is not true. We have taken six very popular smoothing algorithms
and applied them using sensible default parameters and using extensive extra
computation to discover optimal parameters through cross validation. We have
found no significant difference between smoothed and unsmoothed classification
with three benchmarks. The nature of the UCR data may explain this to a degree:
the data from problems such as image processing will have less noise than, for
example, financial data. We are not claiming that smoothing has no role to play
in the analysis of time series data, merely that the automated application of
smoothing without domain expertise does not on average improve the perfor-
mance of baseline classifiers and that the absence of smoothing cannot explain
the performance of algorithms that outperform the baselines.

Acknowledgement. This work is supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) [grant number EP/M015807/1] and Biotech-
nology and Biological Sciences Research Council [grant number BB/M011216/1].
The experiments were carried out on the High Performance Computing Cluster
supported by the Research and Specialist Computing Support service at the
University of East Anglia and using a Titan X Pascal donated by the NVIDIA
Corporation.

References

1. Y. Chen B. Hu and E. Keogh. Time series classification under more realistic
assumption. In Proc. 13th SIAM International Conference on Data Mining, 2013.

2. A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

3. J. Bangham. Data-sieving hydrophobicity plots. Analytical biochemistry, 174(1):142–
145, 1988.

4. J. Bangham, R. Harvey, P. Ling, and R. Aldridge. Morphological scale-space
preserving transforms in many dimensions. Journal of Electronic Imaging, 5:283–
299, 1996.

5. J. Bangham, P. Ling, and R. Harvey. Scale-space from nonlinear filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(5):520–528, 1996.

6. A. Benavoli, G. Corani, and F. Mangili. Should we really use post-hoc tests based
on mean-ranks? Journal of Machine Learning Research, 17:1–10, 2016.

7. G. Betta, D. Capriglione, G. Cerro, L. Ferrigno, and G. Miele. The effectiveness
of Savitzky-Golay smoothing method for spectrum sensing in cognitive radios.
Proceedings of the 2015 18th AISEM Annual Conference, pages 1–4, 2015.

8. Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen,
and G. Batista. The UEA-UCR time series classification archive.
http://www.cs.ucr.edu/~eamonn/time series data/, 2015.



Can automated smoothing improve TSC classifiers? 11

9. Y. Chou. Statistical Analysis. Holt International, 1975.
10. J. Cooley, P. Lewis, and P. Welch. The fast fourier transform and its applications.

IEEE Transactions on Education, 12(1):27–34, 1969.
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