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The information content of short-term options∗

Ioannis Oikonomou†, Andrei Stancu‡, Lazaros Symeonidis§, and Chardin Wese Simen¶

Abstract

We exploit weekly options on the S&P 500 index to compute the

weekly implied variance. We show that the weekly implied variance

is a strong predictor of the weekly realized variance. In an encom-

passing regression test, it crowds out the information content of the

monthly implied variance. Further tests reveal that the weekly im-

plied variance outperforms not only the monthly implied variance but

also well-established time series models of realized variance. This re-

sult holds both in- and out-of-sample and the forecast accuracy gains

are significant.
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1 Introduction

Several studies document that the variance implied by monthly options is a strong

predictor of the monthly realized variance (e.g., Jiang and Tian, 2005; Carr and Wu,

2009; Busch et al., 2011).1 While this fact is generally well-accepted, we know relatively

little about the forecasting power of short-term implied variance for short-term realized

variance. Although it is tempting to speculate that the same findings will hold for the

shorter horizon, there are a couple of reasons to suggest otherwise. First, short-term

options are routinely discarded in the literature on the grounds that they are illiquid and

noisy. Consequently, their information content is assumed to be limited. Second, for the

sample period of most studies there were very few short-term options available in the

market, making it challenging to obtain a long enough time series of implied variance

(e.g., Jiang and Tian, 2005; Busch et al., 2011). This limitation is important because the

statistical tests may lack power in a short sample. As a work around this issue, some

studies use the monthly implied variance to predict the short-term realized variance (e.g.,

Blair et al., 2001; Pong et al., 2004; Kourtis et al., 2016). Alas, this approach introduces

a mismatch between the maturity of the options and the forecasting horizon. It is unclear

how big an issue this disconnect may be.

In this paper, we exploit weekly option contracts (weeklies), which were launched by

the Chicago Board of Options Exchange (CBOE) in 2005, to study the predictability of

weekly realized variance. Essentially, these option contracts allow market participants to

better manage their short-term risk (e.g., the weekly realized variance). Andersen et al.

(2017) document that weeklies account for nearly 50% of the total trading volume in the

S&P 500 index options in 2015, indicating that these options are quite liquid. We use
1See also the survey by Poon and Granger (2003).
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the Bakshi et al. (2003) estimator to compute the weekly option–implied variance and

analyze its predictive power for the weekly realized variance estimated using 5-minute

sampled data on the S&P 500 index. For our main analysis, we consider the time period

spanning from March 5, 2008 to August 31, 2015.

In a regression of the daily time series of the weekly realized variance on a constant and

the lagged weekly implied variance, we obtain a statistically significant slope estimate and

a high predictive power (Adj R2=64.9%). In an effort to understand the channel through

which this predictability arises, we decompose the realized variance into its continuous and

jump components (Barndorff-Nielsen, 2002). We find that the weekly implied variance

predicts both components. Next, we evaluate the incremental information content of the

monthly implied variance relative to that of the weekly implied variance. To this end,

we formulate and estimate an encompassing model. The regression results suggest that

the weekly implied variance crowds out the orthogonalized monthly implied variance.

Furthermore, the forecasting performance of the weekly implied variance is significantly

better than that of time series models of the heterogeneous autoregressive (HAR) realized

variance family. These results hold both in- and out-of-sample.

We run a battery of tests to assess the robustness of our results. The findings are

unaffected when using a sampling frequency of 1-minute to estimate the realized variance.

Our conclusions are also robust to the method of interpolation used to compute the

implied variance series. Furthermore, the key findings are not driven by the choice of the

implied variance estimator. Indeed, we obtain qualitatively similar results when using

the Britten-Jones and Neuberger (2000) implied variance estimator. Finally, our findings

are qualitatively similar if we extend the sample period back to 1996 and adopt a non-

overlapping monthly sampling scheme.
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Our research relates to the stream of the literature in which the implied variance of

a given maturity is used to predict the realized variance of a shorter horizon. Blair et al.

(2001), Pong et al. (2004), and Kourtis et al. (2016) are relevant studies along those lines.

We confirm their findings that the monthly implied variance predicts the weekly realized

variance. However, we find that there are significant gains in forecasting accuracy once

the maturity of the option contracts and the forecasting horizon are aligned. In fact, our

encompassing regression estimates suggest that the weekly implied variance crowds out

the monthly implied variance. To the best of our knowledge, we are the first to document

this result at the short horizon.

Our study also adds to the broader literature on the predictability of realized variance.

Corsi (2009) proposes the HAR model and documents its superior performance relative to

the random walk model. Andersen et al. (2007) decompose the historical variance terms

of the HAR model into continuous and jump components. Patton and Sheppard (2015)

propose an extension that separately uses positive and negative semivariances. Bollerslev

et al. (2016) extend the HAR model to account for heteroskedastic measurement errors

in realized variance. We show that the weekly implied variance provides significantly

more accurate forecasts of short-term risk than the HAR model and its aforementioned

extensions.

The remainder of this paper proceeds as follows. In Section 2, we describe the method-

ology and the dataset. In Section 3, we discuss the performance of the weekly implied

variance relative to that of the monthly implied variance. In Section 4, we extend the

analysis to various time series models of the HAR family. The robustness checks are

presented in Section 5. We conclude in Section 6.
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2 Methodology and data

In this section, we introduce the methodology used to construct the main variables.

We also discuss the dataset.

2.1 Methodology

2.1.1 Realized variance

We focus on the predictability of next week’s realized variance. We start with the

definition of the intraday return:

rj,k = log

(
Sj,k
Sj,k−1

)
, (1)

where rj,k denotes the intraday return at the end of the kth intraday interval of day j.

Sj,k and Sj,k−1 are the asset prices at the end of the kth and (k− 1)th intraday interval of

trading day j, respectively.

We compute the (annualized) weekly realized variance as follows:

RV w
t+7 = 52×

Nw
t+7−1∑
j=0

m∑
k=1

r2t+7−j,k, (2)

where RV w
t+7 is the (annualized) weekly realized variance for the week ending on day

t + 7. The number 52 indicates that the realized variance estimate is annualized. Nw
t+7

denotes the number of trading days during the week ending on day t + 7. There are m

returns observed on each trading day. The case where k = 1 corresponds to the overnight

return.2

2It is standard in the literature to account for the overnight returns. See Bollerslev et al. (2009),
Drechsler and Yaron (2011), and Bekaert and Hoerova (2014), among others.
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2.1.2 Implied variance

In the literature, the Britten-Jones and Neuberger (2000) estimator is often used to

proxy for the risk-neutral expectation of the total variation of returns. However, this

estimator captures the risk-neutral expectation of the continuous variation that is equal

to the total variation of returns only if the underlying return process does not jump. This

result arises because the total variation is the sum of the continuous and jump variations.

In the presence of jumps, the Britten-Jones and Neuberger (2000) estimator is a biased

estimator of the risk-neutral expectation of the future total variation and the magnitude

of this bias increases with the contribution of jumps to the total variation of returns (Du

and Kapadia, 2013).

Andersen et al. (2007) and Lee and Mykland (2008), among others, use non-parametric

statistical tests to show that the S&P 500 index jumps.3 Du and Kapadia (2013) conduct

an extensive simulation exercise to assess the impact of jumps on the implied variance

and recommend the Bakshi et al. (2003) estimator as a jump-robust estimator of implied

variance. Heeding on their recommendation, we use the Bakshi et al. (2003) formula to

compute the implied variance:4

IV τ
t =

360

τ

[
erf t

τ
360QUADt −

(
erf t

τ
360 − 1− erf t

τ
360

2
QUADt

)2
]
, (3)

where

QUADt =

∫ St

0

2
(
1 + ln

[
St
K

])
K2

Pt(τ,K)dK +

∫ +∞

St

2
(
1− ln

[
K
St

])
K2

Ct(τ,K)dK, (4)

3The documented jumps are not spuriously induced by the fact that the index is not directly tradable.
Prokopczuk and Wese Simen (2016) show that the liquid S&P 500 E-Mini futures contract, which is
tradable, also jumps.

4To make our analysis more comparable to prior studies, we also consider the Britten-Jones and
Neuberger (2000) implied variance. The results are in Subsection 5.3. Note, however, that these findings
should be interpreted cautiously, keeping in mind that this specific estimator is not robust to jumps in
the underlying return process.
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IV τ
t is the (annualized) implied variance of time to maturity τ (expressed in days) ob-

served on day t. Throughout this paper, we use the expressions “weekly” and “monthly”

to denote the case where τ = 7 and τ = 30 calendar days, respectively. rf t is the τ -day

(annualized) discount rate on day t. St is the underlying price on day t. Pt(τ,K) and

Ct(τ,K) denote the price on day t of the European put and call options of time to ma-

turity τ and strike price K, respectively. Note that the formula in equation (4) involves

only out-of-the-money (OTM) options. For each option maturity available on that day,

we compute the Black and Scholes (1973) implied volatility for all OTM options. We then

average the OTM implied volatility estimates of the same maturity. Equipped with this

average implied volatility, denoted σ, we define the variables Kt,L and Kt,U as follows:

Kt,L = Ste
−8σt (5)

Kt,U = Ste
8σt , (6)

where σt is the average implied volatility at time t of all OTM options of the same

maturity.

Similar to Carr and Wu (2009), we linearly interpolate the implied volatilities for

2,000 equally–spaced strike prices between Kt,L and Kt,U defined in equations (5) and

(6), respectively. In practice, the strike prices traded in the market do not completely span

the interval starting at Kt,L and ending at Kt,U , raising the question of extrapolation. We

follow Jiang and Tian (2005) and Carr and Wu (2009), among others, and perform the

nearest neighbourhood extrapolation. To be precise, for strike prices greater (lower) than

Kt,L (Kt,U) but lower (higher) than the lowest (highest) strike available in the market,

we use the implied volatility associated with the lowest (highest) strike available in the
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market. Next, we map the grid of 2,000 implied volatilities into Black and Scholes (1973)

OTM option prices. Finally, we use the trapezoidal rule to numerically evaluate the

integrals in equation (4) and compute the implied variance as in equation (3).5

We repeat the steps above for all maturities observed on that day to obtain the

term structure of implied variances. From this term structure, we linearly interpolate

the implied variance of weekly (IV w) and monthly (IV m) horizons. We emphasize that

we only interpolate between maturities and never extrapolate since this could introduce

spurious spikes in the constant maturity implied variance series.6

2.2 Data

We obtain high-frequency data on the S&P 500 index from Thomson Reuters Tick

History (TRTH) to build the realized variance series. Our interest in high-frequency data,

as opposed to daily data, is motivated by the studies of Andersen and Bollerslev (1998),

Barndorff-Nielsen and Shephard (2002), and Andersen et al. (2003), who recommend the

use of intraday data to efficiently measure realized variance. The dataset spans the period

from January 1996 to August 2015.7 It contains bid and ask quotes pertaining to regular

business hours, i.e., from 8:30 AM to 3:00 PM (Chicago Time). Similar to Bollerslev et al.

(2009) and Bollerslev and Todorov (2011), among others, we use a 5-minute sampling

frequency.8 At the end of each 5-minute interval, we use the most recent mid-quote price
5Note that by using options with strike prices ranging from Kt,L to Kt,U , we essentially truncate

the integrals in equation (4). This choice is consistent with earlier work (e.g., Carr and Wu, 2009). In a
simulation setting, Jiang and Tian (2005) show that the truncation error is negligible if the truncation
points are more than two standard deviations from the current underlying price.

6As a robustness check, we do not linearly interpolate the constant maturity contracts but instead
simply use the option contracts with maturity closest to the target maturity. On average, the actual
maturities of the options are 6 and 27 calendar days for the weekly and monthly horizons, respectively.
Our main findings are unchanged, leading us to conclude that the method of interpolation plays a minimal
role in our results. See Subsection 5.2 for further details.

7The sample period is dictated by the dataset available from TRTH at the time we started this
project.

8As a robustness check, we consider a higher sampling frequency of 1-minute and obtain qualitatively
similar findings. See Subsection 5.1 for further details.
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to proxy for the closing price of that interval.

To estimate our implied variance series, we obtain end-of-day S&P 500 index options

data for the same period from IvyDB OptionMetrics. These options trade on the CBOE

and are of the European type. For each trading day and option contract, the database

contains information about the bid and ask prices, the open interest, the strike price, and

the expiration date. The dataset includes weekly and standard option contracts, among

others. Generally, weekly options expire on Friday of each week, except the third Friday

of each month when the standard options expire.9 Figure 3 of Andersen et al. (2017)

reveals a rapid growth in the trading volume of the weekly contracts from less than 5%

of the total S&P 500 index option volume during the first few years of trading to 50%

towards the end of our sample period (i.e. in 2015).10

Although the OptionMetrics dataset spans the same time period as the TRTH dataset,

we face two limitations that require us to start our sample in March 2008. The first

limitation is due to the fact that weekly options on the S&P 500 index were initiated in

October 2005. As a result, we can only analyze the period beginning from that point

onwards. The second limitation is driven by the way OptionMetrics reports the closing

option and underlying prices. Prior to March 5, 2008, OptionMetrics records derivatives

prices at 3:15 PM (the market closing), whereas the underlying spot price is recorded

at 3:00 PM, introducing a bias in studies that rely on synchronous observations of the
9At the time we started the project, the term structure of weekly options included up to

12 maturities. For further information about weekly options, we refer the interested reader to
the following webpage: http : //www.cboe.com/micro/weeklys/introduction.aspx. For an up-to-
date list of weekly option contracts on offer, we direct the reader to the following link: http :
//www.cboe.com/micro/weeklys/availableweeklys.aspx.

10Absent official data on the identity/profile of market participants who trade weekly options, it is
difficult to definitely ascertain their trading motives. Andersen et al. (2017) do not find a significant
change in the trading activity of these contracts around important macroeconomic news announcements.
This finding suggests that speculation does not seem to be the main driver of their trading activity. This
leaves open the possibility that the increased trading activity in weeklies is primarily driven by a desire
to improve short-term risk management.
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derivatives and underlying prices. To mitigate this issue, we focus on the March 5, 2008

to August 31, 2015 sample period.11,12

We process the options data as follows. We discard observations with missing or

zero prices. We implement this filter on bid and ask prices separately. In doing so, we

address the concern that our dataset includes contracts that are not actively quoted.

As is standard in the literature (e.g., Carr and Wu, 2009), we compute the mid-quote

price of the option, which we refer to as the option price. Next, we remove all option

observations that are in-the-money. We take this step because the computation of the

implied variance only involves OTM option prices (see equation (4)). Furthermore, we

download the discount rates from OptionMetrics. These discount rates are based upon the

London Interbank Offered Rate (LIBOR) and the Eurodollar futures. For each trading

day and option contract, we linearly interpolate the discount rate of the same time to

maturity as the option contract. We then match the discount rates with the panel of

options data. We also match the time series of the daily S&P 500 index prices and that

of the dividend yield, both obtained from OptionMetrics, with the panel of options data.

Our analysis involves daily observations of all key variables. Table 1 presents the

summary statistics of the main series. The weekly and monthly implied volatility have

average (annualized) values of 21.345% and 21.837%, respectively.
11One may argue that we should start our sample period at a later date (e.g., in 2011 as in Andersen

et al., 2017) to allow the trading activity in weekly options to pick up. We also considered this alternative
starting date and reached qualitatively similar results. If one holds the view that our sample period
includes illiquid weeklies, then this low trading activity should work against the predictive power of the
weekly options. Viewed in this way, the gains in forecasting performance we document represent a “worst
case” scenario.

12Once a month, we observe a standard option contract with 7 days left to expiration. Thus, if one
changes the sampling frequency to the monthly level, it is possible to extend the sample period back to
1996 and repeat the main analyses. We explore this possibility in Subsection 5.4 and show that the main
results are robust to this change. We thank the reviewer for suggesting this analysis.
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3 Weekly vs. monthly implied variance

In this section, we examine the in-sample predictive power of the weekly implied

variance for next week’s realized variance and compare it to that of the monthly implied

variance. We also explore the channels through which this predictability arises.

3.1 The information content of the weekly implied variance

3.1.1 Univariate evidence

We begin by evaluating the information content of implied variance for the week ahead

realized variance. To this end, we estimate the following Mincer and Zarnowitz (1969)

regression:

RV w
t+7 = α + βIV x

t + εt+7, (7)

where α is the intercept. β denotes the slope parameter. IV x
t is the implied variance on

day t of time to maturity x, where x can be the weekly (w) or monthly (m) maturity. εt+7

is the residual of the regression at t+ 7. If the implied variance is informative about the

future weekly realized variance, then the slope parameter will be significantly different

from 0.

Starting with the monthly implied variance, Table 2 reports a positive and statistically

significant (t–stat=6.676) slope estimate of 0.785. The explanatory power associated with

this regression (Adj R2=61.6%) confirms that the monthly implied variance predicts the

weekly realized variance.

Turning to the weekly implied variance, we can see that it predicts the future realized

variance with a slope estimate of 0.713 (t–stat=7.240). The corresponding predictive
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power is equal to 64.9%. Several points are worth highlighting. First, the explanatory

power of this regression model is higher than that of the model that relies on the monthly

implied variance. This result indicates that the weekly implied variance has superior pre-

dictive ability for short-term risk than the often-used monthly implied variance. Second,

the slope estimates obtained from these univariate regressions are similar and significantly

different from 1. In the earlier literature (e.g., Canina and Figlewski, 1993; Lamoureux

and Lastrapes, 1993), a slope parameter that is significantly different from 1 was inter-

preted as evidence against the expectations hypothesis. However, Chernov (2007) and

Prokopczuk and Wese Simen (2014) point out that this result can arise in a setting where

the variance risk premium is time-varying.13 It is thus useful to analyze the average

variance risk premium, defined as the difference between the implied variance and the

contemporaneously estimated realized variance (Bollerslev et al., 2009), of each matu-

rity. Table 1 reports an average of 2.280% with a volatility of 4.659% for the (annualized)

weekly variance risk premium and an average of 2.300% with a volatility of 3.107% for the

(annualized) monthly variance risk premium. Thus, there is evidence of a non-zero and

time-varying variance risk premium in both the weekly and monthly implied variances.

3.1.2 Multivariate evidence

The preceding analysis shows that, when used alone, the weekly and monthly implied

variance predict the future weekly realized variance. However, it does not directly shed

light on the incremental information content of these two predictors.
13Note that the high persistence of the implied variance series, along with the short sample, could

also easily generate a spurious mean-reversion leading to a slope coefficient lower than 1. We thank the
reviewer for providing this insight.
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To address this question, we estimate the following model:

RV w
t+7 = α + βIV w

t + γν̂
m/w
t + εt+7, (8)

where α is the intercept. β and γ are the slope parameters. IV w
t is the weekly implied

variance on day t. ν̂m/wt is the estimated residual at time t of the regression of the monthly

implied variance on a constant and the weekly implied variance (see equation (9)):14

IV m
t = φ0 + φ1IV

w
t + ν

m/w
t . (9)

The last row of Table 2 reports that the slope estimate associated with the weekly com-

ponent is significant (t–stat=7.025), whereas that of the orthogonalized monthly implied

variance is not (t–stat=0.631). Moreover, the explanatory power of the encompassing

model (Adj R2=65.0%) is very similar to that of the univariate model, which uses the

weekly implied variance as a forecasting variable (Adj R2=64.9%). Taken as a whole,

the results suggest that the orthogonalized monthly implied variance does not add to the

predictive power of the weekly implied variance. These findings are important because

empirical studies routinely discard short-term options data on the grounds that they are

noisy and thus uninformative. Our results caution that, by following this approach, one

throws away valuable information about short-term risk. These findings are also inter-

esting given the growing practice of using the monthly implied variance to predict the

short-term realized variance. Our evidence reveals that this methodology may not be the

best way of modeling the short-term realized variance.
14In an earlier version of the paper, we included the monthly implied variance rather than its orthog-

onalized component with respect to the weekly implied variance. While this analysis led to qualitatively
similar conclusions, it was vulnerable to the concern that the results are difficult to interpret given the
high correlation between the two implied variance series. By using the orthogonalized component of the
monthly implied variance, we assuage this concern. We thank the reviewer for suggesting this analysis.
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3.2 Dissecting the predictability

Having established the in-sample predictive power of the weekly implied variance for

weekly realized variance, we next explore the channel through which this predictability

arises.

3.2.1 Framework

Our starting point is the theory of quadratic variation (Barndorff-Nielsen and Shep-

hard, 2002), which posits that the realized variance of asset returns can be decomposed

into components linked to (i) the significant continuous variation and (ii) the significant

jump variation of the asset returns. More formally, we have:

RV w
t+7 = Cw

t+7 + Jwt+7, (10)

where Cw
t+7 and Jwt+7 are the significant weekly continuous and jump variations of the

asset returns computed over the week ending on day t+ 7, respectively.

This insight suggests that there are two channels through which short-term implied

variance may be informative about next week’s realized variance. The first possibility

is that the weekly implied variance contains information about the significant continu-

ous variation of returns. The second possibility is that the weekly implied variance is

informative about the significant jump variation.

Barndorff-Nielsen and Shephard (2002) propose the bipower variation as an estimator

of the continuous variation of asset returns. Andersen et al. (2012) subsequently establish

that the MedRV estimator has better properties than the bipower variation. Thus, we

13



use the MedRV to estimate the continuous variation of returns:

CV w
t+7 =

52×mπ
(6− 4

√
3 + π)(m− 2)

Nw
t+7−1∑
j=0

m∑
k=3

median(|rt+7−j,k|, |rt+7−j,k−1|, |rt+7−j,k−2|)2︸ ︷︷ ︸
MedRV Estimator

,

(11)

where median(·) is the median operator and all other variables are as previously defined.

Next, we modify the test statistic presented in Huang and Tauchen (2005), which relies

on the bipower variation and the realized quarticity to take advantage of the more robust

estimators of the continuous variation (MedRV ) and realized quarticity (MedRQ). We

are thus able to compute the significant continuous and jump variations:

zwt+7 = m1/2

 RV wt+7−CV wt+7

RV wt+7√
0.96max(1,

MedRQwt+7

(CV wt+7)
2 )

 (12)

MedRQw
t+7 = Aw ×

Nw
t+7−1∑
j=0

m∑
k=3

median(|rt+7−j,k|, |rt+7−j,k−1|, |rt+7−j,k−2|)4 (13)

Aw =
522 × 3m2π

(72− 52
√
3 + 9π)(m− 2)

(14)

Cw
t+7 = Izwt+7>φ1−α

CV w
t+7 + Izwt+7≤φ1−αRV

w
t+7 (15)

Jwt+7 = Izwt+7>φ1−α
(RV w

t+7 − CV w
t+7), (16)

where φ1−α is the critical value from the cumulative standard normal distribution at

confidence level 1− α. I is the indicator function. Similar to Andersen et al. (2007), we

employ α = 99.9% throughout this paper.

Figures 1 to 3 show the daily time series of the realized variance, the significant

continuous variation, and the significant jump variation, respectively. Consistent with

the existing evidence (e.g., Andersen et al., 2007), the realized variance and continuous
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variation series are quite persistent and increase during turmoil periods, such as the 2007–

2009 financial crisis. Moreover, from Figure 3 we see that the jump intensity varies over

time and significant jumps tend to cluster during more volatile periods.

3.2.2 Significant continuous variation

We regress the time series of the significant continuous variation on a constant and

the lagged implied variance series:

Cw
t+7 = α + βIV x

t + εt+7, (17)

where all variables are as previously defined.

Panel A of Table 3 shows that, in univariate regressions, each maturity of the implied

variance predicts the significant continuous component of the realized variance. This

conclusion is borne out by the significant slope estimates in the univariate regressions.

Similar to our analysis of the realized variance, we find that the weekly implied variance

has the higher predictive power (Adj R2=63.6%) of the two variables. The encompassing

model (last two rows of Panel A) yields an Adj R2 of 63.7%, which is very close to that

of the univariate model which relies on the weekly implied variance alone.

3.2.3 Significant jump variation

We now estimate the following predictive regression:

Jwt+7 = α + βIV x
t + εt+7, (18)

where all variables are as previously defined.
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Panel B of Table 3 documents that it is harder to accurately model the significant

jump variation than the significant continuous variation. This conclusion is evidenced

by the lower explanatory power for the significant jump variation compared to that of

the significant continuous variation (see Panel A).15 We can see that each maturity of

the implied variance individually predicts the significant weekly jump variation with very

similar explanatory power. However, the encompassing regression reveals that the weekly

implied variance crowds out the orthogonalized monthly implied variance.

4 Implied variance vs. time series models

The previous section shows that the weekly implied variance is superior to the monthly

implied variance in-sample. However, it is not clear how it compares to other sophisticated

time series models proposed in the literature. In this section, we present the competing

models. Next, we assess their in- and out-of-sample predictive performance.

4.1 Introducing the competing models

We use the heterogeneous autoregressive (HAR) realized variance model (Corsi, 2009)

as our benchmark:

RV w
t+7 = α + βRV d

t + γRV w
t + δRV m

t + εt+7, (19)

where α is the intercept. β, γ, and δ are the slope parameters. RV d
t and RV m

t are the

(annualized) daily and monthly realized variance at time t, respectively. These series are
15Using various time series models, Busch et al. (2011) document a similar result at the monthly

horizon.
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computed using the following estimators:

RV d
t = 252×

m∑
k=1

r2t,k (20)

RV m
t = 12×

Nm
t −1∑
j=0

m∑
k=1

r2t−j,k, (21)

where the numbers 252 and 12 serve to annualize the daily and monthly realized variance

estimates, respectively. Nm
t is the number of trading days in the calendar month ending

on day t.

Building on the work of Andersen et al. (2007), we also consider the continuous

heterogeneous autoregressive (CHAR) model, in which each historical variance in the

HAR model is replaced with the continuous variation of the corresponding horizon:

RV w
t+7 = α + βCV d

t + γCV w
t + δCV m

t + εt+7, (22)

where CV d
t and CV m

t are the (annualized) daily and monthly continuous variations at

time t, respectively:

CV d
t =

252×mπ
(6− 4

√
3 + π)(m− 2)

m∑
k=3

median(|rt,k|, |rt,k−1|, |rt,k−2|)2 (23)

CV m
t =

12×mπ
(6− 4

√
3 + π)(m− 2)

Nm
t −1∑
j=0

m∑
k=3

median(|rt−j,k|, |rt−j,k−1|, |rt−j,k−2|)2.

(24)

We also analyze the performance of the HAR–J model (Andersen et al., 2007), which
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augments the HAR model with the lagged significant daily jump variation:

RV w
t+7 = α + βRV d

t + γRV w
t + δRV m

t + ηJdt + εt+7, (25)

where α, β, γ, δ, and η are parameters to estimate. Jdt is the (annualized) statistically

significant daily jump variation at time t computed as follows:

Jdt = Izdt>φ1−α(RV
d
t − CV d

t ) (26)

zdt = m1/2

 RV dt−CV dt
RV dt√

0.96max(1, MedRQdt
(CV dt )

2 )

 (27)

MedRQd
t = Ad ×

m∑
k=3

median(|rt,k|, |rt,k−1|, |rt,k−2|)4 (28)

Ad =
2522 × 3m2π

(72− 52
√
3 + 9π)(m− 2)

. (29)

We also evaluate the forecasting performance of the HAR–C–J model (Andersen et al.,

2007). Essentially, this model decomposes each historical variance in the HAR model into

the corresponding significant continuous and jump variations:

RV w
t+7 = α + βCd

t + γJdt + δCw
t + ηJwt + θCm

t + κJmt + εt+7, (30)

where α, β, γ, δ, η, θ, and κ are parameters to estimate. Cd
t and Cm

t are the corresponding

daily and monthly significant continuous variation at time t, respectively. Jmt denotes

the (annualized) monthly significant jump variation at time t. We obtain Cd
t , Cm

t , and

Jmt as follows:

Cd
t = Izdt>φ1−αCV

d
t + Izdt≤φ1−αRV

d
t (31)
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Cm
t = Izmt >φ1−αCV

m
t + Izmt ≤φ1−αRV

m
t (32)

Jmt = Izmt >φ1−α(RV
m
t − CV m

t ) (33)

zmt = m1/2

 RVmt −CVmt
RVmt√

0.96max(1, MedRQmt
(CVmt )2

)

 (34)

MedRQm
t = Am ×

Nm
t −1∑
j=0

m∑
k=3

median(|rt−j,k|, |rt−j,k−1|, |rt−j,k−2|)4 (35)

Am =
122 × 3m2π

(72− 52
√
3 + 9π)(m− 2)

. (36)

Patton and Sheppard (2015) document the good empirical performance of the semi-

variance heterogeneous autoregressive (SHAR) model. Essentially, this model modifies

the HAR specification by decomposing each historical variance term into positive and

negative semivariance components:16

RV w
t+7 = α + βSV d+

t + γSV d−
t + δSV w+

t + ηSV w−
t + θSV m+

t + κSV m−
t + εt+7, (37)

where α, β, γ, δ, η, θ, and κ are parameters to estimate. SV d+
t , SV w+

t , and SV m+
t

are the positive (annualized) daily, weekly, and monthly semivariances at time t, respec-

tively. SV d−
t , SV w−

t , and SV m−
t are the negative (annualized) daily, weekly, and monthly

semivariances at time t, respectively. We compute these variables as follows:

SV d+
t = 252×

m∑
k=1

r2t,kIrt,k>0 (38)

SV d−
t = 252×

m∑
k=1

r2t,kIrt,k<0 (39)

SV w+
t = 52×

Nw
t −1∑
j=0

m∑
k=1

r2t−j,kIrt−j,k>0 (40)

16We have also considered more parsimonious specifications of the SHAR model where we only de-
compose the historical variance of a specific horizon into positive and negative semivariance components.
We found very little to distinguish between these alternative specifications.
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SV w−
t = 52×

Nw
t −1∑
j=0

m∑
k=1

r2t−j,kIrt−j,k<0 (41)

SV m+
t = 12×

Nm
t −1∑
j=0

m∑
k=1

r2t−j,kIrt−j,k>0 (42)

SV m−
t = 12×

Nm
t −1∑
j=0

m∑
k=1

r2t−j,kIrt−j,k<0. (43)

4.2 In-sample evidence

Table 4 shows the in-sample forecasting performance of each model. Starting with

the HAR model, we can see that it yields an explanatory power of 59.8%. The CHAR

model yields a comparable explanatory power of 59.6%. The fit of the HAR–J model

to the data (Adj R2=59.8%) is similar to that of the HAR model. This result arises

because the exposure to the significant daily jump variation is not statistically significant.

Turning to the HAR–C–J and SHAR models, we can see that they slightly improve on the

benchmark HAR model as evidenced by their Adj R2s of 60.8% and 60.7%, respectively.

This conclusion is consistent with the in-sample finding of Patton and Sheppard (2015).

Comparing the Adj R2s in Tables 2 and 4, we can see that the weekly implied variance

achieves the highest explanatory power (Adj R2=64.9%). This result leads us to conclude

that the weekly implied variance performs better than the HAR model and its extensions

in-sample.

4.3 Out-of-sample evidence

We next investigate whether the in-sample predictability results also extend out-of-

sample. To this end, we define the models in equation (7) based on the IV w and IV m as

the IVW and IVM models, respectively. We use a rolling window of four years of daily
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data to estimate the forecasting models in equations (7), (19), (22), (25), (30), and (37).17

We then use all relevant information available in real-time to generate the conditional

expectation of next week’s realized variance. Similar to Bollerslev et al. (2016), we subject

these forecasts to the “insanity filter” to guard against implausible variance forecasts. If

the forecast is higher (lower) than the highest (lowest) weekly realized variance observed

in the estimation window, we set the forecast to the average weekly realized variance

in the estimation window. This filter also enables us to avoid the situation where the

variance forecast could be negative.18

Repeating the steps above for each rolling window, we obtain the time series of the

out-of-sample variance forecasts, which we then compare to the realized variance. We

compute the mean squared error (MSE) and quasi-likelihood (QLIKE) loss functions

as follows:

MSE =
1

T

T∑
t=1

(
RV w

t+7 − Et(RV w
t+7)
)2 (44)

QLIKE =
1

T

T∑
t=1

(
RV w

t+7

Et(RV
w
t+7)
− log

RV w
t+7

Et(RV
w
t+7)
− 1

)
, (45)

where T is the total number of out-of-sample forecasts. Et(RV w
t+7) is the forecast at time

t of the variance to be realized at t+ 7. All other variables are as previously defined.

Patton (2011) shows that these two loss functions are robust to the presence of noise in

the proxy used for the unobservable variance, making them well-suited for our analysis.19

Table 5 reports the ratio of the loss function (name in row) associated with the model

(name in column) over that of the benchmark HAR model. An entry equal to 1 indicates
17A window of four years is consistent with the research of Bollerslev et al. (2016) and Patton and

Sheppard (2015).
18As a robustness check, we remove the filter and obtain similar results.
19In Subsection 5.1, we further discuss the implications of measurement errors.
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that the model does as well as the benchmark HAR model. Entries lower than 1 suggest

that the model achieves lower average forecast errors than the HAR model. Conversely,

entries greater than 1 indicate that the average forecast errors of the model are higher

than those of the HAR model.

Focusing on the entries reported for the IVW model, we can see that the MSE and

QLIKE ratios are equal to 0.797 and 0.870, respectively. This set of numbers reveals that

a forecasting model based on the weekly implied variance reduces the average forecast

errors of the benchmark HAR model by 20.3% (MSE) and 13.0% (QLIKE). Looking

across the competing models, we observe that their performance is generally inferior to

that of the weekly implied variance.

We formally test the null hypothesis that the average forecast loss associated with

the weekly implied variance is equal to or greater than that of the best forecasting model

among its competitors (IVM, HAR, CHAR, HAR–J, HAR-C–J, and SHAR). The alter-

nate hypothesis is that the weekly implied variance delivers lower average forecast errors

than its competitors. To implement this test, we modify the Reality Check of White

(2000) as in Bollerslev et al. (2016). In our empirical implementation, we use the station-

ary bootstrap of Politis and Romano (1994) with 9,999 re-samplings and an average block

length of 10.20 We find that the null hypothesis is rejected at the 5% significance level

with p-values of 1.9% and 1.6% for the MSE and QLIKE loss functions, respectively.

We thus conclude that the weekly implied variance achieves significantly lower forecasting

errors relative to its competitors.
20We experiment with different block lengths and obtain very similar results.
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5 What about ...

This section presents several robustness checks. First, we explore whether our results

are affected by measurement errors in the realized variance estimates. Second, we examine

the impact of potential errors induced by the method of interpolation we use to obtain the

implied variance series. Third, we assess the sensitivity of our findings to the estimator

of implied variance. Fourth, we consider a longer sample period that dates back to 1996.

Fifth, we analyze the predictability of quarterly realized variance.

5.1 The noise in the realized variance?

Bollerslev et al. (2016) propose a forecasting model that extends the HAR model by

taking into account the measurement errors in the historical variance. These errors arise

from the fact that the historical variance is not directly observable. Thus, one needs

to estimate the historical variance before using it for forecasting, leading to the errors-

in-variables problem. The authors introduce a modeling framework, termed HAR–RQ,

which aims to capture the heteroskedasticity of the measurement errors and improve the

realized variance forecasts:21

RV w
t+7 = α + (β + γ

√
MedRQd

t )RV
d
t + (δ + η

√
MedRQw

t )RV
w
t

+(θ + κ
√
MedRQm

t )RV
m
t + εt+7, (46)

21Bollerslev et al. (2016) use a square root specification for the measurement error correction on the
basis that it has an imbued robustness. We also experiment with the logarithmic specification and find
it delivers inferior forecasting performance compared to the square root specification. This finding is
consistent with the authors’ argument and their own empirical results.

23



where α is the intercept. β, γ, δ, η, θ, and κ are slope parameters.22 All other variables

are as previously defined.

Using the same methodology as before, we analyze the out-of-sample predictive per-

formance of the HAR–RQ model. Consistent with Bollerslev et al. (2016), Table 5 shows

that this model yields more accurate forecasts than the CHAR, HAR–J, and HAR–C–

J models. However, its performance is inferior to that of the weekly implied variance,

indicating that the short-term implied variance provides more accurate forecasts than

the HAR–RQ model. Our untabulated analysis also reveals that the difference in the

performance of the two models is statistically significant.

In addition, we consider more parsimonious specifications of the HAR–RQ model in

equation (46), namely: the HAR–RQ–D (equation(47)), HAR–RQ–W (equation(48)),

and HAR–RQ–M (equation(49)):

RV w
t+7 = α + (β + γ

√
MedRQd

t )RV
d
t + δRV w

t + θRV m
t + εt+7 (47)

RV w
t+7 = α + βRV d

t + (δ + η
√
MedRQw

t )RV
w
t + θRV m

t + εt+7 (48)

RV w
t+7 = α + βRV d

t + δRV w
t + (θ + κ

√
MedRQm

t )RV
m
t + εt+7. (49)

Our untabulated analysis reveals that these parameterizations do not outperform the

weekly implied variance. For instance, the HAR–RQ–D and HAR–RQ–W models yield

MSE (QLIKE) loss ratios of 0.864 (0.917) and 0.861 (0.902), respectively. While the

HAR–RQ–W performs better than the more general HAR–RQ specification in equation

(46), a finding consistent with the work of Bollerslev et al. (2016), it does not outperform

the weekly implied variance.
22Bollerslev et al. (2016) use the realized quarticity as defined in Barndorff-Nielsen (2002) rather than

the more robust MedRQ estimator of Andersen et al. (2012). We also repeat the analysis using the same
estimator as Bollerslev et al. (2016). The results are qualitatively similar.
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From a theoretical standpoint, the noise in the realized variance series should be larger

at lower sampling frequencies (Barndorff-Nielsen, 2002). Thus, by sampling the data at

finer frequencies, one should be able to dampen the effect of the noise. This insight

motivates us to increase the sampling frequency from 5-minute to 1-minute and repeat

our out-of-sample analysis. Table 6 points to the same conclusion as for Table 5: the

weekly implied variance yields the highest improvement in forecast accuracy.

5.2 The method of interpolation?

We obtain our implied variance series of constant maturity by applying a linear in-

terpolation across maturities. It is thus interesting to assess the sensitivity of our results

to the method of interpolation. To this end, we consider the nearest neighborhood inter-

polation method as an alternative approach. Essentially, we use the variance implied by

option contracts of maturity closest to 1 week (month) in order to estimate the implied

variance of the weekly (monthly) maturity. With this new time series, we repeat our out-

of-sample analysis. The results in Table 7 confirm our main findings presented in Table

5. The weekly implied variance is a strong predictor of the weekly realized variance. It

reduces the forecasting error of the benchmark HAR model by 33.7% and 18.9% when

considering the MSE and QLIKE loss functions, respectively. Moreover, the weekly

implied variance outperforms the monthly implied variance as well as the other variance

forecasting models of the HAR family.

5.3 The implied variance estimator?

Our interest in the Bakshi et al. (2003) estimator is motivated by its robustness

to jumps (Du and Kapadia, 2013). However, most studies use the Britten-Jones and
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Neuberger (2000) estimator, making our results difficult to directly compare to those in

the extant literature (e.g., Jiang and Tian, 2005; Taylor et al., 2010). As such, we use

the numerical scheme presented in Subsection 2.1.2 to implement the Britten-Jones and

Neuberger (2000) estimator of implied variance:23

IV τ
t =

2erf t
τ

360

τ
360

(∫ St

0

Pt(τ,K)

K2
dK +

∫ ∞
St

Ct(τ,K)

K2
dK

)
, (50)

where all variables are as previously defined.

We use the resulting time series to repeat our out-of-sample analysis. The results in

Table 8 show that the loss ratios associated with the implied variance series are generally

higher than those based on the Bakshi et al. (2003) estimator (see Table 5). This is not

surprising since the Britten-Jones and Neuberger (2000) estimator is biased in the pres-

ence of jumps (Du and Kapadia, 2013), resulting in larger forecast errors. However, most

important for our purpose, the weekly implied variance series outperforms its monthly

counterpart and all the competing models of the HAR family. This is true for both the

MSE and the QLIKE loss functions. Overall, these results are consistent with our main

findings presented in Table 5.
23Generally in the literature, the squared value of the volatility index (VIX) is employed instead of

the monthly implied variance series computed using the Britten-Jones and Neuberger (2000) estimator
and the numerical method presented in Subsection 2.1.2. It is interesting to compare the performance of
the implied variance estimates obtained from these two approaches. By doing so, one can provide insight
on the impact of the numerical method on the results. Untabulated results show that the time series
of the square of the VIX and the Britten-Jones and Neuberger (2000) series of monthly maturity we
computed are highly correlated and very similar. Empirically, the squared VIX series yields a QLIKE
loss ratio of 1.251, which is comparable to the 1.217 figure based on the monthly implied variance using
the Britten-Jones and Neuberger (2000) estimator (see Table 8). We thus conclude that the numerical
method does not have a major impact on the results.
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5.4 A longer sample period?

Our main analysis focuses on the period following the introduction of weekly options.

However, one could extend the sample period back to January 1996 since, each month,

we have one observation of a standard option with seven days left to maturity (i.e., a

standard option eventually becomes a weekly option once a month). We can thus check

whether the main results hold in the extended sample period from January 4, 1996 to

August 31, 2015. Note that, by extending the sample period to 1996, we are forced to

specify the regressions to the monthly frequency.

Accordingly, we sample the implied variance series one week before the expiration

of the closest to expiration standard option. We use this new dataset to repeat our

main analyses. Tables A.1–A.4 in the Online Appendix confirm our main findings. In

particular, the weekly implied variance outperforms the monthly implied variance and

the recently proposed time series models of the HAR family. This finding holds both in-

and out-of-sample.

5.5 A longer forecasting horizon?

Up to this point, our results show that, if one wants to predict the realized variance

over the next week, it is better to use options with the same maturity as the forecasting

horizon as opposed to simply using monthly options, the usual practice in the literature.

Naturally, one may wonder: Is this a more general phenomenon? For instance, does the

quarterly implied variance outperform the monthly implied variance when it comes to

predicting the quarterly realized variance? Although this is not the main goal of our

study, it is interesting to explore this possibility.24

24We thank the reviewer for suggesting this analysis.
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We compute the (annualized) quarterly realized variance as follows:

RV q
t+90 = 4×

Nq
t+90−1∑
j=0

m∑
k=1

r2t+90−j,k, (51)

where RV q
t+90 is the (annualized) quarterly realized variance for the quarter ending on

day t + 90. The number 4 indicates that the realized variance estimate is annualized.

N q
t+90 indicates the number of trading days during the quarter ending on day t+ 90.

Next, we estimate the following variance forecasting regression:

RV q
t+90 = α + βIV x

t + εt+90, (52)

where α is the intercept. β denotes the slope parameter. IV x
t is the implied variance on

day t of time to maturity x, where x can be the quarterly (q) or monthly (m) maturity.

εt+90 is the residual of the regression at t+ 90.

Given the large amount of overlap between consecutive daily observations of the re-

alized variance, we sample all data at the quarterly frequency to obtain non-overlapping

data samples. By taking this step, we address concerns related to the overlapping obser-

vation biases that typically plague long-horizon regressions. Unfortunately, this choice

means that we have a very limited sample of independent observations. We attempt to

mitigate this issue by extending the sample period to 1996, as in Subsection 5.4. Nonethe-

less, the results of the in-sample analysis should be interpreted with caution.25 Table A.5

in the Online Appendix shows that, in the univariate regressions, the quarterly implied

variance yields an Adj R2 of 17.8%, which is slightly higher than that of the monthly

implied variance.
25Another implication of the limited sample size is that we are not able to carry out a reliable out-of-

sample analysis.
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Our working hypothesis is that the quarterly implied variance contains all relevant

information to predict the quarterly realized variance. Consequently, the orthogonal

component of the monthly implied variance with respect to the quarterly implied variance

should not contain information about the future quarterly realized variance. This insight

motivates the following encompassing model:

RV q
t+90 = α + βIV q

t + γν̂
m/q
t + εt+90, (53)

where α is the intercept. β and γ are the slope parameters. IV q
t is the implied variance

on day t of quarterly time to maturity. ν̂
m/q
t is the estimated residual at time t of

the regression of the monthly implied variance on a constant and the quarterly implied

variance (see equation (54)):

IV m
t = φ0 + φ1IV

q
t + ν

m/q
t . (54)

The results presented in the last row in Table A.5 of the Online Appendix are con-

sistent with our main hypothesis. Namely, the orthogonalized monthly implied variance

does not add to the information content of the quarterly implied variance.

6 Conclusion

We exploit weekly options on the S&P 500 index to construct the weekly implied

variance series and explore its information content for predicting short-term realized

variance. Our results reveal that the weekly implied variance is a powerful predictor of

future weekly realized variance. Out-of-sample, the weekly implied variance outperforms
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not only the monthly implied variance but also the HAR model and its various extensions.

Our evidence carries implications for both academics and practitioners. For practi-

tioners, it would be interesting for the Chicago Board of Options Exchange (CBOE) to

compute and disseminate the time series of the weekly implied volatility index. This

series, which would sit alongside the popular 30-day volatility index, would be useful for

market participants to better gauge and manage short-term risk. For academics, our

results suggest that one would benefit from not discarding short-term options on the

grounds that they are illiquid and thus uninformative. Our analysis clearly shows that

these options are more informative about future short-term variance than the monthly

options that have been analyzed.
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Table 1: Descriptive statistics

This table presents key summary statistics. IV w and IV m denote the (annualized) implied variance

of weekly, and monthly horizons, respectively. RV d, RV w, and RV m denote the (annualized) realized

variance of daily, weekly, and monthly horizons, respectively. V RPw and V RPm are the weekly and

monthly variance risk premia, respectively. Similar to Bollerslev et al. (2009), the variance risk premium

of a given maturity is defined as the difference between the implied variance of that maturity and the

contemporaneously computed realized variance of the same maturity. Returns data are sampled at the

5-minute frequency. Mean is the average value of the daily time series of the variable. Std, Skew, and

Kurt denote the standard deviation, skewness, and kurtosis of the variable, respectively.

Mean Std Skew Kurt
√
IV w 21.345% 11.850% 2.404 10.218√
IV m 21.837% 10.996% 2.257 9.088√
RV d 15.177% 11.429% 2.967 15.388√
RV w 15.633% 11.121% 2.903 14.288√
RV m 15.957% 10.635% 2.740 12.146

V RPw 2.280% 4.659% 0.506 40.845
V RPm 2.300% 3.107% 1.109 29.283
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Table 2: In-Sample results: Implied variance

This table contains the results of regressions of the daily time series of the (annualized) weekly realized

variance on a constant and the lagged forecasting variable(s). α denotes the intercept parameter. IV w

and IV m are the Bakshi et al. (2003) weekly and monthly implied variances, respectively. The last two

rows show the results from a multiple regression of the weekly realized variance on a constant, the lagged

weekly implied variance and the lagged orthogonal component of the monthly implied variance (i.e., the

estimated residual series from a regression of the monthly implied variance on a constant and the weekly

implied variance). We present in parentheses the Newey and West (1987) t-statistics with 10 lags. Adj

R2 is the adjusted R-squared of the regression model. Returns are sampled at the 5-minute frequency.

α IV w IV m Adj R2

-0.005 0.713 0.649
(-1.376) (7.240)
-0.010 0.785 0.616
(-2.140) (6.676)
-0.005 0.713 0.137 0.650
(-1.338) (7.025) (0.631)
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Table 3: Continuous vs. jump variation

Panel A (Panel B) presents the results of regressions of the daily time series of the annualized significant

weekly continuous (jump) variation on a constant and the lagged variable(s). α denotes the intercept

parameter. IV w and IV m are the Bakshi et al. (2003) weekly and monthly implied variances, respectively.

The last two rows of Panel A (Panel B) present the results from a multiple regression of the significant

weekly continuous (jump) variation on a constant, the lagged weekly implied variance, and the lagged

orthogonal component of the monthly implied variance. The latter corresponds to the residual series

from a regression of the monthly implied variance on a constant and the weekly implied variance. We

present in parentheses the Newey–West t-statistics with 10 lags. Adj R2 is the adjusted R-squared of

the regression. Returns are sampled at the 5-minute frequency.

α IV w IV m Adj R2

Panel A: Significant continuous variation

-0.007 0.695 0.636
(-1.728) (6.924)
-0.011 0.764 0.602
(-2.424) (6.455)
-0.007 0.695 0.119 0.637
(-1.689) (6.755) (0.535)

Panel B: Significant jump variation

0.002 0.018 0.103
(6.280) (3.121)
0.001 0.021 0.109
(4.264) (2.840)
0.002 0.018 0.018 0.108
(6.151) (3.031) (1.026)
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Table 4: In-sample results: Time series models

This table contains the results of regressions of the daily time series of the (annualized) weekly realized

variance on a constant and the lagged forecasting variable(s). α denotes the intercept parameter. RV d,

RV w, and RV m denote the (annualized) daily, weekly, and monthly realized variance series, respectively.

C and J indicate the (annualized) significant continuous and (annualized) significant jump variations,

respectively. The associated superscripts indicate that we compute these quantities for the daily (d),

weekly (w), and monthly (m) horizons, respectively. SV d+ and SV d− are the (annualized) positive

and negative daily semivariances, respectively. SV w+ and SV w− denote the (annualized) positive and

negative weekly semivariances, respectively. SV m+ and SV m− are the (annualized) positive and negative

monthly semivariances, respectively. We present in parentheses the Newey and West (1987) t-statistics

with 10 lags. Adj R2 is the adjusted R-squared of the regression. Returns are sampled at the 5-minute

frequency.

HAR CHAR HAR-J HAR-C-J SHAR

α 0.005 0.007 0.005 0.002 0.006
(2.592) (3.271) (2.816) (0.464) (2.620)

RV d 0.342 0.343
(2.650) (2.607)

RV w 0.216 0.215
(3.254) (3.214)

RV m 0.311 0.310
(3.679) (3.669)

Cd 0.340 0.338
(2.603) (2.705)

Cw 0.229 0.219
(3.387) (2.938)

Cm 0.299 0.298
(3.514) (3.483)

Jd -0.084 0.443
(-0.397) (3.070)

Jw -1.911
(-1.255)

Jm 5.292
(1.297)

SV d+ 0.075
(0.704)

SV d− 0.482
(2.851)

SV w+ -0.081
(-0.142)

SV w− 0.577
(1.085)

SV m+ 0.084
(0.076)

SV m− 0.546
(0.543)

Adj R2 0.598 0.596 0.598 0.608 0.607
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Table 5: Out-of-sample results

This table presents the ratio of the average loss of each model over that of the HAR model. We use a

rolling window of four years of daily data to estimate the parameters of the forecasting models. HAR

denotes the forecasting model that uses the daily, weekly, and monthly lagged realized variance series

to predict the weekly realized variance. IVW and IVM are the forecasting models based on the Bakshi

et al. (2003) weekly and monthly implied variances, respectively. CHAR is the continuous heterogeneous

autoregressive model. HAR-J extends the HAR model by including the significant lagged daily jump

variation. The HAR-C-J model decomposes the realized variances in the HAR model into their significant

continuous and jump components. The SHAR model extends the HAR by splitting the lagged historical

variance terms into the corresponding positive and negative semivariance components. HAR-RQ takes

into account the heteroskedasticity of the measurement error in all three maturities of lagged realized

variance. Similar to Bollerslev et al. (2016), we proxy the heteroskedasticity of the measurement error in

the realized variance with the square root of the realized quarticity of corresponding maturity. Returns

are sampled at the 5-minute frequency.

IVW IVM CHAR HAR-J HAR-C-J SHAR HAR-RQ

MSE 0.797 0.955 1.012 1.001 0.998 0.887 0.836
QLIKE 0.870 1.049 1.022 1.000 1.016 0.951 0.939
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Table 6: Out-of-sample results (1-minute sampling frequency)

This table presents the ratio of the average loss of each model over that of the HAR model. We use a

rolling window of four years of daily data to estimate the parameters of the forecasting models. HAR

denotes the forecasting model that uses the daily, weekly, and monthly lagged realized variance series to

predict the future weekly realized variance. IVW and IVM are the forecasting models based on the Bakshi

et al. (2003) weekly and monthly implied variances, respectively. CHAR is the continuous heterogeneous

autoregressive model. HAR-J extends the HAR model by including the significant lagged daily jump

variation. The HAR-C-J model decomposes the realized variances in the HAR model into their significant

continuous and jump components. The SHAR model extends the HAR by splitting the lagged historical

variance terms into the corresponding positive and negative semivariance components. HAR-RQ takes

into account the heteroskedasticity of the measurement error in all three maturities of lagged realized

variance. Similar to Bollerslev et al. (2016), we proxy the heteroskedasticity of the measurement error in

the realized variance with the square root of the realized quarticity of corresponding maturity. Returns

are sampled at the 1-minute frequency.

IVW IVM CHAR HAR-J HAR-C-J SHAR HAR-RQ

MSE 0.791 1.013 0.936 1.014 1.002 1.021 0.883
QLIKE 0.897 1.145 1.159 1.024 0.970 0.948 0.962
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Table 7: Out-of-sample results (nearest)

This table presents the ratio of the average loss of each model over that of the HAR model. We use a

rolling window of four years of daily data to estimate the parameters of the forecasting models. HAR

denotes the forecasting model that uses the daily, weekly, and monthly lagged realized variance series

to predict the future weekly realized variance. IVW and IVM are the forecasting models based on the

Bakshi et al. (2003) weekly and monthly implied variances computed using options of maturities nearest

to the weekly and monthly horizons, respectively. CHAR is the continuous heterogeneous autoregressive

model. HAR-J extends the HAR model by including the significant lagged daily jump variation. The

HAR-C-J model decomposes the realized variances in the HAR into their significant continuous and

jump components. The SHAR model extends the HAR by splitting the lagged historical variance terms

into the corresponding positive and negative semivariance components. HAR-RQ takes into account the

heteroskedasticity of the measurement error in all three maturities of lagged realized variance. Similar to

Bollerslev et al. (2016), we proxy the heteroskedasticity of the measurement error in the realized variance

with the square root of the realized quarticity of corresponding maturity. Returns are sampled at the

5-minute frequency.

IVW IVM CHAR HAR-J HAR-C-J SHAR HAR-RQ

MSE 0.763 0.861 1.012 1.001 0.998 0.887 0.836
QLIKE 0.811 0.915 1.022 1.000 1.016 0.951 0.939
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Table 8: Out-of-sample results (alternative IV estimator)

This table presents the ratio of the average loss of each model over that of the HAR model. We use a

rolling window of four years of daily data to estimate the parameters of the forecasting models. HAR

denotes the forecasting model that uses the daily, weekly, and monthly lagged realized variance series

to predict the future weekly realized variance. IVW and IVM are the forecasting models based on

the Britten-Jones and Neuberger (2000) weekly and monthly implied variances, respectively. CHAR is

the continuous heterogeneous autoregressive model. HAR-J extends the HAR model by including the

significant lagged daily jump variation. The HAR-C-J model decomposes the realized variances in the

HAR into their significant continuous and jump components. The SHAR model extends the HAR by

splitting the lagged historical variance terms into the corresponding positive and negative semivariance

components. HAR-RQ takes into account the heteroskedasticity of the measurement error in all three

maturities of lagged realized variance. Similar to Bollerslev et al. (2016), we proxy the heteroskedasticity

of the measurement error in the realized variance with the square root of the realized quarticity of

corresponding maturity. Returns are sampled at the 5-minute frequency.

IVW IVM CHAR HAR-J HAR-C-J SHAR HAR-RQ

MSE 0.805 1.121 1.020 1.010 0.999 0.887 0.836
QLIKE 0.891 1.217 1.004 0.993 1.015 0.951 0.939
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Table A.1: Descriptive statistics (extended sample)

This table presents key summary statistics based on the extended sample covering the period starting

from January 1996 to August 2015. IV w and IV m denote the (annualized) implied variance of weekly

and monthly horizons, respectively. RV d, RV w, and RV m denote the (annualized) realized variance

of daily, weekly, and monthly horizons, respectively. V RPw and V RPm are the weekly and monthly

variance risk premia, respectively. Similar to Bollerslev et al. (2009), the variance risk premium of

a given maturity is defined as the difference between the implied variance of that maturity and the

contemporaneously computed realized variance of the same maturity. Returns data are sampled at the

5-minute frequency. Mean is the average value of the daily time series of the variable. Std, Skew, and

Kurt denote the standard deviation, skewness, and kurtosis of the variable, respectively.

Mean Std Skew Kurt
√
IV w 19.871% 9.950% 2.616 14.336√
IV m 20.951% 9.434% 2.606 14.322√
RV d 13.728% 10.663% 4.145 27.600√
RV w 14.776% 9.033% 2.941 15.365√
RV m 14.982% 8.287% 3.001 16.716

V RPw 1.938% 3.301% 2.664 23.254
V RPm 2.348% 2.627% 2.661 13.881
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Table A.2: In-Sample results: Implied variance (extended sample)

This table contains the results of regressions of the monthly time series of the (annualized) weekly realized

variance on a constant and the lagged forecasting variable(s). α denotes the intercept parameter. IV w

and IV m denote the (annualized) implied variance of weekly and monthly horizons, respectively. The

last two rows show the results from a multiple regression of the weekly realized variance on a constant,

the lagged weekly implied variance and the lagged orthogonalized monthly implied variance (i.e., the

estimated residual series from a regression of the monthly implied variance on a constant and the weekly

implied variance). We present in parentheses the Newey and West (1987) t-statistics with 10 lags. Adj

R2 is the adjusted R-squared of the regression model. Returns are sampled at the 5-minute frequency.

The extended sample covers the period from January 1996 to August 2015.

α IV w IV m Adj R2

-0.001 0.563 0.815
(-0.396) (21.739)
-0.003 0.576 0.769
(-2.099) (20.731)
-0.001 0.563 -0.047 0.814
(-0.391) (21.340) (-0.226)
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Table A.3: In-sample results: Time series models (extended sample)

This table shows the results of regressions of the monthly time series of the (annualized) weekly realized

variance on a constant and the lagged forecasting variable(s). α denotes the intercept parameter. RV d,

RV w, and RV m denote the (annualized) daily, weekly, and monthly realized variance series, respectively.

C and J indicate the (annualized) significant continuous and (annualized) significant jump variations,

respectively. The associated superscripts indicate that we compute these quantities for the daily (d),

weekly (w), and monthly (m) horizons, respectively. SV d+ and SV d− are the (annualized) positive

and negative daily semivariances, respectively. SV w+ and SV w− denote the (annualized) positive and

negative weekly semivariances, respectively. SV m+ and SV m− are the (annualized) positive and negative

monthly semivariances, respectively. We present in parentheses the Newey and West (1987) t-statistics

with 10 lags. Adj R2 is the adjusted R-squared of the regression. Returns are sampled at the 5-minute

frequency. The extended sample covers the period from January 1996 to August 2015.

HAR CHAR HAR-J HAR-C-J SHAR

α 0.010 0.010 0.010 0.009 0.009
(3.914) (4.000) (3.869) (3.503) (4.221)

RV d 0.291 0.291
(3.938) (3.935)

RV w 0.013 0.012
(0.101) (0.098)

RV m 0.288 0.289
(2.516) (2.529)

Cd 0.251 0.278
(2.785) (3.131)

Cw 0.124 0.110
(0.623) (0.568)

Cm 0.236 0.198
(1.915) (1.615)

Jd -0.283 0.316
(-0.620) (0.689)

Jw -0.620
(-2.130)

Jm 1.701
(1.905)

SV d+ -0.050
(-0.470)

SV d− 0.408
(4.049)

SV w+ 0.072
(0.263)

SV w− 0.358
(1.187)

SV m+ 0.287
(0.427)

SV m− 0.156
(0.211)

Adj R2 0.757 0.757 0.756 0.764 0.778
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Table A.4: Out-of-sample results (extended sample)

This table shows the ratio of the average loss of each model over that of the HAR model. We use a rolling

window of four years of monthly data to estimate the parameters of the forecasting models. HAR denotes

the forecasting model that uses the daily, weekly, and monthly lagged realized variance series to predict

the future weekly realized variance. IVW and IVM are the forecasting models based on the Bakshi

et al. (2003) weekly and monthly implied variances, respectively. CHAR is the continuous heterogeneous

autoregressive model. HAR-J extends the HAR model by including the significant lagged daily jump

variation. The HAR-C-J model decomposes the realized variances in the HAR into their significant

continuous and jump components. The SHAR model extends the HAR by splitting the lagged historical

variance terms into the corresponding positive and negative semivariance components. HAR-RQ takes

into account the heteroskedasticity of the measurement error in all three maturities of lagged realized

variance. Similar to Bollerslev et al. (2016), we proxy the heteroskedasticity of the measurement error in

the realized variance with the square root of the realized quarticity of corresponding maturity. Returns

are sampled at the 5-minute frequency. The extended sample covers the period from January 1996 to

August 2015.

IVW IVM CHAR HAR-J HAR-C-J SHAR HAR-RQ

MSE 0.885 0.941 1.012 1.013 1.085 1.059 1.158
QLIKE 0.841 0.940 1.023 1.162 1.531 1.042 1.226
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Table A.5: In-sample results: Implied variance (extended sample and
quarterly horizon)

This table shows the results of regressions of the non-overlapping time series of the (annualized) quarterly

realized variance on a constant and the lagged forecasting variable(s). α denotes the intercept parameter.

IV q and IV m are the Bakshi et al. (2003) quarterly and monthly implied variances, respectively. We

present in parentheses the Newey and West (1987) t-statistics with 3 lags. Adj R2 is the adjusted R-

squared of the regression model. Returns are sampled at the 5-minute frequency. The first two sets of

regressions are univariate. In the third model we regress the quarterly realized variance on a constant,

the lagged quarterly implied variance and the lagged orthogonal component of the monthly implied

variance with respect to the lagged quarterly implied variance. To be more specific, the orthogonal

monthly implied variance is the estimated residual from the regression of the monthly implied variance

on a constant and the contemporaneous quarterly implied variance. The extended sample covers the

period from January 1996 to August 2015.

α IV q IV m Adj R2

0.013 0.289 0.178
(2.553) (12.327)
0.016 0.245 0.172
(2.944) (9.818)
0.013 0.289 -0.026 0.167
(2.572) (12.504) (-0.070)
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Highlights  

▪ We employ weekly options on the S&P 500 index to compute the weekly implied variance  

▪ Weekly implied variance is a strong predictor of weekly realized variance  

▪ Weekly implied variance crowds out the information content of the monthly implied variance  

▪ Weekly implied variance outperforms time series models of realized variance  

▪ The results hold both in- and out-of-sample and the forecast gains are significant 
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