
 Abstract— The hardware implementation of an Artificial Neural 
Network (ANN) using field-programmable gate arrays (FPGA) 
is a research field that has attracted much interest and attention. 
With the developments made, the programmer is now forced to 
face various challenges, such as the need to master various 
complex hardware-software development platforms, hardware 
description languages and advanced ANN knowledge. Moreover, 
such an implementation is very time consuming. To address 
these challenges, the paper presents a novel neural design 
methodology using a holistic modelling approach. Based on the 
end user programming concept, the presented solution 
empowers end users by means of abstracting the low-level 
hardware functionalities, streamlining the FPGA design process 
and supporting rapid ANN prototyping. A case study of an ANN 
as a pattern recognition module of an artificial olfaction system 
trained to identify four coffee brands is presented. The 
recognition rate versus training data features and data 
representation was analyzed extensively.  

 
Index Terms — ANN, End User Programming, e-Nose, FPGA, 
HW / SW co-design and co-simulation 
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I. INTRODUCTION 
ARDWARE implementation of an ANN using FPGAs 
has been an interesting research field with applications in 

various domains since early nineties. At the beginning, the 
only generally accepted method was to design the application 
by means of Hardware Description Languages for VLSI (very 
large-scale integration) circuits, in particular VHDL or 
Verilog. Nowadays, engineers use modern Electronic Design 
Automation tools to create, simulate and verify a design, and, 
without committing to hardware, can quickly evaluate 
complex systems with high confidence in the “right first time” 
correct operation of the final product. The FPGA 
reconfiguration capability and its parallel processing power 
are “hot topics”, recognised in many papers focused in 
industrial applications: hardware implemented polar decoders 
[1], FPGA embedded controller of an n-Level DC–DC–AC 
inverter [2] or hardware implementation of predictive control 
algorithms for power converters [3]. With the newly emerged 
development environments for All Programmable Systems-
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on-Chip and multiprocessor Systems-on-Chip, complex 
algorithms are now implemented in FPGA embedded 
processors [4]: FPGA/DSP-based digital controller with self-
reconfiguration property for power quality compensation [5], 
FPGA embedded multiprocessor PLC that provides high 
execution speed, multiprocessing programming [6]. Despite 
ANNs being implemented in hardware for more than 25 years 
[7], it remains in the centre of attention for many researchers 
and a variety of methods to develop hardware implemented 
ANNs have been reported in the literature in the past decade 
[8, 9]. An overview of these achievements is given in [10] where 
the ANN theory and its hardware implementation are analysed. 
  The main advantage in using the above methods is given by 
the fact that now the functional description of the design (the 
mathematical model) and its hardware implementation has 
been brought closer, but the gap between them still exists. The 
pressing need to master different environments calls for a 
holistic approach in which the mathematical description and 
the electronic design implementation are simultaneously 
addressed in a unique environment. According to [11] the 
benefits of the holistic modelling approach are given by the 
possibility to evaluate increased system complexity at an early 
design stage in a unique platform. The time to market will be 
shortened, the use of automatic processes for hardware 
implementing the ANNs will be facilitated and therefore 
investigating different system topologies (ANN topologies) will 
be eased. Combining the above-enumerated holistic modelling 
advantages with hardware description languages (HDL) and 
FPGA capabilities, more complex ANNs can be modelled, 
simulated and implemented with an increased use of resource 
efficiency [12]. In this sense, an interesting approach is taken in 
[13] where the VHDL code of a Multilayer Perceptron ANN 
topology is generated by mean of a graphical user interface 
(GUI) designed in Matlab. The tool lifts the VHDL design 
burden from the user’s shoulders, making the CAD environment 
to be more user-centred. Similar methods are reported in the 
literature where automatic tools are developed to help the 
designer to exploit the dynamic partial reconfiguration of the 
FPGAs circuits [14] or to generate the VHDL code of complex 
fuzzy-logic systems [15]. This paper takes these steps further 
and presents a methodology based on the end user 
programming [16] concept, where end users are shielded from 
the need to know low-level technical HDLs. This is achieved 
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by providing different layers of abstractions to represent in 
hardware the application functionality, such that end users are 
empowered by simply manipulating the abstractions via an 
intuitive and interactive GUI to support rapid prototyping. 
The system was tested as a pattern recognition module of an 
artificial olfaction system for identifying different coffee 
brands. An extended analysis of the recognition rates vs. data 
representation has been performed. 
The paper is structured as: Section II – End User 
Programming on ANN Design Approach; Section III – Neural 
Libraries Design; Section IV – ANN Abstraction and EUP; 
Section V – Application and discussions; Section VI – 
Conclusions. 

II. END USER PROGRAMMING (EUP) ON ANN DESIGN 
APPROACH 

EUP is characterised by the use of techniques that allow end 
users (EUs) of an application to create “programs” themselves 
without needing to write any code [16]. A common way to 
achieve this goal is to create propriety types of “scripting 
languages”; abstracting conventional programming algorithms 
into some form of representations (e.g. graphical objects) and 
then to provide a platform for the users to manipulate these 
representations as the basis of learning how to create a 
program. Earlier work in this area was primarily focused on 
single desktop computing, allowing EUs to create programs 
by manipulating abstract graphical objects. Recent 
developments have moved away from desktop computing 
systems to technology-rich ubiquitous environments where 
the EUP approach is no longer restricted to a single PC but 
leverages objects as a means to interact with the system [17]. 
Consequently, whilst some approaches still employ traditional 
graphical user interfaces on a single PC [18], others t mobile 
devices [19]. The technique adopted in this paper follows 
earlier published work on Pervasive Interactive Programming 
[20] that employs a show-me-by-example approach via 
natural interactions. The method further extends the use of 
modern EDA tools for the design, simulation and hardware 
implementation of an artificial neural network aiming to 
change the way in which user applications are defined. 
Instead of a classical solution, in which the application is 
defined using hardware description languages, it is more 
efficient (in terms of performances vs. hardware resource 
utilisation) and user friendly (the user does not need to know 
the neural algorithm or how to implement it in hardware) to 
create a pattern recognition system, in our case an ANN, by 
means of providing layers of abstractions to represent 
configurable modules, which are grouped into specific 
libraries that interface with the hardware. The abstractions are 
presented on an intuitive and interactive configurable 
graphical user interface (GUI), which EUs can interact with 
and easily manipulate. The manipulations can be achieved by 
simple gestures such as pressing, tapping and “drag and 
drop”. The GUI “listens” and “learns” the user’s interactions 
on the screen and composes the program at the same time 
based on the desired requirements.  

	  
Fig.1. Proposed method for hardware implemented ANN design 

The immediate benefits of this approach are: (1) speed up the 
early phases of different ANNs’ design and development 
process, (2) allow the end users, who may not be familiar with 
the technologies, to create their programs without enduring a 
steep learning curve (Fig. 1).The outcome is a configurable 
neural library embedded into a design environment that 
allows considering simultaneously all the aspects of the 
system design. In this way, high processing speed at 
minimum hardware resource utilization can be achieved.  

III. NEURAL LIBRARY DESIGN 
The ANN performance is heavily influenced by the topology 
chosen and its correlation with the application remains 
crucial. In this paper, the feed forward with back-propagation 
learning algorithm network (FFBP) was chosen to be 
modelled. As the main FFBP features, such as the network 
topology, are selected by repetitive modifications, simulations 
and implementations of the project code, the availability of a 
hardware ready implementable ANN library would bring a 
plus in the effort to rapid design reliable pattern recognition 
systems in hardware.  
The created ANN library, described in the next sections, 
contains extendable modules that comply with a generic 
FFBP architecture. It consists of processing units (neurons) 
organized in successive layers: one input layer, one or more 
intermediate hidden layers and one output layer. The network 
is fully connected, i.e. all the outputs of a layer are connected 
by synapses to all inputs of the following layer. Only the 
hidden and the output layers include processing units, 
whereas the input layer is used just for data feeding. The 
network uses the feedforward algorithm to push information 
forward from one layer to the next one and the back-
propagation training algorithm for determining its weights: a 
repetitive algorithm that finds the minimum of the error 
function (the derivative of the sum-of-squares error with 
respects to the weights). The proposed software-hardware 
platform, underpinned by the ANN library and user interface, 
represents a viable way of designing and FPGA implement 
FFBP topologies with on-chip learning as demonstrated in the 
Application section.  



A. The FFBP neural network algorithm 
The neural algorithm that emulates the FFBP ANN behaviour 
is described through equations (1)-(4). It starts with the 
computation of the output vector in (1): MAC (multiply and 
accumulate) of all inputs with their corresponding weights 
and fires the results with an activation function f: 
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The goal of the algorithm is to minimize the error function 
calculated in (2) by means of weights adjustment.  
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For this, a corresponding partial derivative error with respect 
to its net output value is computed (3).  
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Next, an update stage follows, in which all the weights, 
hidden and output ones, will be adjusted (4).  
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The FFBP network will follow these computation steps until 
the calculated error will be less than a given threshold value. 
In (1) to (4) were used the following abbreviations: net is the 
fired neuron output; wk is the weight vector of neuron k from 
the output layer; i, j, k are the neuron’s indexes (number); I, J, 
K are the number of neurons of the input, hidden and output 
layer, E is the error function, o is the output vector of the 
output layer; y is the output vector of the hidden layer, δok, δyj 
are the gradient of the error signals of neuron k of the output 
layer and respectively neuron j from the hidden layer, νj is the 
weight vector of the neuron j from a hidden layer. 

B. FFBP neural library design 
Designing the neuron of a multilayer FFBP with on-chip 
learning must consider not only the computations in the 
propagation phase, when the neural network is already trained 
and performs the recognition task (1), but also the learning 
phase, when the neural weights are updated according with 
the error minimization, as in (2) to (4). The neuron designed 
by the authors is built using Xilinx System Generator library 
blocks and consists of MAC unit, RAM memory module, 
multiplexor and a register for bias values initialization, and a 
firing function block.  When designing the MAC unit, two 
approaches may be adopted (Fig. 2): (i) using distributed 
resources, or (ii) dedicated modules such as XtremeDSP or 
BRAM blocks. The number of dedicated modules (which 
ensure the best neuronal processing performances) differs 
from one FPGA family to another. Therefore, for finding the 
best neuron’s architecture, related to the hardware resources 

available in the targeted FPGA, 4 possible optimization 
scenarios were considered: 
1)  DL_AO: minimize the occupied area with multiplications 

done using distributed logic resources 

	  
Fig.2. Hardware architecture of the neuron 

TABLE I 
HARDWARE RESOURCES UTILIZATION FOR NEURON IMPLEMENTATION 

MODEL SLICES LUTS FREQUENCY 
(MHZ) 

DL_AO 36 49 151,676 
DL_SO 36 49 154,369 

DSP_AO 5 0 253,485 
DSP_SO 5 0 267,237 

 
2) DL_SO: maximize speed processing with multiplications 

done using distributed logic resources;  
3) DSP_AO: minimize the occupied area with 

multiplications done using dedicated resources 
4) DSP_SO: maximize speed processing with multiplications 

done using dedicated resources.  
The synthesis of the maximum processing frequency and the 
hardware resources utilization were generated with the ISE 
Xilinx report generator tool and are presented in Table I. The 
results analysis shows that the neuron based on the 
XtremeDSP block has the highest processing frequency and 
uses the fewest hardware resources in terms of slices or LUTs 
(as expected). Nevertheless, as the XtremeDSP blocks are 
limited, (128 for 4VSX35), to extend the number of neurons 
implemented, distributed logic can be used instead.  
Another component of the neuronal library is the activation 
function. Its role is to map the neuron output values to a range 
of values given by the function chosen as a firing function, in 
this case the sigmoid function (5).  
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Implementing the sigmoid function in hardware requires 
advanced hardware description language (HDL) knowledge. 
Moreover, once implemented, it acts as a bottleneck for the 
neuron speed performance demanding considerable hardware 
resources in the same time. In order to reducing the hardware 
cost, different approximations of the sigmoid function can be 
adopted. The main classical methods are Look-up tables and 
truncation of the Taylor series expansion. Taylor expansion 
can further be implemented in various ways: sum-of-steps, 
piece-wise linear, combination of the previous, or others. The 
best results reported in the literature show errors of 8% to 
13.1% for sum-of-steps approximations and ± 2.45% to ± 



1.14% for piece-wise linear approximation. Also, there are 
approximations with smaller errors, but they use floating-
point multiplications, thus practical implementation becomes 
too complex [30]. 

TABLE II 
MATHEMATICAL AND HARDWARE IMPLEMENTATION OF THE APPROXIMATION 
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X A-LOW(X) 
-8 0 
-4 0.0625 
-2 0.12 
-1 0.25 
1 0.75 
2 0.87 
4 0.937 
8 1 

 

	  

X PLAN(X) 
|X| ≥ 5 1 

2,375 ≤ |X| < 5 0,03125 · |X| + 0,84375 
1≤ |X| < 2.375 0,0125 · |X| + 0,625 

0 ≤ |X| < 1 0,25 · |X| + 0,5 

	  
TABLE III 

RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF DIFFERENT 
FIRING FUNCTION WITH DIFFERENT BITS REPRESENTATION 

FUNC  LUT DSP BRAM 
(32,16) (16,8) (8,4) (32,16) (16,8) (8,4) (32,16) (16,8) (8,4) 

F1 185 74 23 0 0 0 0 0 0 
F2 127 67 36 0 0 0 0 0 0 
F3 109 44 24 0 0 0 0 0 0 
F4 93 29 18 1 1 1 0 0 0 

 
TABLE IV 

THE HARDWARE RESOURCES USED TO IMPLEMENT AN ARTIFICIAL NEURON WITH 
DIFFERENT FIRING FUNCTIONS USING THE (3, 10) BITS REPRESENTATION 

RESOURCES NEURON 
LUTS 

NEURON 
ZHANG 

NEURON 
ALIPPI 

NEURON 
A-LOW 

NEURON 
PLAN 

SLICES 5 28 59 29 12 
LUTS 0 25 89 31 10 

RAMBS 2 1 1 1 1 
DSPS 1 2 1 1 1 

MAX FREQUENCY 
(MHZ) 227.790 255.860 290.613 268.168 234.467 

 
The firing function library, created by the authors, consists of 
ready hardware implementable modules of functions chosen 
to approximate the sigmoid function: A-low (F1), Alippi (F2), 
PLAN (F3) and Zhang (F4) [21]. Their mathematical and 
hardware implementation are summarised in Table II and 
their hardware resources utilization in Table III. As shown, 
the approximation functions were implementing using 
minimum of the hardware resources.  
Table IV shows the resources utilized by the entire neuron 
using different approximation functions, revealing that each 
of them has drawbacks and strengths in terms of processing 
speed and hardware utilisation. 
It can be concluded that the best approximation method, in 
terms of resources utilized and errors introduced, is the PLAN 
function, when the number of the neurons that use sigmoid 
function is larger than the number of the BRAM blocks 
available in the FPGA circuit. When the number of neurons is 
lower than the total BRAM blocks available in the FPGA 
circuit, the best way to approximate the sigmoid function is 
the Lookup Tables method. The resolution used was (3,10) 
where 3 bits were allocated for the integer part and 10 bits for 
binary part. The errors introduced by the implemented 
functions are summarized in Table V. 

C. The control neural library with on-chip learning 
The control of the neuronal processing components is done 
through specialised blocks designed to accommodate the on-
chip BP learning algorithm and the parallelism at the neuron 
level, i.e. all neurons within the same layer are controlled at 



the same time (in parallel), taking advantage of the massive 
parallel processing supported by the FPGAs.  
 

TABLE V 
ERRORS AND RESOURCE UTILIZATION OF THE 4VSX35 FPGA CIRCUIT FOR 

HARDWARE IMPLEMENTATION OF THE SIGMOID APPROXIMATION 
APPROXIMATION 

FUNCTION 
MAXIMUM 
ERROR (%) 

MEAN 
ERROR (%) 

TOTAL EQUIVALENT GATES 
COUNT FOR DESIGN 

LOOKUP TABLE 0 0 131.072 
A-LOW 5.63 0.63 411 
ALIPPI 1.89 1.11 877 
PLAN 1.89 0.63 351 

ZHANG 2.16 1.10 314 
The blocks that control the ANN processing units consist of a 
general counter, used to provide the time base for the entire 
neural network according to the ANN’s phase: propagation 
(when the network is already trained and performs 
recognition) or learning (when the network is on-chip trained) 
and ANN layer specific command signal generator blocks 
(two in the example given: one for each neuronal layer), Fig. 
3.  
The General counter block calculates, function of neurons 
architecture, network topology and processing phase 
(propagation or learning), the counter’s maximum value and 
generates the reference time to set/reset the neuronal control 
signals. (6) gives the algorithm for calculating the number of 
clock cycles necessary to complete the processing and 
weights updating tasks (the counter max value), cycles, where 
n1, n2 are the neurons in the input and respectively output 
layer; t is the tth layer of network and ceil is the Matlab 
function that approximates a real number up to the next 
integer. (6) gives also the ANN processing speed in the 
learning (PL = 1) or propagation (PL = 0) phase. 
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The Command signals generator block generates the 
controlling signals for all the processing elements of the 
neurons at specific moments (counter values). For this, the 
block calculates the values at which commands have to be 
given using (7), according to the neuron’s architecture, where 
t: the layer number; n: the number neurons in layer t; sra: the 
counter’s value at which the accumulator’s reset signal is set; 
ea_start: the counter value at which the accumulator enable 
signal is set; ea_stop: the time at which the accumulator 
enable signal is reset; p_start: the counter’s value at which the 
neuron’s propagation phase starts; p_stop:  the counter’s value 
at which the propagation phase stops; ul_start: counter’s 
value at which the tth layer weights start to be updated; 
ul_stop: counter’s value at which the weights of the tth layer 
updating process is stopped. 
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The blocks are described using VHDL language and 
implemented using Black box modules, a block that converts 
a VHDL design into a System Generator block. The 
computational tasks that describe the algorithms for updating 
on-chip the ANN weights: (2) to (4), have been implemented 
with three computing blocks: i) the errors computing block, ii) 
the output layer weights computing block and iii) the hidden 
layer weights computing block. The errors and layer weights 
computing blocks calculate the accumulated error, the 
gradient of the error (δ) and the value that the weights should 
be changed 
 
 

 

 

 
Fig. 3. Control block architecture 

 
Fig. 4. Output layer errors and 

weights calculus blocks 

with (Δw) to decrease the accumulated error (fig. 4). The 
weights of the hidden layer are calculated last (due to back 
propagation error algorithm). For this, processing blocks that 
calculate the new weights according to (3) were designed, fig. 
5. The processing time, expressed in clock cycles, is given in 
(8) and is used in delaying the weights updating task (the 
delay permits the calculation of the new weights to be 
completed). 

 2 1 2 2 1 26 12 6 15Delay = n   ceil((n + n + t + ) / n ) - n n + t +⋅ −  (8) 

An overall view of the main blocks involved in designing an 
ANN architecture with a 7-7-4 topology (7 neurons in the 
input layer, 7 neurons in the hidden layer and 4 neurons in the 
output layer) is shown in Fig.6 

IV. ANN ABSTRACTION AND EUP 
The idea behind the ANN abstraction is to shield the 
complexity from the end user while allowing them to create 
their own desired ANN program without incurring a steep 
learning curve, thus promote rapid prototyping. To achieve 
this goal we employed rule-based technique that often found 



in many AI systems. Rules are first created according to the 
design and requirement of each of ANN blocks (Fig 7) and 
store in the “End User Programs and Semantics” component 
(i.e. the knowledge space) (Fig 1). These rules are then used 
as the basis of ANN programming abstraction presented as 
graphical representations. The relationships between each rule 
are described in a form of semantic manner. The end user will 
then create their own ANN programs by simply manipulating 
the graphical “Rules” representations and develop their own 
new “Rules” via an interactive GUI (Fig 7). The GUI is 
implemented using event-based architecture. 

	  
Fig. 5. The weights of the hidden layer calculus blocks 

	  
Fig. 6. Architecture of the 7-7-4 FFBP neural network topology 

Using JavaScript API, various UI events (such as drag, drop, 
move and click) have been developed mapping the rules 
requirements that store in the main knowledge space (thus can 
“trigger” other events based on those rules) to “listen” to the 
user’s activities that is happening on this panel. To understand 
the user interactions, a learning feature is implemented such 
that each activity will be captured and interpreted/inference 
according to the rules store in rule-based or be learned as new 
rule. Based on rules, an “expert system” is implemented to 

guide the end user to create their ANN program via a series of 
dialogs. User is able to configure the “rule” by simply 
clicking the graphical representations. The newly created 
“Rules” will be recorded as instances and stored back in 
knowledge space, which can retrieve and amend later. The 
contributions of this paper in terms of software design are: (1) 
the semantic rules based on ANN design, (2) the abstractions 
and representations, (3) the expert system including the 
learning feature and (4) GUI event-based architecture. The 
EUP GUI is implemented using Python language and 
JavaScript, together with a pre-installed MATLAB Engine 
that enable Simulink functions to be called through the 
provided APIs. 

V. APPLICATION AND ANALYSIS 
The developed FFBP neural network library was used to 
create a pattern recognition module for an artificial olfactory 
system trained to recognize different types of coffee. The 
olfactory system consists of: seven gas sensors chosen to react 
to a wide spectrum of odours (TGS842, TGS826_1, 
TGS826_2, TGS2600, TGS2601, TGS2602, TGS2620), 
temperature sensor (LM35), humidity sensor (SY-HS-230), 
mounted into a  

 

	  
Fig. 7. ANN Design EUP GUI 

gas test chamber, test chamber, three gas pumps, circuits for 
sensors conditioning and pumps command, data acquisition 
board, pattern recognition module hardware implemented in 
FPGA (Virtex-4 SX 4VSX35), user interface. 

A. Data acquisition and processing 
The data acquisition module was customized to control the 
gas pumps (used to transport the smell to and from the test 
chamber), acquire data generated by all 9 sensors and pre-
process the acquired signals (filtering, drift cancellation). The 
data has been extracted from the measurement over a defined 
absorption/ desorption time of the voltage drop on sensors 
resistance when the enriched odour is applied/removed. Data 



acquired constitutes the fingerprint of the smell and to process 
it, dimensional reduction techniques are applied. In most 
cases, this is performed by extracting a single parameter (e.g. 
steady-state, final or maximum response) from each sensor, 
disregarding the initial transient response, which may be 
affected by the dynamics of the odour delivery system. In 
some situations, transient analysis may significantly improve 
the performance of the gas sensor arrays and should be taken 
in consideration.  Considering the feature extraction methods 
reported in literature [22], a heuristic method has been 
adopted with the following selected features: average value 
(A1), maximum value (A2), function integral (A3), integral of 
the absorption time (A4), maximum slope of the absorption 
(A5), maximum slope of the desorption function (A6), time at 
which maximum slope of absorption function occurs (A7) and 
time at which maximum slope of desorption function occurs 
(A8). 

B. ANN performance analysis 
For determining the best FFBP network implementable with a 
minimum of resources, a series of different FFBP NN 
topologies have been tested. In addition, for each topology, 
fixed-point binary representation with different resolutions 
have been investigated. Fig 8 shows the recognition rate vs. 
data representation for a topology of 56-56-4 neurons, which 
processes an input vector with 56 components: 8 features per 
sensors (A1 to A8) and 7 sensors. The recognition rate varies 
from 100%, for (16,16) bits representation (16 bits for integer 
part and 16 bits for binary part), to 50% for (7,8) bits 
representation and 0% for (2,3) bits representation. A major 
drop of the recognition rate occurs, 96% to 49%, when one bit 
of the integer part: (8,8) → (7,8) is changed. The recognition 
rate remains constant for a major drop of data resolution 
(16,16) → (8,8). These observations may be very useful when 
choosing the data representation resolution. Fig 9 and 10 are 
plotted in order to highlight the influence of data 
representation resolution over the recognition rate for a given 
training set. First, a training set with features (A1, A2, A3) is 
shown in Fig 9 and (A2) in Fig 10. It can be concluded, there 
is no perfect FFBP network topology for every purpose, but it 
can be adapted to fulfil the most important requirements of a 
given application. For example, if the chip area occupation is 
an important issue, then a 21-21-4 FFBP network with a (5,5) 
bits representation and a theoretically recognition rate of 90% 
could be more than acceptable. However, for obtaining a 
higher recognition rate, a 56-56-4 FFBP network with a 
(16,16) bits representation might be a better option. 
Consequently, as demonstrated in the above discussion, the 
accuracy of the ANN is massively determined by the data 
representation adopted. Similar reports are shown in [10]. 

C. ANN hardware implementation results 
To implement in FPGA the above ANN topologies requires 
specific hardware resources, which can be priory calculated. 
Having a formula to estimate the hardware resources needed 
for implementing a specific ANN topology would let the user 
choose the right ANN size and FPGA circuit.  

By analysing the hardware implementation reports presented 
in Table VI, where HL denotes the hidden layer and OL the 
output layer, it can be concluded that: 
• each neuron added to the hidden layer increases by 32 

LUTs and 1 multiplier the overall resource utilization.  
• each neuron added to the output layer increases by 40 

LUTs and 4 multipliers the output neurons weights 
computation block and with 49 LUTs and 1 multiplier the 
hidden neurons weights computation block;  

Based on the reports presented, 3 equations have been 
generated to estimate the hardware resources utilized to 
implement a given FFBP topology, prior to an actual 
hardware implementation, (9) - (11). These permit choosing 
the right FPGA circuit for a given ANN topology/size in the 
very early ANN design stages, saving time and costs. 

 ( )2 h oRAMs N N= +   (9) 
 15 2 6h oDSPs N N= + +   (10) 
 200 89 32o hLUTs N N= + +   (11) 

where: No is the number of neurons in the output layer and Nh 
is the number of neurons in the hidden layer. 
 Applying (9)-(11) to the Virtex4 targeted in this paper, 
(15.360 slices, 30.720 LUTs, 192 BRAMs, 192 DSPs), the 

 
Fig. 8. Recognition rates vs. data representation for 56-56-4 FFBP 

 
Fig. 9. Recognition rate vs. data representation for 21-21-4 FFBP 



 
Fig. 10. Recognition rate vs. data representation for with 7-21-4 FFBP 

TABLE VI 
DSP, SLICES (SL) AND RAM DISTRIBUTION OVER FFBP COMPONENT BLOCKS 

FOR DIFFERENT ANN TOPOLOGIES 

ANN  
NEURONAL  

BLOCK 
HL 

 BLOCK 
OL  

BLOCK 
CONTROL 

 BLOCK 
DSP SL RAM DSP SL RAM DSP SL RAM DSP SL RAM 

1-1-1 1 5 4 5 64 0 4 24 0 12 105 0 
7-2-4 6 76 12 9 190 0 12 100 0 12 114 0 
7-7-7 14 105 28 17 256 0 28 215 0 12 108 0 
 
maximum number of neurons that can be implemented using 
strictly the dedicated BRAMs and XtremeDSP blocks (for 
ensuring the maximum processing speed) is 60, organized as: 
45 in the hidden layer and 15 in the output layer. However, 
using the distributed multipliers and BRAMs available in the 
circuit, 26 more neurons, 20 in the hidden layer and 6 in the 
output layer, can be implemented. These will utilize 6878 
LUTs and 76 BRAMs, leaving 22657 LUTs unused. The 
unused LUTs can be further converted into 20 neurons in the 
hidden layer and 10 in the output layer. Therefore, the 
maximum number of neurons that can be hardware 
implemented (on the expense of the processing speed) is 
approximated to 120 (double than the number of neurons that use 
only dedicated BRAMs and XtremeDSP blocks).  
 To illustrate the FPGA implementation performance, a 
report in terms of hardware resources utilization, and 
maximum processing frequency is presented in Table VII.  
 

TABLE VII  
FPGA IMPLEMENTATION REPORTS 

RESOURCE DISTRIBUTION FF(1-1-1) FF(7-7-7) FF(7-2-4) 
LUTS 322 1167 612 

RAMB16S 4 28 12 
DSP48S 23 71 43 

MAX FREQUENCY (MHZ)  122.489 96.516 106.09 
 

D. ANN performance comparisons 
A direct comparison of the data presented in table VII with 
others reported in the literature is not always relevant due to 
the lack of common referencing in reporting the hardware 
resources per ANN performances. These depend on the type 
of the resources available in the FPGA (4 or 6 inputs LUTs, 
multipliers or XtremeDSPs, etc.) the depths of the ANN 
parallelism adopted (synapse, neuron or layer), the firing 
function (sigmoid, hardlim, etc.) processing speed, data 
representation, use of dedicated or distributed resources, on or 
off chip learning, number of hidden layers to nominate the 

most important ones. In [10] for implementing the 10-3-1 
FFBP topology with a synaptic parallelism, 70 DSPs and 
8043 LUTs were used. In [11] the hardware utilization is reported 
per neuron with 1299 LUTs / neuron. In [23] for a 2-5-1 topology 11 
DSPs and 6384 LUTs were consumed.  In this paper for a similar 
topology of 7-2-4, 43 DSPs and 412 LUTs were used.  
As shown above, the hardware utilisation depends on factors 
which vary from one ANN topology, and FPGA, to another 
but they are all reflected in the recognition rate (RR) and 
processing speed (PS) supported by the chosen FPGA. Hence, 
reporting RR and PS, along with the hardware utilisation, 
would indicate better the level of success in using a particular 
ANN topology in a specific FPGA circuit. 
Choosing the right FPGA circuit for a given ANN or the 
ANN size for a given FPGA circuit is not straightforward. As 
shown in [10] for selecting the right FPGA circuit, the 
designer is forced to implement the design first and then 
interpret the hardware resources used vs. the ANN topology. 
Therefore, being able to estimate the hardware resources 
needed for implementing an ANN before to an actual 
implementation would shorten the development time and 
consequently save costs. This is addressed for a given FPGA 
family by the equations (9)-(11). 

VI. CONCLUSIONS AND FUTURE WORK 
A novel neural design strategy has been developed, which 
benefits of reduced design time over classical field orientation 
approaches, leading to a low complexity and easy to 
implement pattern recognition module. A particular application 
of the pattern recognition system for an olfactory system is 
investigated and results presented show efficient hardware 
implementation in FPGA circuit. The achievement presented 
in this paper refers to a holistic modelling / design method, 
using modules created into hardware-software co-design 
environment (Matlab-System Generator–ISE) and grouped in 
a specific NN library. These modules emulate in hardware any 
FFBP network topology behaviour, giving the opportunity to 
design hardware implementable FFBP neural networks, at a 
higher level, via an intuitive and interactive EUP interface.  
The proposed methodology takes advantage of the FPGA 
parallel processing power preparing the ground for an auto-
adaptive reconfigurable device ready to respond - read auto-
reconfigure - to any pattern recognition challenge. It is hoped 
that, through the proposed method, it would be possible to 
make steps towards a “more like brain” computational 
machine, in terms of adaptability and quick response, a 
system that makes its own choices (upon an implemented 
algorithm), i.e. intelligence.  
As the components are entirely designed using System 
Generator blocks, the created library is technology dependent 
to the software used. For increasing the portability, future 
work will consider having the blocks designed using hardware 
description languages, generated from System Generator.   
In conclusion, the paper shows that any FFBP topology may 
be built using predefined neural blocks with the following 
characteristics: i) holistic modelling and optimisation, ii) 
behavioural analysis, and iii) easy hardware prototyping on an 



FPGA development platform via an intuitive EUP interface. 
In addition, it has been developed a set of equations to 
estimate: i) the hardware resources needed to implement an 
FFBP ANN with on-chip learning in a given FPGA circuit 
(eq. 9-11) and ii) the processing speed of the implemented 
ANN topology (eq. 6). Moreover, design concepts introduced 
in [20] and [24] are brought further with contributions in 
developing an ANN design platform based on semantic rules, 
abstractions and representations, expert system and GUI event-
based architecture. 
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