
 Abstract— The hardware implementation of an Artificial Neural
Network (ANN) using field-programmable gate arrays (FPGA)
is a research field that has attracted much interest and attention.
With the developments made, the programmer is now forced to
face various challenges, such as the need to master various
complex hardware-software development platforms, hardware
description languages and advanced ANN knowledge. Moreover,
such an implementation is very time consuming. To address
these challenges, the paper presents a novel neural design
methodology using a holistic modelling approach. Based on the
end user programming concept, the presented solution
empowers end users by means of abstracting the low-level
hardware functionalities, streamlining the FPGA design process
and supporting rapid ANN prototyping. A case study of an ANN
as a pattern recognition module of an artificial olfaction system
trained to identify four coffee brands is presented. The
recognition rate versus training data features and data
representation was analyzed extensively.

Index Terms — ANN, End User Programming, e-Nose, FPGA,
HW / SW co-design and co-simulation
1

I. INTRODUCTION
ARDWARE implementation of an ANN using FPGAs
has been an interesting research field with applications in

various domains since early nineties. At the beginning, the
only generally accepted method was to design the application
by means of Hardware Description Languages for VLSI (very
large-scale integration) circuits, in particular VHDL or
Verilog. Nowadays, engineers use modern Electronic Design
Automation tools to create, simulate and verify a design, and,
without committing to hardware, can quickly evaluate
complex systems with high confidence in the “right first time”
correct operation of the final product. The FPGA
reconfiguration capability and its parallel processing power
are “hot topics”, recognised in many papers focused in
industrial applications: hardware implemented polar decoders
[1], FPGA embedded controller of an n-Level DC–DC–AC
inverter [2] or hardware implementation of predictive control
algorithms for power converters [3]. With the newly emerged
development environments for All Programmable Systems-
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

on-Chip and multiprocessor Systems-on-Chip, complex
algorithms are now implemented in FPGA embedded
processors [4]: FPGA/DSP-based digital controller with self-
reconfiguration property for power quality compensation [5],
FPGA embedded multiprocessor PLC that provides high
execution speed, multiprocessing programming [6]. Despite
ANNs being implemented in hardware for more than 25 years
[7], it remains in the centre of attention for many researchers
and a variety of methods to develop hardware implemented
ANNs have been reported in the literature in the past decade
[8, 9]. An overview of these achievements is given in [10] where
the ANN theory and its hardware implementation are analysed.
 The main advantage in using the above methods is given by
the fact that now the functional description of the design (the
mathematical model) and its hardware implementation has
been brought closer, but the gap between them still exists. The
pressing need to master different environments calls for a
holistic approach in which the mathematical description and
the electronic design implementation are simultaneously
addressed in a unique environment. According to [11] the
benefits of the holistic modelling approach are given by the
possibility to evaluate increased system complexity at an early
design stage in a unique platform. The time to market will be
shortened, the use of automatic processes for hardware
implementing the ANNs will be facilitated and therefore
investigating different system topologies (ANN topologies) will
be eased. Combining the above-enumerated holistic modelling
advantages with hardware description languages (HDL) and
FPGA capabilities, more complex ANNs can be modelled,
simulated and implemented with an increased use of resource
efficiency [12]. In this sense, an interesting approach is taken in
[13] where the VHDL code of a Multilayer Perceptron ANN
topology is generated by mean of a graphical user interface
(GUI) designed in Matlab. The tool lifts the VHDL design
burden from the user’s shoulders, making the CAD environment
to be more user-centred. Similar methods are reported in the
literature where automatic tools are developed to help the
designer to exploit the dynamic partial reconfiguration of the
FPGAs circuits [14] or to generate the VHDL code of complex
fuzzy-logic systems [15]. This paper takes these steps further
and presents a methodology based on the end user
programming [16] concept, where end users are shielded from
the need to know low-level technical HDLs. This is achieved

An End User Platform for FPGA-based Design
and Rapid Prototyping of FeedForward

Artificial Neural Networks with on-chip Back
Propagation learning

Alin Tisan, Member, IEEE and Jeannette Chin, Member, IEEE

H

by providing different layers of abstractions to represent in
hardware the application functionality, such that end users are
empowered by simply manipulating the abstractions via an
intuitive and interactive GUI to support rapid prototyping.
The system was tested as a pattern recognition module of an
artificial olfaction system for identifying different coffee
brands. An extended analysis of the recognition rates vs. data
representation has been performed.
The paper is structured as: Section II – End User
Programming on ANN Design Approach; Section III – Neural
Libraries Design; Section IV – ANN Abstraction and EUP;
Section V – Application and discussions; Section VI –
Conclusions.

II. END USER PROGRAMMING (EUP) ON ANN DESIGN
APPROACH

EUP is characterised by the use of techniques that allow end
users (EUs) of an application to create “programs” themselves
without needing to write any code [16]. A common way to
achieve this goal is to create propriety types of “scripting
languages”; abstracting conventional programming algorithms
into some form of representations (e.g. graphical objects) and
then to provide a platform for the users to manipulate these
representations as the basis of learning how to create a
program. Earlier work in this area was primarily focused on
single desktop computing, allowing EUs to create programs
by manipulating abstract graphical objects. Recent
developments have moved away from desktop computing
systems to technology-rich ubiquitous environments where
the EUP approach is no longer restricted to a single PC but
leverages objects as a means to interact with the system [17].
Consequently, whilst some approaches still employ traditional
graphical user interfaces on a single PC [18], others t mobile
devices [19]. The technique adopted in this paper follows
earlier published work on Pervasive Interactive Programming
[20] that employs a show-me-by-example approach via
natural interactions. The method further extends the use of
modern EDA tools for the design, simulation and hardware
implementation of an artificial neural network aiming to
change the way in which user applications are defined.
Instead of a classical solution, in which the application is
defined using hardware description languages, it is more
efficient (in terms of performances vs. hardware resource
utilisation) and user friendly (the user does not need to know
the neural algorithm or how to implement it in hardware) to
create a pattern recognition system, in our case an ANN, by
means of providing layers of abstractions to represent
configurable modules, which are grouped into specific
libraries that interface with the hardware. The abstractions are
presented on an intuitive and interactive configurable
graphical user interface (GUI), which EUs can interact with
and easily manipulate. The manipulations can be achieved by
simple gestures such as pressing, tapping and “drag and
drop”. The GUI “listens” and “learns” the user’s interactions
on the screen and composes the program at the same time
based on the desired requirements.

	
Fig.1. Proposed method for hardware implemented ANN design

The immediate benefits of this approach are: (1) speed up the
early phases of different ANNs’ design and development
process, (2) allow the end users, who may not be familiar with
the technologies, to create their programs without enduring a
steep learning curve (Fig. 1).The outcome is a configurable
neural library embedded into a design environment that
allows considering simultaneously all the aspects of the
system design. In this way, high processing speed at
minimum hardware resource utilization can be achieved.

III. NEURAL LIBRARY DESIGN
The ANN performance is heavily influenced by the topology
chosen and its correlation with the application remains
crucial. In this paper, the feed forward with back-propagation
learning algorithm network (FFBP) was chosen to be
modelled. As the main FFBP features, such as the network
topology, are selected by repetitive modifications, simulations
and implementations of the project code, the availability of a
hardware ready implementable ANN library would bring a
plus in the effort to rapid design reliable pattern recognition
systems in hardware.
The created ANN library, described in the next sections,
contains extendable modules that comply with a generic
FFBP architecture. It consists of processing units (neurons)
organized in successive layers: one input layer, one or more
intermediate hidden layers and one output layer. The network
is fully connected, i.e. all the outputs of a layer are connected
by synapses to all inputs of the following layer. Only the
hidden and the output layers include processing units,
whereas the input layer is used just for data feeding. The
network uses the feedforward algorithm to push information
forward from one layer to the next one and the back-
propagation training algorithm for determining its weights: a
repetitive algorithm that finds the minimum of the error
function (the derivative of the sum-of-squares error with
respects to the weights). The proposed software-hardware
platform, underpinned by the ANN library and user interface,
represents a viable way of designing and FPGA implement
FFBP topologies with on-chip learning as demonstrated in the
Application section.

A. The FFBP neural network algorithm
The neural algorithm that emulates the FFBP ANN behaviour
is described through equations (1)-(4). It starts with the
computation of the output vector in (1): MAC (multiply and
accumulate) of all inputs with their corresponding weights
and fires the results with an activation function f:

	
1

K

k k
k

o f bias w y
=

⎛ ⎞
← +⎜ ⎟

⎝ ⎠
∑ 	 	 (1)	

The goal of the algorithm is to minimize the error function
calculated in (2) by means of weights adjustment.

	 ()21 , 1, 2, ...,K
2 k kE E d o k← + − = 	 	 (2)	

For this, a corresponding partial derivative error with respect
to its net output value is computed (3).

	
()

1

(1)

(1)

k
ok k k k k

k k
K

yj j j ok kj
k

oE d o o o
o net

y y w

δ

δ δ
=

∂∂
= − = − −

∂ ∂

= − ∑

	 	 (3)	

Next, an update stage follows, in which all the weights,
hidden and output ones, will be adjusted (4).

	
 with 1 K and 1 J

 with 1 I and 1 J
kj kj ok j

ji ji yj i

w w y k j

v v x i j

ηδ

ηδ

← + = ÷ = ÷

← + = ÷ = ÷
	 	 (4)	

The FFBP network will follow these computation steps until
the calculated error will be less than a given threshold value.
In (1) to (4) were used the following abbreviations: net is the
fired neuron output; wk is the weight vector of neuron k from
the output layer; i, j, k are the neuron’s indexes (number); I, J,
K are the number of neurons of the input, hidden and output
layer, E is the error function, o is the output vector of the
output layer; y is the output vector of the hidden layer, δok, δyj
are the gradient of the error signals of neuron k of the output
layer and respectively neuron j from the hidden layer, νj is the
weight vector of the neuron j from a hidden layer.

B. FFBP neural library design
Designing the neuron of a multilayer FFBP with on-chip
learning must consider not only the computations in the
propagation phase, when the neural network is already trained
and performs the recognition task (1), but also the learning
phase, when the neural weights are updated according with
the error minimization, as in (2) to (4). The neuron designed
by the authors is built using Xilinx System Generator library
blocks and consists of MAC unit, RAM memory module,
multiplexor and a register for bias values initialization, and a
firing function block. When designing the MAC unit, two
approaches may be adopted (Fig. 2): (i) using distributed
resources, or (ii) dedicated modules such as XtremeDSP or
BRAM blocks. The number of dedicated modules (which
ensure the best neuronal processing performances) differs
from one FPGA family to another. Therefore, for finding the
best neuron’s architecture, related to the hardware resources

available in the targeted FPGA, 4 possible optimization
scenarios were considered:
1) DL_AO: minimize the occupied area with multiplications

done using distributed logic resources

	
Fig.2. Hardware architecture of the neuron

TABLE I
HARDWARE RESOURCES UTILIZATION FOR NEURON IMPLEMENTATION

MODEL SLICES LUTS FREQUENCY
(MHZ)

DL_AO 36 49 151,676
DL_SO 36 49 154,369

DSP_AO 5 0 253,485
DSP_SO 5 0 267,237

2) DL_SO: maximize speed processing with multiplications

done using distributed logic resources;
3) DSP_AO: minimize the occupied area with

multiplications done using dedicated resources
4) DSP_SO: maximize speed processing with multiplications

done using dedicated resources.
The synthesis of the maximum processing frequency and the
hardware resources utilization were generated with the ISE
Xilinx report generator tool and are presented in Table I. The
results analysis shows that the neuron based on the
XtremeDSP block has the highest processing frequency and
uses the fewest hardware resources in terms of slices or LUTs
(as expected). Nevertheless, as the XtremeDSP blocks are
limited, (128 for 4VSX35), to extend the number of neurons
implemented, distributed logic can be used instead.
Another component of the neuronal library is the activation
function. Its role is to map the neuron output values to a range
of values given by the function chosen as a firing function, in
this case the sigmoid function (5).

	
1

() 1 / 1 exp
N

k k
k

output net bias w x
=

⎛ ⎞⎛ ⎞
= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ 	 	 (5)	

Implementing the sigmoid function in hardware requires
advanced hardware description language (HDL) knowledge.
Moreover, once implemented, it acts as a bottleneck for the
neuron speed performance demanding considerable hardware
resources in the same time. In order to reducing the hardware
cost, different approximations of the sigmoid function can be
adopted. The main classical methods are Look-up tables and
truncation of the Taylor series expansion. Taylor expansion
can further be implemented in various ways: sum-of-steps,
piece-wise linear, combination of the previous, or others. The
best results reported in the literature show errors of 8% to
13.1% for sum-of-steps approximations and ± 2.45% to ±

1.14% for piece-wise linear approximation. Also, there are
approximations with smaller errors, but they use floating-
point multiplications, thus practical implementation becomes
too complex [30].

TABLE II
MATHEMATICAL AND HARDWARE IMPLEMENTATION OF THE APPROXIMATION

FUNCTIONS

()

()
()

()
()

1 2 4
1 for 0

2
1 2 4

 for 0
2

INT x

INT x

FRAC x
x

Alippi x
FRAC x

x

⎧ + −
− >⎪

⎪⎪
= ⎨

+⎪ ≤⎪
⎪⎩

2

2

2

2

1 1 for - 4 0
2 2()

11 1 for 0 4
2 2

x x
Zhang x

x x

⎧ ⎛ ⎞⎪ − > <⎜ ⎟
⎪ ⎝ ⎠

= ⎨
⎪ ⎛ ⎞
− − ≤ <⎪ ⎜ ⎟

⎝ ⎠⎩

X A-LOW(X)
-8 0
-4 0.0625
-2 0.12
-1 0.25
1 0.75
2 0.87
4 0.937
8 1

	

X PLAN(X)
|X| ≥ 5 1

2,375 ≤ |X| < 5 0,03125 · |X| + 0,84375
1≤ |X| < 2.375 0,0125 · |X| + 0,625

0 ≤ |X| < 1 0,25 · |X| + 0,5

	
TABLE III

RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF DIFFERENT
FIRING FUNCTION WITH DIFFERENT BITS REPRESENTATION

FUNC LUT DSP BRAM
(32,16) (16,8) (8,4) (32,16) (16,8) (8,4) (32,16) (16,8) (8,4)

F1 185 74 23 0 0 0 0 0 0
F2 127 67 36 0 0 0 0 0 0
F3 109 44 24 0 0 0 0 0 0
F4 93 29 18 1 1 1 0 0 0

TABLE IV

THE HARDWARE RESOURCES USED TO IMPLEMENT AN ARTIFICIAL NEURON WITH
DIFFERENT FIRING FUNCTIONS USING THE (3, 10) BITS REPRESENTATION

RESOURCES NEURON
LUTS

NEURON
ZHANG

NEURON
ALIPPI

NEURON
A-LOW

NEURON
PLAN

SLICES 5 28 59 29 12
LUTS 0 25 89 31 10

RAMBS 2 1 1 1 1
DSPS 1 2 1 1 1

MAX FREQUENCY
(MHZ) 227.790 255.860 290.613 268.168 234.467

The firing function library, created by the authors, consists of
ready hardware implementable modules of functions chosen
to approximate the sigmoid function: A-low (F1), Alippi (F2),
PLAN (F3) and Zhang (F4) [21]. Their mathematical and
hardware implementation are summarised in Table II and
their hardware resources utilization in Table III. As shown,
the approximation functions were implementing using
minimum of the hardware resources.
Table IV shows the resources utilized by the entire neuron
using different approximation functions, revealing that each
of them has drawbacks and strengths in terms of processing
speed and hardware utilisation.
It can be concluded that the best approximation method, in
terms of resources utilized and errors introduced, is the PLAN
function, when the number of the neurons that use sigmoid
function is larger than the number of the BRAM blocks
available in the FPGA circuit. When the number of neurons is
lower than the total BRAM blocks available in the FPGA
circuit, the best way to approximate the sigmoid function is
the Lookup Tables method. The resolution used was (3,10)
where 3 bits were allocated for the integer part and 10 bits for
binary part. The errors introduced by the implemented
functions are summarized in Table V.

C. The control neural library with on-chip learning
The control of the neuronal processing components is done
through specialised blocks designed to accommodate the on-
chip BP learning algorithm and the parallelism at the neuron
level, i.e. all neurons within the same layer are controlled at

the same time (in parallel), taking advantage of the massive
parallel processing supported by the FPGAs.

TABLE V
ERRORS AND RESOURCE UTILIZATION OF THE 4VSX35 FPGA CIRCUIT FOR

HARDWARE IMPLEMENTATION OF THE SIGMOID APPROXIMATION
APPROXIMATION

FUNCTION
MAXIMUM
ERROR (%)

MEAN
ERROR (%)

TOTAL EQUIVALENT GATES
COUNT FOR DESIGN

LOOKUP TABLE 0 0 131.072
A-LOW 5.63 0.63 411
ALIPPI 1.89 1.11 877
PLAN 1.89 0.63 351

ZHANG 2.16 1.10 314
The blocks that control the ANN processing units consist of a
general counter, used to provide the time base for the entire
neural network according to the ANN’s phase: propagation
(when the network is already trained and performs
recognition) or learning (when the network is on-chip trained)
and ANN layer specific command signal generator blocks
(two in the example given: one for each neuronal layer), Fig.
3.
The General counter block calculates, function of neurons
architecture, network topology and processing phase
(propagation or learning), the counter’s maximum value and
generates the reference time to set/reset the neuronal control
signals. (6) gives the algorithm for calculating the number of
clock cycles necessary to complete the processing and
weights updating tasks (the counter max value), cycles, where
n1, n2 are the neurons in the input and respectively output
layer; t is the tth layer of network and ceil is the Matlab
function that approximates a real number up to the next
integer. (6) gives also the ANN processing speed in the
learning (PL = 1) or propagation (PL = 0) phase.

	 []1 2 2 2

1 2 1 2 2

 6 2 [14 (1)(
((6 12) / 2) (2 6 15)) 12]

cycles n n t PL n t n
ceil n n t n n n t n

= + + − + ⋅ + + − ⋅

⋅ + + + − + + + + +
	 (6)	

The Command signals generator block generates the
controlling signals for all the processing elements of the
neurons at specific moments (counter values). For this, the
block calculates the values at which commands have to be
given using (7), according to the neuron’s architecture, where
t: the layer number; n: the number neurons in layer t; sra: the
counter’s value at which the accumulator’s reset signal is set;
ea_start: the counter value at which the accumulator enable
signal is set; ea_stop: the time at which the accumulator
enable signal is reset; p_start: the counter’s value at which the
neuron’s propagation phase starts; p_stop: the counter’s value
at which the propagation phase stops; ul_start: counter’s
value at which the tth layer weights start to be updated;
ul_stop: counter’s value at which the weights of the tth layer
updating process is stopped.

	

 (-1)(6) 2;
 _ (-1)(6) 4;
 _ (-1)(6) 4 -1;
 _ (- 1)(6);
 _ (- 1)(6) -1;
 _ (6) 12;
 _ (6) 12 -1;

sra t n
ea start t n
ea stop t n n
p start t n
p stop t n n
ul start t n
ul stop t n n

= + +

= + +

= + + +

= +

= + +

= + +

= + + +

	 	 (7)	

The blocks are described using VHDL language and
implemented using Black box modules, a block that converts
a VHDL design into a System Generator block. The
computational tasks that describe the algorithms for updating
on-chip the ANN weights: (2) to (4), have been implemented
with three computing blocks: i) the errors computing block, ii)
the output layer weights computing block and iii) the hidden
layer weights computing block. The errors and layer weights
computing blocks calculate the accumulated error, the
gradient of the error (δ) and the value that the weights should
be changed

Fig. 3. Control block architecture

Fig. 4. Output layer errors and

weights calculus blocks

with (Δw) to decrease the accumulated error (fig. 4). The
weights of the hidden layer are calculated last (due to back
propagation error algorithm). For this, processing blocks that
calculate the new weights according to (3) were designed, fig.
5. The processing time, expressed in clock cycles, is given in
(8) and is used in delaying the weights updating task (the
delay permits the calculation of the new weights to be
completed).

 2 1 2 2 1 26 12 6 15Delay = n ceil((n + n + t +) / n) - n n + t +⋅ − (8)

An overall view of the main blocks involved in designing an
ANN architecture with a 7-7-4 topology (7 neurons in the
input layer, 7 neurons in the hidden layer and 4 neurons in the
output layer) is shown in Fig.6

IV. ANN ABSTRACTION AND EUP
The idea behind the ANN abstraction is to shield the
complexity from the end user while allowing them to create
their own desired ANN program without incurring a steep
learning curve, thus promote rapid prototyping. To achieve
this goal we employed rule-based technique that often found

in many AI systems. Rules are first created according to the
design and requirement of each of ANN blocks (Fig 7) and
store in the “End User Programs and Semantics” component
(i.e. the knowledge space) (Fig 1). These rules are then used
as the basis of ANN programming abstraction presented as
graphical representations. The relationships between each rule
are described in a form of semantic manner. The end user will
then create their own ANN programs by simply manipulating
the graphical “Rules” representations and develop their own
new “Rules” via an interactive GUI (Fig 7). The GUI is
implemented using event-based architecture.

	
Fig. 5. The weights of the hidden layer calculus blocks

	
Fig. 6. Architecture of the 7-7-4 FFBP neural network topology

Using JavaScript API, various UI events (such as drag, drop,
move and click) have been developed mapping the rules
requirements that store in the main knowledge space (thus can
“trigger” other events based on those rules) to “listen” to the
user’s activities that is happening on this panel. To understand
the user interactions, a learning feature is implemented such
that each activity will be captured and interpreted/inference
according to the rules store in rule-based or be learned as new
rule. Based on rules, an “expert system” is implemented to

guide the end user to create their ANN program via a series of
dialogs. User is able to configure the “rule” by simply
clicking the graphical representations. The newly created
“Rules” will be recorded as instances and stored back in
knowledge space, which can retrieve and amend later. The
contributions of this paper in terms of software design are: (1)
the semantic rules based on ANN design, (2) the abstractions
and representations, (3) the expert system including the
learning feature and (4) GUI event-based architecture. The
EUP GUI is implemented using Python language and
JavaScript, together with a pre-installed MATLAB Engine
that enable Simulink functions to be called through the
provided APIs.

V. APPLICATION AND ANALYSIS
The developed FFBP neural network library was used to
create a pattern recognition module for an artificial olfactory
system trained to recognize different types of coffee. The
olfactory system consists of: seven gas sensors chosen to react
to a wide spectrum of odours (TGS842, TGS826_1,
TGS826_2, TGS2600, TGS2601, TGS2602, TGS2620),
temperature sensor (LM35), humidity sensor (SY-HS-230),
mounted into a

	
Fig. 7. ANN Design EUP GUI

gas test chamber, test chamber, three gas pumps, circuits for
sensors conditioning and pumps command, data acquisition
board, pattern recognition module hardware implemented in
FPGA (Virtex-4 SX 4VSX35), user interface.

A. Data acquisition and processing
The data acquisition module was customized to control the
gas pumps (used to transport the smell to and from the test
chamber), acquire data generated by all 9 sensors and pre-
process the acquired signals (filtering, drift cancellation). The
data has been extracted from the measurement over a defined
absorption/ desorption time of the voltage drop on sensors
resistance when the enriched odour is applied/removed. Data

acquired constitutes the fingerprint of the smell and to process
it, dimensional reduction techniques are applied. In most
cases, this is performed by extracting a single parameter (e.g.
steady-state, final or maximum response) from each sensor,
disregarding the initial transient response, which may be
affected by the dynamics of the odour delivery system. In
some situations, transient analysis may significantly improve
the performance of the gas sensor arrays and should be taken
in consideration. Considering the feature extraction methods
reported in literature [22], a heuristic method has been
adopted with the following selected features: average value
(A1), maximum value (A2), function integral (A3), integral of
the absorption time (A4), maximum slope of the absorption
(A5), maximum slope of the desorption function (A6), time at
which maximum slope of absorption function occurs (A7) and
time at which maximum slope of desorption function occurs
(A8).

B. ANN performance analysis
For determining the best FFBP network implementable with a
minimum of resources, a series of different FFBP NN
topologies have been tested. In addition, for each topology,
fixed-point binary representation with different resolutions
have been investigated. Fig 8 shows the recognition rate vs.
data representation for a topology of 56-56-4 neurons, which
processes an input vector with 56 components: 8 features per
sensors (A1 to A8) and 7 sensors. The recognition rate varies
from 100%, for (16,16) bits representation (16 bits for integer
part and 16 bits for binary part), to 50% for (7,8) bits
representation and 0% for (2,3) bits representation. A major
drop of the recognition rate occurs, 96% to 49%, when one bit
of the integer part: (8,8) → (7,8) is changed. The recognition
rate remains constant for a major drop of data resolution
(16,16) → (8,8). These observations may be very useful when
choosing the data representation resolution. Fig 9 and 10 are
plotted in order to highlight the influence of data
representation resolution over the recognition rate for a given
training set. First, a training set with features (A1, A2, A3) is
shown in Fig 9 and (A2) in Fig 10. It can be concluded, there
is no perfect FFBP network topology for every purpose, but it
can be adapted to fulfil the most important requirements of a
given application. For example, if the chip area occupation is
an important issue, then a 21-21-4 FFBP network with a (5,5)
bits representation and a theoretically recognition rate of 90%
could be more than acceptable. However, for obtaining a
higher recognition rate, a 56-56-4 FFBP network with a
(16,16) bits representation might be a better option.
Consequently, as demonstrated in the above discussion, the
accuracy of the ANN is massively determined by the data
representation adopted. Similar reports are shown in [10].

C. ANN hardware implementation results
To implement in FPGA the above ANN topologies requires
specific hardware resources, which can be priory calculated.
Having a formula to estimate the hardware resources needed
for implementing a specific ANN topology would let the user
choose the right ANN size and FPGA circuit.

By analysing the hardware implementation reports presented
in Table VI, where HL denotes the hidden layer and OL the
output layer, it can be concluded that:
• each neuron added to the hidden layer increases by 32

LUTs and 1 multiplier the overall resource utilization.
• each neuron added to the output layer increases by 40

LUTs and 4 multipliers the output neurons weights
computation block and with 49 LUTs and 1 multiplier the
hidden neurons weights computation block;

Based on the reports presented, 3 equations have been
generated to estimate the hardware resources utilized to
implement a given FFBP topology, prior to an actual
hardware implementation, (9) - (11). These permit choosing
the right FPGA circuit for a given ANN topology/size in the
very early ANN design stages, saving time and costs.

 ()2 h oRAMs N N= + (9)
 15 2 6h oDSPs N N= + + (10)
 200 89 32o hLUTs N N= + + (11)

where: No is the number of neurons in the output layer and Nh
is the number of neurons in the hidden layer.
 Applying (9)-(11) to the Virtex4 targeted in this paper,
(15.360 slices, 30.720 LUTs, 192 BRAMs, 192 DSPs), the

Fig. 8. Recognition rates vs. data representation for 56-56-4 FFBP

Fig. 9. Recognition rate vs. data representation for 21-21-4 FFBP

Fig. 10. Recognition rate vs. data representation for with 7-21-4 FFBP

TABLE VI
DSP, SLICES (SL) AND RAM DISTRIBUTION OVER FFBP COMPONENT BLOCKS

FOR DIFFERENT ANN TOPOLOGIES

ANN
NEURONAL

BLOCK
HL

 BLOCK
OL

BLOCK
CONTROL

 BLOCK
DSP SL RAM DSP SL RAM DSP SL RAM DSP SL RAM

1-1-1 1 5 4 5 64 0 4 24 0 12 105 0
7-2-4 6 76 12 9 190 0 12 100 0 12 114 0
7-7-7 14 105 28 17 256 0 28 215 0 12 108 0

maximum number of neurons that can be implemented using
strictly the dedicated BRAMs and XtremeDSP blocks (for
ensuring the maximum processing speed) is 60, organized as:
45 in the hidden layer and 15 in the output layer. However,
using the distributed multipliers and BRAMs available in the
circuit, 26 more neurons, 20 in the hidden layer and 6 in the
output layer, can be implemented. These will utilize 6878
LUTs and 76 BRAMs, leaving 22657 LUTs unused. The
unused LUTs can be further converted into 20 neurons in the
hidden layer and 10 in the output layer. Therefore, the
maximum number of neurons that can be hardware
implemented (on the expense of the processing speed) is
approximated to 120 (double than the number of neurons that use
only dedicated BRAMs and XtremeDSP blocks).
 To illustrate the FPGA implementation performance, a
report in terms of hardware resources utilization, and
maximum processing frequency is presented in Table VII.

TABLE VII
FPGA IMPLEMENTATION REPORTS

RESOURCE DISTRIBUTION FF(1-1-1) FF(7-7-7) FF(7-2-4)
LUTS 322 1167 612

RAMB16S 4 28 12
DSP48S 23 71 43

MAX FREQUENCY (MHZ) 122.489 96.516 106.09

D. ANN performance comparisons
A direct comparison of the data presented in table VII with
others reported in the literature is not always relevant due to
the lack of common referencing in reporting the hardware
resources per ANN performances. These depend on the type
of the resources available in the FPGA (4 or 6 inputs LUTs,
multipliers or XtremeDSPs, etc.) the depths of the ANN
parallelism adopted (synapse, neuron or layer), the firing
function (sigmoid, hardlim, etc.) processing speed, data
representation, use of dedicated or distributed resources, on or
off chip learning, number of hidden layers to nominate the

most important ones. In [10] for implementing the 10-3-1
FFBP topology with a synaptic parallelism, 70 DSPs and
8043 LUTs were used. In [11] the hardware utilization is reported
per neuron with 1299 LUTs / neuron. In [23] for a 2-5-1 topology 11
DSPs and 6384 LUTs were consumed. In this paper for a similar
topology of 7-2-4, 43 DSPs and 412 LUTs were used.
As shown above, the hardware utilisation depends on factors
which vary from one ANN topology, and FPGA, to another
but they are all reflected in the recognition rate (RR) and
processing speed (PS) supported by the chosen FPGA. Hence,
reporting RR and PS, along with the hardware utilisation,
would indicate better the level of success in using a particular
ANN topology in a specific FPGA circuit.
Choosing the right FPGA circuit for a given ANN or the
ANN size for a given FPGA circuit is not straightforward. As
shown in [10] for selecting the right FPGA circuit, the
designer is forced to implement the design first and then
interpret the hardware resources used vs. the ANN topology.
Therefore, being able to estimate the hardware resources
needed for implementing an ANN before to an actual
implementation would shorten the development time and
consequently save costs. This is addressed for a given FPGA
family by the equations (9)-(11).

VI. CONCLUSIONS AND FUTURE WORK
A novel neural design strategy has been developed, which
benefits of reduced design time over classical field orientation
approaches, leading to a low complexity and easy to
implement pattern recognition module. A particular application
of the pattern recognition system for an olfactory system is
investigated and results presented show efficient hardware
implementation in FPGA circuit. The achievement presented
in this paper refers to a holistic modelling / design method,
using modules created into hardware-software co-design
environment (Matlab-System Generator–ISE) and grouped in
a specific NN library. These modules emulate in hardware any
FFBP network topology behaviour, giving the opportunity to
design hardware implementable FFBP neural networks, at a
higher level, via an intuitive and interactive EUP interface.
The proposed methodology takes advantage of the FPGA
parallel processing power preparing the ground for an auto-
adaptive reconfigurable device ready to respond - read auto-
reconfigure - to any pattern recognition challenge. It is hoped
that, through the proposed method, it would be possible to
make steps towards a “more like brain” computational
machine, in terms of adaptability and quick response, a
system that makes its own choices (upon an implemented
algorithm), i.e. intelligence.
As the components are entirely designed using System
Generator blocks, the created library is technology dependent
to the software used. For increasing the portability, future
work will consider having the blocks designed using hardware
description languages, generated from System Generator.
In conclusion, the paper shows that any FFBP topology may
be built using predefined neural blocks with the following
characteristics: i) holistic modelling and optimisation, ii)
behavioural analysis, and iii) easy hardware prototyping on an

FPGA development platform via an intuitive EUP interface.
In addition, it has been developed a set of equations to
estimate: i) the hardware resources needed to implement an
FFBP ANN with on-chip learning in a given FPGA circuit
(eq. 9-11) and ii) the processing speed of the implemented
ANN topology (eq. 6). Moreover, design concepts introduced
in [20] and [24] are brought further with contributions in
developing an ANN design platform based on semantic rules,
abstractions and representations, expert system and GUI event-
based architecture.

VII. REFERENCES
[1] P. Giard, G. Sarkis, C. Thibeault and W.J. Gross, Electronics Letters

Vol. 51 No. 10 pp. 762–763, 2015
[2] B. Dastagiri Reddy, Anish N. K., et al, Embedded Control of n-Level

DC–DC–AC Inverter, IEEE Trans. on Power Electronics, 30(7), 2015
[3] Z. Zhang, He Xu, et all, Predictive Control with Novel Virtual-Flux

Estimation for Back-to-Back Power Converters, IEEE Transactions on
Industrial Electronics, vol. 62, no. 5, 2015

[4] A. Malinowski, Y. Hao, Comparison of embedded system design for
industrial applications, Trans. Ind. Informatics 7 (2), pp 244-254, 2011.

[5] Man-Chung Wong, Yan-Zheng Yang, Chi-Seng Lam et all, Self-
Reconfiguration Property of a Mixed Signal Controller for Improving
Power Quality Compensation During Light Loading, IEEE Transactions
On Power Electronics, vol. 30, no. 10, 2015

[6] Z. Hajduk, B. Trybus and J. Sadolewski, Architecture of FPGA
Embedded Multiprocessor Programmable Controller, IEEE
Transactions on Industrial Electronics, vol. 62, no. 5, 2015

[7] J. Misra, I. Saha, Artificial neural networks in hardware: A survey of
two decades of progress, Neurocomputing 74, pp 239-255, 2010.

[8] A. Gomperts, A. Ukil and F. Zurfluh, Development and Implementation
of Parameterized FPGA-Based General Purpose Neural Networks for
Online Applications, IEEE Transactions On Industrial Informatics, Vol.
7, No. 1, February 2011

[9] F. Ortega-Zamorano, J. M. Jerez and L. Franco, FPGA Implementation
of the C-Mantec Neural Network Constructive Algorithm, IEEE Trans.
on Ind.Informatics, vol. 10, No. 2, May 2014.

[10] A. Omondi, R. Amos, J. Rajapakse, FPGA Implementations of Neural
Networks, Edided by Springer, ISBN-10 0-387-28485-0, 2006.

[11] M. Cirstea, A. Dinu, A VHDL Holistic Modeling Approach and FPGA
Implementation of a Digital Sensorless Induction Motor Control
Scheme, IEEE Trans. on Ind. Electronics, vol. 54, (4), 1853 - 1864,
2007

[12] A. Dinu, M.N. Cirstea, S.E. Cirstea: Direct Neural Networks Hardware
Implementation Algorithm, IEEE Trans. on Ind. Electronics, vol. 57,
no. 5, pp.1845-1848, May 2010.

[13] A. Rosado-Muñoz, E. Soria-Olivas et al., An IP Core and GUI for
Implementing Multilayer Perceptron with a Fuzzy Activation Function
on Configurable Logic Devices, J. of Universal Comp. Sc. vol. 14,
no10. pp 1678-1694, 2008.

[14] E. Vansteenkiste et all, TPaR: Place and Route Tools for the Dynamic
Reconfiguration of the FPGA’s Interconnect Network, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 33, no. 3, pp 370-383, 2014

[15] M. Brox et all, CAD Tools for Hardware Implementation of Embedded
Fuzzy Systems on FPGAs, IEEE Transactions on Industrial Informatics,
vol. 9, vo. 3, pp 1635-1644, 2013

[16] A, Cypher Halbert DC, Kurlander D, et al, “Watch What I Do:
Programming by Demonstration” The MIT Press, England 1993.

[17] N,.Elumeze, et all Serious Programming Made Cuddly: A Fully End-
User-Programmable Stuffed Toy, Digital Game and Intelligent Toy
Enhanced Learning, Third IEEE Int. Conf., pp.146-150, 2010

[18] J.,Lincke, , Krahn, R., et al, Lively Fabrik A Web-based End-user
Programming Environment, Creating, Connecting and Collaborating
through Computing, 7th International Conference on , pp.11-19, 2009

[19] Mateo, C.; Brunete, A.; et al, Hammer: An Android based application
for end-user industrial robot programming, Mechatronic and Embedded
Systems and Applications,10th Int. Conference on , pp.1,6, Sept. 2014

[20] Chin, V. Callaghan, G. Clarke, End-user Customisation of Intelligent
Environments". In the handbook of Ambient Intelligence and Smart
Environments, Springer, 2010, Spring, pp. 371-407,

[21] M.T. Tommiska: Efficient digital implementation of the sigmoid
function for reprogrammable logic, IEE Proceedings – Computers and
Digital Techniques, number 6, pp. 403-411, 2003.

[22] R. Gutierrez-Osuna, H. T. Nagle, and S.,S Schiffman, Transient
response analysis of an electronic nose using multi-exponential models,
Sensors and Actuators B, 1999, 61(1-3), 170-182.

[23] A.N. Pérez-García1 et all, Multilayer perceptron network with
integrated training algorithm in FPGA, 11th Int. Conf. on Electrical

Engineering, Computing Science and Automatic
Control, pp 1-6, 2014.
[24] A. Tisan, M. Cirstea, S. Oniga, A. Buchman,
Artificial olfaction system with hardware on-chip
learning neural networks, 12th International
Conference on Optimization of Electrical and
Electronic Equipment (OPTIM), pp884-889, 2010.

Alin	 Tisan (M’10) received a BSc in Physics
(1997) and an MSc in Solid State Physics from

“Babes Bolyai” University in Cluj Napoca, Romania. He then completed a
Ph.D. in electrical engineering at Technical University of Cluj Napoca in
2009. He is currently senior lecturer in the Computing and Technology
Department at Anglia Ruskin University in Cambridge, UK, after previously
working as senior lecturer in the Electronic and Computer Engineering
Department at North University, Romania. He is a member of the IEEE
Industrial Electronics Society and a member of its Technical Committee on
Electronic Systems on Chip.

His areas of interest include neuromorphic
systems modelling, digital controllers and system-
on-chip (FPGA) design, with various applications
in electronic/electrical engineering. His technical
achievements were published in over 40 peer-
reviewed papers.

Jeannette Chin (M’10) is an academic at Anglia
Ruskin University. She obtained her PhD in

Computer Science, from the University of Essex, UK, in 2009. Jeannette's
research interests concern End User Programming for smart environments
and the Internet of Things. Her current research involves decision support for
EUP systems, intelligent personalized systems, HCI, IoT Energy Harvesting
and healthcare applications. Jeannette has published over 30 peer-reviewed
research papers including journal articles and book chapters. Currently
Jeannette is a reviewer for IEEE Transactions Journal on Human-Machine
Systems, JSAN, Journal on Telematics and Informatics, and IEEE sponsored
International Conferences. Jeannette is the principal investigator of two
European projects; funded by the EU low carbon KEEP, and the UK
innovateUK TSB, and the co-investigator of EU project SmartLink. Jeannette
is a Fellow of British Computer Society (FBCS) and a member of the
Institute of Electrical & Electronics Engineers (MIEEE). URL:
http://jeannette.sych.in

