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Summary 

Rapid (co-)evolution at multiple timescales is a hallmark of plant–microbe interactions. The 

mechanistic basis for the rapid evolution largely rests on the features of the genomes of the 

interacting partners involved. Here, we review recent insights in genomic characteristics and 

mechanisms that enable rapid evolution of both plants and phytopathogens. These comprise 

fresh insights in allelic series of matching pairs of resistance and avirulence genes, the 

generation of novel pathogen effectors, the recently recognized small RNA warfare, and 

genomic aspects of secondary metabolite biosynthesis. In addition, we discuss the putative 

contributions of permissive host environments, transcriptional plasticity and the role of ploidy 

on the interactions. We conclude that the means underlying the rapid evolution of plant–

microbe interactions are multifaceted and depend on the particular nature of each 

interaction. 

 

Keywords: 

Phytopathogens, Genome evolution, Adaptation, Virulence factors, Dispensable 

chromosome 

 

I. Introduction 

Plant–microbe interactions represent a paradigm for rapid evolution (Upson et al., 2018). 

This is particularly true for plant–pathogen interactions, where the molecular warfare 

between plants and microbial intruders drives the fixation of beneficial allelic variants in 

either genomic pool (Frantzeskakis et al., 2018). While pathogens profit from alterations that 

allow a better escape from or suppression of plant defence, plants in turn benefit from 

innovations that improve their immune capacities (Borrelli et al., 2018). Critical factors are 

population sizes and generation times, which tend to be much larger and shorter, 

respectively, for microbes compared to plants. Microbial populations are therefore more 

likely to experience new mutations, resulting in a higher evolutionary pace. This imbalance is 

exacerbated in the context of modern agriculture where monocultures further limit genetic 

diversity in plants. Despite advances in plant breeding and agricultural practices, pathogens 

are still able to re-emerge after a few crop seasons, or even expand their host range and/or 
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geographic distribution (McDonald & Stukenbrock, 2016). The phenotypic consequences of 

rapid pathogen evolution are well known, and earlier studies provided insights in the 

molecular mechanisms associated with evasion of plant immunity at the level of single host–

pathogen gene interactions (e.g. (Rouxel & Balesdent, 2017); Box 1). Recent reports 

additionally brought forward models of how genome compartments of plant pathogens might 

enhance the rate at which such changes occur (Frantzeskakis et al., 2019); Box 1). These 

events are essentially mirrored in plant genomes, where in particular resistance (R) gene 

clusters can be subject to rapid evolution, in part by very similar means ((Borrelli et al., 

2018). Figure 1 illustrates such mechanisms for eukaryotic pathogens, noting that 

comparable mechanisms operate in prokaryotic pathogens (e.g. box B of Figure 1). In 

prokaryotes, plasmids represent additional vehicles for the rapid transfer of virulence-related 

genes even across species borders (Schierstaedt et al., 2019). In this review, we highlight 

recent examples of genomic features that contribute to the rapid evolution in the context of 

plant–microbe interactions. We primarily focus on evolutionary events that occur in host and 

pathogen populations within a few tens of generations, but in some instances also cover 

examples that resulted from adaptive radiation. We also mostly refer to examples of rapid 

evolution as it is observed in agricultural environments, warranting that such events might be 

more rare in natural ecosystems due to the more stable and/or more complex host-microbe 

warfare in natural settings (Karasov et al., 2018).  

 

II. Loss of avirulence: a frequent type of rapid evolutionary adaptation 

A common type of plant resistance follows the ‘gene-for-gene’ concept and mechanistically 

often relies on the direct or indirect perception of pathogen strain-specific secreted effector 

proteins, termed avirulence (Avr) factors, by host genotype-specific immune sensors, termed 

resistance (R) proteins ((Cesari, 2018). Perception typically depends on bimolecular 

interactions, and therefore loss of recognition can occur upon mutation of the Avr gene, 

leading from an avirulent to a virulent allele (Figure 1). Recently reported examples include 

SNPs (Lu et al., 2016; Plissonneau et al., 2017b; Zhong et al., 2017; Meile et al., 2018), 

deletions ((Hartmann et al., 2017), TE insertions ((Wu et al., 2015; Zhang et al., 2015), and 

epigenetic gene silencing (Qutob et al., 2013) of avirulence genes, all of which can result in 

a gain of virulence. An instance of great agronomical relevance is the emergence of the rice 

blast fungus as a novel pathogen of wheat, which was promoted by the loss of the critical 

PWT3 Avr gene (Inoue et al., 2017). However, it remains unclear whether these genomic 

events indeed affect virulence genes more frequently than housekeeping genes (Box 2). 

While SNPs, deletions or TE insertions occur throughout the lifespan of an organism and 
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throughout the entire genome, the genomic context of a gene - e.g. its proximity to 

recombination hotspots or TE insertions - might introduce a site bias.  

 

III. Allelic series of R-Avr gene pairs: testimonies of an ongoing arms race 

In some cases of Avr -R gene pairs, extended allelic series encoding polymorphic protein 

variants have been reported. Prominent examples include the powdery mildew R gene loci 

Mla and Pm3 of barley and wheat, respectively. Both are complex genetic loci that evolved 

over a period of >7 million years through a variety of duplication, inversion and transposon-

insertion events (Wei et al., 2002; Hurni et al., 2013), each providing numerous recognition 

specificities (Srichumpa et al., 2005; Seeholzer et al., 2010). This, in turn, has driven the 

evolution of new Avr gene variants in the pathogen. These allelic series of R-Avr gene pairs 

thus represent genetic testimonies of rapid evolution driven by the host-pathogen arms race. 

Some of the respective Avr genes were cloned recently (Lu et al., 2016; Praz et al., 2017; 

McNally et al., 2018; Saur et al., 2019). Interestingly, in contrast to the sequence-related 

allelic Mla gene variants residing at a single locus, the cognate Avr genes in the barley 

powdery mildew pathogen are spread throughout the genome and encode sequence-

unrelated effectors probably engaging in direct interactions with their respective R proteins 

(Saur et al., 2019). 

 

IV. Creating diversity by generating novel effectors or effector functions 

It is widely believed that effector repertoires are key determinants of pathogen host spectra 

(Figure 2, (Schulze-Lefert & Panstruga, 2011). Given the high number of effectors present in 

phytopathogen species and their typically low sequence conservation, even between closely 

related species, de novo gene birth might be an important driving force in creating effector 

diversity (Plissonneau et al., 2017a). Such novel genes can arise from spurious expression 

of non-coding sequences via a transition state termed ‘proto-gene’ (Carvunis et al., 2012). 

This process might be kickstarted by the expression of long non-coding transcripts 

(lncRNAs) from TE promoters (Davis et al., 2017), which may explain the frequently 

observed physical association between TEs and effector genes (Dong et al., 2015). Proto-

genes may then acquire secretion signals from random sequences (Kaiser et al., 1987). In 

fact, many effector genes share common characteristics with reported proto-genes, such as 

a small size or amino acid composition bias (Yomtovian et al., 2010; Sperschneider et al., 

2018). An intriguing example for a de novo gene birth is a virulence effector gene of the 

barley powdery mildew pathogen, which apparently originated from a non-autonomous 
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retrotransposon (Nottensteiner et al., 2018). Phytopathogens can also acquire new effector 

genes by different means (Fouché et al., 2018), including horizontal gene transfer (HGT, as 

in the case of ToxA; (Friesen et al., 2006), horizontal chromosome transfer (HCT, as in the 

case of Fusarium oxysporum; (Ma et al., 2010; van Dam et al., 2017), or hybridization 

between pathogen species (see below and Figure 2). Similarly, the neofunctionalization of 

endogenous genes with housekeeping functions for the purpose of virulence was recently 

suggested for a subset of secreted peptidases in the Zymoseptoria species complex 

(Krishnan et al., 2018). An extension of this concept is the evolution of catalytically inactive 

variants of secreted proteins. Examples include the functional conversion of a glutathione 

synthetase in a plant-parasitic nematode (Lilley et al., 2018), enzymatically inactive fungal 

chitinases that sequester immunogenic chitin fragments (Fiorin et al., 2018), or the large 

family of catalytically inactive RNase-like effector proteins in cereal powdery mildews 

(Pennington et al., 2019).  

 

V. Small RNA warfare: a novel attribute of plant–microbe interactions 

The cross-kingdom exchange of small RNAs (sRNAs) recently emerged as a novel tier of 

mutual molecular manipulation in plant–microbe interactions. The seminal discoveries that 

fungal sRNAs can be transferred into plant cells to promote virulence (Weiberg et al., 2013), 

and vice versa that plants deliver sRNAs to fungal pathogens as part of their defence 

program (Cai et al., 2018), have added a new level of complexity to our understanding of 

plant disease. In either case the transmitted sRNAs can provoke gene silencing in the 

respective opponent (Hua et al., 2018). Since sRNAs are less complex and subject to fewer 

constraints (e.g. structural limitations) than effector proteins, they might evolve even faster. 

Since we are just beginning to explore pathogen and host sRNA repertoires, further studies 

need to determine whether they are indeed subject to rapid co-evolution in the interacting 

partners (Rose et al., 2019). 

 

VI. Do permissive environments foster rapid evolution? 

While genomic alterations can lead to rapid shifts in the infection phenotype (Figure 1), the 

trajectory of a given plant–microbe interaction does not solely depend on intrinsic genome 

characteristics. Certain host environments that allow the coexistence of virulent and avirulent 

strains could promote the exchange of genetic information through sexual or asexual 

mechanisms such as HGT. Host plant defences are often attenuated in the presence of a 
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virulent pathogen that is able to suppress the immune response – a phenomenon known as 

‘induced accessibility’ (Prats et al., 2006). An illustrative example is provided by the bacterial 

pathogen Pseudomonas syringae, where the presence of a virulent strain suppresses in 

trans the host defences triggered by a co-inoculated avirulent strain (Rufián et al., 2018). 

Similarly, the oomycete Albugo laibachii renders Arabidopsis susceptible to the non-adapted 

pathogen Phytophthora infestans (Belhaj et al., 2016). It is likely that these circumstances 

may further promote the exchange of genetic material between different pathogen strains or 

species, thereby leading to the rapid acquisition of novel virulence determinants. In 

Zymoseptoria tritici, mating of virulent and avirulent strains can occur even in a resistant 

host, resulting in the maintenance of avirulence alleles as balanced polymorphisms in 

subsequent generations (Kema et al., 2018). Similarly, hybridization of different non-adapted 

isolates on a common host can lead to the generation of new isolates that exhibit higher 

fitness or expanded host range (Figure 2; (Depotter et al., 2016). The latter has been shown 

for the powdery mildew fungus Blumeria graminis, where the hybrid offspring of two 

specialized pathogenic forms of wheat and rye led to the emergence of a new pathogenic 

form (f.sp. triticale) able to infect the new host triticale (Menardo et al., 2016). Historically, 

hybridization has been regarded as an evolutionary dead end (Nelson, 1963), and thus the 

reported cases may represent rare exceptions. Sexual mating can also promote virulence 

via transient gene silencing and non-heritable changes in the effector repertoire. For 

example, transient silencing of the effector Avr3a in the oomycete Phytophthora sojae was 

reported in offspring of crosses between avirulent and virulent strains, thereby allowing the 

pathogen to evade host immune detection in soybean (Qutob et al., 2013). Finally, asexual 

exchange of genes between individuals of the same or different fungal species can occur 

through conidial or hyphal fusions termed anastomoses (Roca et al., 2005). This process 

has been proposed as a possible mechanism for the transfer of the ToxA virulence gene 

between the wheat pathogens Pyrenophora tritici-repentis and Stagonospora nodorum 

(Friesen et al., 2006). Similarly in the stripe rust pathogen Puccinia striiformis, somatic 

recombination between different isolates of the same specialized form or between 

specialized forms generated novel virulence specificities (Lei et al., 2017). 

 

VII. Transcriptional plasticity in stressful environments 

Transcriptional plasticity is another aspect of rapid evolution that is not strictly dependent on 

heritable genomic changes. Because a single genotype can have multiple transcriptional 

phenotypes depending on the environment it is selected in, it was suggested that genes that 

are under strong selection are more likely to display variable expression levels between 
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populations, species or isolates (Hodgins-Davis & Townsend, 2009). Since timing of gene 

expression and transcript abundance are often crucial for virulence, phytopathogens may 

employ transcriptional plasticity to optimize infection on a given host (Figure 1;(Azmi et al., 

2018). This form of adaptation will lead to isolates with diverse transcriptional profiles, which 

could also have different fitness optima on the same host. Indeed, individual isolates of the 

same forma specialis of B. graminis show considerable differences in expression levels of 

effector genes during infection (Praz et al., 2018). Similarly in Z. tritici, 20-30% of the genes 

are differentially regulated between individual isolates during infection of the same host, 

likely accounting for the quantitative variation in virulence within this species (Palma-

Guerrero et al., 2017). Recent results from experimental evolution in yeast suggest that 

variation in expression levels of genes associated with a trait under selection might be highly 

advantageous for survival and rapid adaptation (Bódi et al., 2017). Although epigenetic 

changes are thought to play a major role in this phenomenon, the molecular mechanisms 

underlying transcriptional plasticity in phytopathogens still need to be uncovered.  

 

VIII. Secondary metabolites: another rapidly evolving weapon in the plant–microbe 

warfare 

Biosynthesis and delivery of secondary metabolites from both partners crucially determines 

the outcome of a plant–microbe interaction. Pathogens often deploy phytotoxins to interfere 

with plant metabolism and immunity or to kill host cells. On the other hand, plants produce 

an array of antimicrobial secondary metabolites to fight off putative invaders. Frequently, 

plant pathogens are able to detoxify host antimicrobial compounds through specific enzymes 

encoded by genes or gene clusters in the phytopathogens’ genomes, as for example 

degradation of benzoxazolinones by Fusarium pseudograminearum (Kettle et al., 2015). In 

plants, the occurrence of secondary metabolites is often restricted to individual phylogenetic 

lineages such as single families or genera, suggesting that the respective biosynthetic 

pathways undergo rapid evolution (Piasecka et al., 2015). In phytopathogen genomes, 

genes associated with the biosynthesis of secondary metabolites are frequently enriched in 

subtelomeric regions, a location that may facilitate diversification of the metabolic products 

by gene rearrangements or mutations (Cairns & Meyer, 2017). Subtelomeres of filamentous 

fungi are typically rich in repetitive regions and TEs, and consequently often undergo 

chromosomal rearrangements. Accordingly, such clusters are hotspots for gene gains (e.g. 

via HGT; (Reynolds et al., 2017) and losses (Hartmann & Croll, 2017; Thynne et al., 2018). 

Subtelomeric gene clusters are also frequently subject to epigenetic regulation (Palmer & 

Keller, 2010). Recently, deletion of heterochromatin protein-1 HepA in Epichloë festucae 
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was shown to result in deregulation of ergot alkaloids and indole diterpene biosynthesis 

clusters, significantly distorting the balance in the interaction of this species with its host 

(Chujo et al., 2019).  

 

IX. Ploidy and nucleotypes: finding the perfect gene dosage 

Carrying more than one genome copy can be advantageous for eukaryotic pathogens, since 

it provides evolutionary flexibility through enhanced allelic variation. A heterokaryotic state in 

the fungus Sclerotinia homoeocarpa was found to provide improved fungicide resistance 

(Kessler et al., 2018). Similar benefits could be envisaged for pathogenesis. For example, 

isolates of the smut fungus Thecaphora thlaspeos that are able to infect the same host may 

carry different effector repertoires (Courville et al., 2019). These isolates are able to mate 

and form infectious dikaryons, thereby expanding their pathogenicity range to additional host 

ecotypes. Alternatively, selection by host R genes could act negatively on the nucleotype 

content. Recently it was reported that heterokaryotic isolates of the oomycete Bremia 

lactucae have higher fitness than homokaryons on susceptible hosts, whereas homokaryons 

performed better on hosts carrying R genes that are able to recognize effectors encoded by 

one of the two genomes (Fletcher et al., 2019). Ploidy can also change within a relatively 

small number of generations. In Phytophthora infestans, triploidy was found to dominate the 

modern asexual lineages identified in fields of solanaceous crops, although they could 

rapidly revert to diploidy upon stress (Yoshida et al., 2013; Li et al., 2017). Interestingly, 

diploid strains of Ustilago maydis are less virulent than their dikaryotic counterparts 

(Kronstad & Leong, 1989), suggesting that the effects of gene dosage may differ in each 

case. 

 

X. Conclusions 

Although interacting species co-evolve rapidly, the molecular/genetic mechanisms 

underlying each case or each adaptive ‘step’ can be different. In phytopathogens the speed 

and trajectory of adaptive events likely depend on the host environment, the peculiarities of 

their life cycle, the characteristics of each genome and on how these features are reflected 

in the respective effector pool (Figure 2). Thus, in spite of the recent advances, many 

questions still remain to be answered regarding evolution in plant–microbe interactions (Box 

2). 
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Figure 1: A consensus view of the rapidly evolving phytopathogen genome. 

In this figure, several genomic features/processes enabling rapid evolution are summarized, 

exemplarily for a hypothetical core chromosome (blue, a) and a dispensable chromosome, a 

type of chromosomes found in some filamentous pathogens (red, b). The transposable 

element (TE), effector and non-virulence-associated (‘Other genes’) gene profiles for these 

two types of chromosomes are depicted as density graphs next to the chromosome 

schemes, illustrating gene-rich and TE-poor genomic compartments (or the opposite), as 

well as compartmentalization of effector genes. (a) The fate of individual effector genes is 

illustrated for an exemplary avirulence gene (Avr). Coloured boxes I to III show events that 

can happen at specific chromosomal loci in dependence of the proximity to different 

elements (e.g. to TEs; box I), or depending on the specific location (e.g. subtelomeric region; 

box III). In box I, the Avr gene is affected by TEs (yellow and orange triangles) in several 

ways as it might happen at loci populated by repetitive elements. These events can be: (a) 

DNA methylation-based silencing (indicated by grey nucleotide sequence) induced by 

insertion of elements flanking the gene (‘TE-induced silencing’); (b) alteration of the 

nucleotide sequence (indicated by red letter in nucleotide sequence) resulting from repeat-

induced point mutation (RIP), a fungal genome defense mechanism targeting flanking 

repetitive elements (‘RIP leakage’), possibly resulting in a different allele (Avr-2); or (c) 

disruption of the sequence by insertion of a TE (‘TE insertion’), which may likewise cause 

silencing (grey nucleotide sequence). In box II, several alterations are presented for a given 

Avr gene (red square) that are not necessarily related to the activity of repetitive elements. 

Some of the events shown here can lead to different effector alleles (e.g. ‘SNP’ → Avr-2), 

complete deactivation of the sequence by frameshift mutations (‘InDel’, here resulting in a 

premature TGA stop codon), or complete removal of the sequence (‘Deletion’). Alternatively, 

gene duplication (‘Copy number variation’) can lead to multiple Avr gene copies. Duplication 

events can be either recent, giving rise to identical copies (shown by the same color), or 

older, enabling more sequence divergence (shown by different shades of the same color). In 

the latter case, novel functions might be assumed for some of these copies (‘Diversification 

& neofunctionalization’). In box III, chromosomal rearrangements between two closely 

related isolates (or species) A and B are shown, leading either to the disruption of synteny 

(top) or gene clustering (bottom). This type of variation does not exclusively affect Avr 

genes. Box IV illustrates differential expression of four Avr genes (‘Transcriptional plasticity’), 

which can occur independently of chromosomal location. (b) Possible events associated with 

dispensable chromosome. Often smaller in size and with a different repetitive element profile 

than core chromosomes, dispensable chromosomes are more prone to loss or duplication 
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and can also be horizontally transferred (here shown in red or dark blue), potentially altering 

the virulence or host range of a pathogen.  

 

Figure 2: Rapid adaptation and the effector pool.  

Different adaptation mechanisms can have large- and/or small-scale effects on the effector 

pool. In this example ‘Pathogen A’, which carries a number of effectors encoded on core 

(blue dots) and accessory chromosomes (yellow dots), is virulent on a ‘Host 1’ genotype 

harboring resistance gene R1 (yellowish wilted plant), but avirulent on a ‘Host 1’ genotype 

harboring resistance gene R2, which matches one of the ‘Pathogen A’ effectors, as well as 

on a different host species (‘Host 2’; green vigorous plant). Loss of an accessory 

chromosome eliminates one or several effectors, resulting in a change of virulence on ‘Host 

1’. Meanwhile, ‘Pathogen B’ is adapted to ‘Host 2’ but not to ‘Host 1’, and has a different 

effector suite encoded by core and dispensable chromosomes (purple and red dots, 

respectively). Horizontal gene transfer (HGT) of single effectors or an effector cluster (light 

blue dots), or hybridization with a different pathogen species followed by reshuffling of the 

parental effector pool, can extend the host range of a non-adapted pathogen to previously 

unaccessible plant genotypes. 
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Box 1. Mutational events and genomic features enabling rapid evolution. 

Single nucleotide polymorphisms (SNPs): Genomic base pair exchanges, which in the 

case of coding regions may result in amino acid replacements, premature stop codons or 

mis-splicing. SNPs can be the result of rare DNA polymerase replication errors during 

mitosis/meiosis or DNA damage. 

Insertions/deletions (indels): Typically small stretches of DNA that are present/absent in 

comparison to a reference sequence. Indels can result in frame shifts when present in a 

coding region. 

Copy number variation (CNV): Differences regarding the copy number of a given gene in a 

genome, e.g. in comparisons between individuals of a population. 

Transposable elements (TEs): Mobile genetic elements that can ‘jump’ around in 

genomes. Transposition events can lead to gene inactivation, but also to gene activation or 

duplication or even emergence of a new gene.  

Epigenetic modification of gene expression: Epigenetic mechanisms can repress or 

release gene expression in a non-heritable manner. They can have a limited effective range 

(e.g. a single gene; RNA interference (RNAi)-based silencing) or extend to entire 

chromosomal regions (e.g. epigenetic silencing of subtelomeric regions due to histone 

modifications).  

Repeat-Induced Point mutation (RIP): Fungal genome defense mechanism to limit 

transposon activity by mutating cytosines in repetitive sequences 

RIP leakage: Spreading of RIP from duplicated sequences into neighboring nonrepetitive 

regions 

Chromosomal rearrangements: Large-scale differences in gene order and organization in 

a genome. 

AT-rich isochores: A large genomic region with an overrepresentation of adenine- thymine 

base pairs, usually coinciding with deactivated repetitive elements by the repeat-induced 

point mutation (RIP) mechanism.  

Conditionally dispensable chromosomes: Accessory chromosomes that, unlike core 

chromosomes, are not essential for the organism. In the case of phytopathogens, these 

often harbour virulence genes. 

Chromosomal polysomy or length polymorphism: Core or dispensable chromosomes 

can become duplicated. Also homologous chromosomes between isolates of the same 

species can have significant length variation. 
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Horizontal gene/chromosome transfer (HGT/HCT): Transfer of genetic material (either 

single genes or entire chromosomes) from a donor organism to an acceptor organism that 

are not in parent-offspring relation.  

Polyploidization: Acquisition of one or more additional sets of chromosomes in a cell or 

organism. 

Hybridization: Mating of organisms of different varieties or species to create a hybrid. 

De novo genes: Species-specific (orphan) genes originating from sequences that did not 

have any coding potential before. 
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Box 2: Ten interesting questions for the exploration of rapid evolution in plant–

microbe interactions in the molecular genomics era 

1. How ‘rapid’ (in quantitative terms and relative to other systems) is rapid evolution in plant–

microbe interactions? 

2. Are these mechanisms of rapid evolution (Box 1) predominantly used in microbes versus 

plants? 

3. How does rapid evolution differ between natural ecosystems and agricultural 

environments? 

4. How fast evolving and diverse is secondary metabolism between isolates or ecotypes of 

the same species? 

5. What is the mechanistic basis of transcriptional plasticity in phytopathogens? 

6. Do sRNAs rapidly co-evolve in interacting organisms? 

7. How widespread is flexibility in ploidy among phytopathogens? 

8. Can polyploidy provide a selective advantage? 

9. Do plant-associated microbial communities affect the rapid adaptation of phytopathogens? 

10. To what extent do insights obtained from rapid evolution of phytopathogens reflect the 

situation in symbionts? 
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