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Abstract. We start with observing that the only connected finite dimensional

algebras with finitely many isomorphism classes of indecomposable bimodules

are the quotients of the path algebras of uniformly oriented An-quivers mod-
ulo the radical square zero relations. For such algebras we study the (finitary)

tensor category of bimodules. We describe the cell structure of this tensor cat-

egory, determine existing adjunctions between its 1-morphisms and find a min-
imal generating set with respect to the tensor structure. We also prove that,

for the algebras mentioned above, every simple transitive 2-representation of

the 2-category of projective bimodules is equivalent to a cell 2-representation.
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1. Introduction and description of the results

Finitary 2-categories were introduced in [MM1] as “finite dimensional” counter-
parts of, in general, “infinite dimensional” 2-categories which were studied in the
categorification literature on the borderline between algebra and topology during
the last twenty years, see [BFK, CR, Kh, KL, Ro, St]. The series [MM1, MM2,
MM3, MM4, MM5, MM6] of papers develops basics of abstract representation the-
ory for finitary 2-categories. Classical examples of finitary 2-categories are: the
2-category of Soergel bimodules over the coinvariant algebra of a finite Weyl group,
see [MM1, Subsection 7.1], and the 2-category of projective functors over finite
dimensional associative algebra, see [MM1, Subsection 7.3]. Further examples of
finitary 2-categories were constructed and studied in [GM1, GM2, Xa, Zh1, Zh2],
see also the above mentioned series [MM1]–[MM6].

In the present paper we consider a new natural class of examples of finitary 2-
categories. The paper started from the following question:

For which finite-dimensional algebras, the corresponding tensor category of bimod-
ules is finitary?

Although we suspect that the answer to this question could be known to special-
ists in representation type, we did not manage to find any explicit answer in the
literature (the closest relevant reference we found is [Le]). In Theorem 1 we show
that the only finite dimensional algebras over an algebraically closed field, for which
the number of isomorphism classes of bimodules is finite, are those algebras whose
connected components are radical square zero quotients of uniformly oriented path
algebras of type A Dynkin quivers. This result motivates the rest of the paper where
we take a closer look at the tensor category of bimodules over such algebras.
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We start with an attempt to understand the combinatorics of left-, right- and two-
sided cells of this tensor category. These cells are natural generalizations of Green’s
relations for semigroups from [Gr] to the setup of tensor categories, see [MM2,
Section 3]. Apart from k-split bimodules, that is bimodules of the form X ⊗k Y ,
where X is a left module and Y is a right module, see [MMZ], the remaining
bimodules can be split into four families, which we call W , M , N and S, motivated
by the shape of the diagram of a bimodule. All k-split bimodules always form the
maximum two-sided cell which is easy to understand.

To describe the remaining structure, we introduce several combinatorial invariants
of bimodules, called left support and right support and also the number of valleys
in the diagram of a bimodule. We show that these invariants, in combination with
bimodule types, classify left, right and two-sided cells. For example, two-sided
cells are classified, in the case of non k-split bimodules, by the number of valleys in
bimodule diagrams. This result is a first step in understanding combinatorial struc-
ture for bimodule categories over arbitrary finite dimensional algebras, the latter
question forming the core of our motivation. We also give an explicit description
for all adjoint pairs of functors formed by our bimodules. This description covers
only some bimodules as, in general, the right adjoint of tensoring with a bimodule
is not exact and hence is not isomorphic to tensoring with some (possibly different)
bimodule.

Furthermore, we find a minimal generating set for our tensor category, with respect
to the tensor structure. It consists of the identity bimodule and three additional
bimodules in the two-sided cell closest to the one formed by the identity bimod-
ule, with respect to the two-sided order. To prove the statement, we give explicit
formulae for tensor products of each of these three bimodules with all other inde-
composable bimodules.

Finally, we study simple transitive of the 2-category of projective bimodules over
our algebras. Classification of such 2-representations is a natural problem which
was considered, for various classes of 2-categories in [MM5, MM6, Zh1, Zi, MZ,
MaMa, KMMZ, MT, MMMT, MMZ]. It also has interesting applications, see
[KiM1]. A natural class of simple transitive 2-representations is given by the so-
called cell 2-representations constructed in [MM1, MM2]. For the 2-category of
projective bimodules over a finite dimensional algebra A, it is known that cell 2-
representations exhaust all simple transitive 2-representations if A is self-injective
(see [MM5, MM6]), if A = k[x, y]/(x2, y2, xy) (see [MMZ]) and if A is the radical
square zero quotient of the path algebra of a uniformly oriented quiver of type A2

or A3 (see [MZ]). In the present paper we extend this result to all directed algebras
admitting a non-zero projective-injective module, see Theorem 19. We recover, with
a much shorter and much more elegant proof, the main results of [MZ], however,
our approach is strongly inspired by [MZ, Section 3]. Our approach to the proof
of Theorem 19 contains some new general ideas which could help to attack similar
problems for other finitary 2-categories. We note that there are natural examples of
2-categories which have simple transitive 2-representations that are not equivalent
to cell 2-representations, see [MaMa, KMMZ, MT, MMMT].

The paper is organized as follows: Section 2 contains the material related to the
formulation and proof of Theorem 1. Section 3 studies combinatorics of bimodules.
The main results of this section which provide a combinatorial description of the cell
structure are collected in Subsection 3.5. In Theorem 15 of Section 4, we describe a
minimal generating set of our tensor category with respect to the tensor structure.
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Finally, Section 5 contains the material related to classification of simple transitive
2-representations.

Acknowledgements: This research was partially supported by the Swedish Re-
search Council, Knut and Alice Wallenberg Stiftelse and Göran Gustafsson Stiftelse.
We thank Martin Herschend for information on reference [Le]. We also thank the
referee for very helpful comments.

2. Characterization via representation type

2.1. Main object of study. Throughout the paper we fix an algebraically closed
field k. For n ∈ {1, 2, 3, . . . }, we denote by An the quotient of the path algebra of
the quiver

(1) 1
α1 // 2

α2 // 3
α3 // . . .

αn−1 // n

modulo the relations that the product of any two arrows is zero. In particular, we
have A1

∼= k, A2 is isomorphic to the algebra of upper triangular 2 × 2 matrices
with coefficients in k and Rad(An)2 = 0, for any n. If n is fixed or clear from the
context, we will simply write A for An.

We denote by

• A-mod the category of finite dimensional left A-modules;

• mod-A the category of finite dimensional right A-modules;

• A-mod-A the category of finite dimensional A-A-bimodules.

For i = 1, 2, . . . , n, we denote by ei the trivial path at the vertex i. Thus we have a
primitive decomposition 1 = e1 +e2 + · · ·+en of the identity 1 ∈ A. Then Pi = Aei
is an indecomposable projective in A-mod and we denote by Li the simple top of Pi.
Further, we denote by Ii the indecomposable injective envelope of Li. Note that Pi
has dimension 2, for i = 1, 2, . . . , n−1, and Pn = Ln. Similarly, Ii has dimension 2,
for i = 2, 3, . . . , n, and I1 = L1. Moreover, Pi ∼= Ii+1, for i = 1, 2, . . . , n− 1.

2.2. Bimodule representation type. The main result of this subsection is the
following statement. We suspect that this claim should be known to experts, but
we failed to find any explicit reference in the literature.

Theorem 1. Let B be a finite dimensional associative k-algebra. Then the follow-
ing conditions are equivalent:

(a) The category B-mod-B has finitely many isomorphism classes of indecompos-
able objects.

(b) Each connected component of B is Morita equivalent to some An.

As B-mod-B is equivalent to B ⊗k B
op-mod, condition (a) is equivalent to saying

that B ⊗k B
op is of finite representation type.
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2.3. Proof of the implication (a)⇒(b). Let B be a basic finite dimensional as-
sociative k-algebra such that the category B-mod-B has finitely many isomorphism
classes of indecomposable objects. Note that this, in particular, implies that B has
finite representation type. Consider the Gabriel quiver Q = (Q0, Q1) of B, where
Q0 is the set of vertices and Q1 the set of arrows. Then, for any i, j ∈ Q0, we have
at most one arrow from i to j for otherwise B would surject onto the Kronecker
algebra and thus have infinite representation type.

Next we claim that Q has no loops. Indeed, if Q would have a loop, B would have
a quotient isomorphic to the algebra D := k[x]/(x2) of dual numbers. However, the
algebra D ⊗k D

op has a quotient isomorphic to k[x, y]/(x2, y2, xy) and the latter
has infinite representation type since we have an infinite family of pairwise non-
isomorphic indecomposable 2-dimensional modules of this algebra on which x and
y act via (

0 1
0 0

)
and

(
0 λ
0 0

)
, where λ ∈ k,

respectively (note that k, being algebraically closed, is infinite). This is a contra-
diction.

Next we claim that each vertex of Q has indegree at most 1 and outdegree at most
1. We prove the claim for indegrees and, for outdegrees, the proof is similar. If Q
has a vertex with indegree at least two, then, taking the above into account, Q has
a subgraph of the form:

(2) i // j koo

Then B has a quotient isomorphic to the path algebra C of (2). We claim that
C ⊗k C

op has infinite representation type thus giving us a contradiction. Indeed,
C ⊗k C

op is isomorphic to the quotient of the path algebra of the solid part of the
following quiver:

• // • •oo

• //

OO

��

•

OO

��

•oo

OO

��
• // • •oo

modulo the commutativity relations indicated by dotted lines. In the middle of
this picture we see an orientation of the affine Dynkin diagram of type D̃4. The
corresponding centralizer subalgebra thus has infinite representation type. It follows
that C ⊗k C

op has infinite representation type.

Next we claim that Q does not have any components of the form • (( •hh . If the
latter were the case, then B ⊗k B

op would have a quotient isomorphic to the path
algebra of

• ((

��

•hh

��
• ((

GG

•hh

GG

modulo the relations that all squares commute. The latter has a quotient isomorphic
to the path algebra corresponding to the following orientation

• ((

��

•

• •hh

GG
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of an affine Dynkin quiver of type Ã4 and thus has infinite representation type, a
contradiction.

The above shows that Q is a disjoint union of graphs of the form (1). We now only
need to show that Rad(B)2 = 0. If Rad(B)2 6= 0, then B has a quotient which is
isomorphic to the path algebra F of (1), for n = 3. Then F ⊗k F

op is isomorphic
to the quotient of the path algebra of the solid part of the following quiver:

• //

��

• //

��

•

��
• //

����

• //

��

•

��
• // • // •

modulo the commutativity relations indicated by dotted lines. Similarly to the
previous paragraph, this algebra has a centralizer subalgebra which is the path
algebra of a type D̃4 quiver. Therefore it has infinite representation type.

2.4. Proof of the implication (b)⇒(a). Note that An/(en) ∼= An−1, for any n.
Therefore, for allm,n, there is a full embedding of the category ofAn-Am-bimodules
into the category of Ak-Ak-bimodules, where k = max(m,n). Using additivity and
the fact that Morita equivalence, by definition, does not affect representation type,
we obtain that it is sufficient to prove that the category An-mod-An has finitely
many isomorphism classes of indecomposable objects, for every n.

The algebraAn⊗kA
op
n is the quotient of the path algebra of the following quiver:

(3) 1|1

��

1|2oo

��

1|3oo

��

. . .oo

��

1|n

��

oo

2|1

��

2|2oo

��

2|3oo

��

. . .oo

��

2|n

��

oo

3|1

��

3|2oo

��

3|3oo

��

. . .oo

��

3|n

��

oo

...

��

...oo

��

...oo

��

. . .oo

��

...

��

oo

n|1 n|2oo n|3oo . . .oo n|noo

modulo the relations that all squares commute and the product of any two hori-
zontal or any two vertical arrows is zero.

The algebra An ⊗k A
op
n is thus a special biserial algebra in the sense of [BR, WW].

According to these two references, each indecomposable module over a special bise-
rial algebra is either a string modules or a band module or a non-uniserial projective-
injective module. In our case, there are certainly finitely many indecomposable non-
uniserial projective-injective modules (they correspond to commutative squares in
our quiver).

We claim that, in the case of An⊗kA
op
n , there are only finitely many string modules

(up to isomorphism) and that there are no band modules. This follows from the
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form of the relations. Indeed, the maximal (with respect to inclusion) strings
avoiding zero relations are:
(4)

1|n-1 1|n

��

oo

2|n

1|n-2 1|n-1oo

��
2|n-1 2|noo

��
3|n

1|n-3 1|n-2oo

��
2|n-2 2|n-1oo

��
3|n-1 3|noo

��
4|n

and so on (in total, there are 2n−2 such maximal strings). We see that edges of these
strings never intersect and that the strings never close into bands (corresponding
to primitive cyclic words in some references). Consequently, there are no band
modules and only finitely many string modules. The claim follows.

An exact enumeration of isomorphism classes of indecomposable objects in the
category An-mod-An is given in the next subsection.

2.5. Enumeration of indecomposable An-An-bimodules.

Proposition 2. For n = 1, 2, . . . , the category An-mod-An contains exactly

4n3 + 3n2 − 7n+ 3

3

isomorphism classes of indecomposable objects.

Proof. For n = 1, the claim is clear as A1
∼= C and thus C ⊗C C ∼= C is a simple

algebra and thus has exactly one isomorphism class of indecomposable modules. For
n > 1, we have (n − 1)2 indecomposable projective-injective objects in An-mod-
An. From Subsection 2.4, we know that the remaining indecomposable objects
correspond to string An ⊗k A

op
n -module. A string module is uniquely identified by

the string the module is supported at, that is by a substring of one of the maximal
strings as shown in (4).

For each k = 3, 5, 7, . . . , 2n−1, there are exactly two maximal strings with k vertices.
A string with k vertices supports k(k + 1)/2 string modules (which correspond to
connected substrings). Note that simple modules are supported just by vertices
and there are n2 − 2 vertices, that is all but the left upper and right lower corners,
which belong to two different maximal substrings and hence are counted twice
above. Putting all this together and simplifying gives the necessary formula. �

3. Combinatorics of A-A-bimodules

3.1. Cells. The main aim of the section is to describe the cell combinatorics of
A-A-bimodules in the sense of [MM2, Section 3]. Denote by S the set of isomor-
phism classes of indecomposable A-A-bimodules. Recall that the left preorder ≤L
is defined as follows: for X,Y ∈ S we have X ≤L Y provided that Y is isomorphic
to a direct summand of Z ⊗A X, for some A-A-bimodule Z. An equivalence class
with respect to ≤L is called a left cell and the corresponding equivalence relation is
denoted by ∼L. The right preorder ≤R and the corresponding right cells and ∼R are
defined similarly using tensoring over A from the right. The two-sided preorder ≤J
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and the corresponding two-sided cells and ∼J are defined similarly using tensoring
over A from both sides.

The preorder ≤L induces naturally a partial order on the set of all left cells. Abusing
notation, we denote this partial order also by ≤L. Similarly for ≤R and the set of
all right cells, and for ≤J and the set of all two-sided cells.

3.2. k-split A-A-bimodules. For simplicity, in this section we will denote by Nn
the set {0, 1, 2, . . . , n− 1} and N∗n the set {1, 2, . . . , n− 1}.

An A-A-bimodule X is called k-split, cf. [MMZ], provided that X is isomorphic
to a direct sum of A-A-bimodules of the form M ⊗k N , where M ∈ A-mod and
N ∈ mod-A.

We will often argue using bimodule action graphs. We will depict the left action
using vertical arrows and the right action using horizontal arrows. Following the
proof of Proposition 2, we can now list all non-zero indecomposable k-split A-A-
bimodules (up to isomorphism) and describe their action graphs as follows:

• the projective-injective bimodules Aei ⊗k ej+1A, where i, j ∈ N∗n:

i | j

��

i | j+1oo

��
i+1 | j i+1 | j+1;oo

• the simple bimodules i | j, where i, j ∈ N∗n+1, that is, string A ⊗k A
op-

modules of dimension 1 (we will denote the bimodule i | j by Lij);

• string A⊗k A
op-modules of dimension 2:

i | j,

��
i+1 | j

i ∈ N∗n, j ∈ N∗n+1; i | j i | j+1,oo i ∈ N∗n+1, j ∈ N∗n.

Note that the projective A-A-bimodules Aen ⊗k ej+1A, where j ∈ N∗n, and also
Aei ⊗k e1A, where i ∈ N∗n, belong to the last type of indecomposables (and they
are not injective).

We denote by Jk the set of all k-split elements in S.

Proposition 3.

(i) The set Jk is the unique maximal two-sided cell in S.

(ii) For each indecomposable right A-module N , the set of elements in Jk of the
form X ⊗kN , for some X ∈ A-mod, forms a left cell. Moreover, each left cell
in Jk is of such form.

(iii) For each indecomposable left A-module K, the set of elements in Jk of the
form K ⊗k Y , for some Y ∈ mod-A, forms a right cell. Moreover, each right
cell in Jk is of such form.

Proof. For X ∈ Jk and Y any A-A-bimodule, both X ⊗A Y and Y ⊗A X are
obviously k-split, so k-split bimodules form a tensor ideal in A-mod-A. For any
indecomposable K1 and K2 in A-mod and any indecomposable X ∈ mod-A, we
have

(K1 ⊗k A)⊗A (K2 ⊗k X) ∼= (K1 ⊗k X)
⊕ dimK2 .
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This implies claim (ii) and claim (iii) is proved similarly. This, combined with the
fact that k-split bimodules form a tensor ideal in A-mod-A, also implies claim (i),
completing the proof. �

3.3. A-A-bimodules which are not k-split. Consider the action graph ΓM for a
string A⊗kA

op-module M . Then, directly from the construction of string modules,
we can make the following easy observations:

• the indegree of each vertex in ΓM is at most two;

• the outdegree of each vertex in ΓM is at most two;

• each vertex of ΓM is either a source or a sink (or both);

• M is simple if and only if both the indegree and the outdegree of each
vertex in ΓM is zero.

A vertex of ΓM of indegree exactly two will be called a valley. A typical example
of a valley in an action graph is the white vertex of the following graph:

•

��
◦ •oo

We denote by v(M) the number of valleys in ΓM . Clearly, 0 ≤ v(M) ≤ n − 1,
moreover, the only M for which v(M) = n− 1 is the regular bimodule M ∼= AAA.
For any A⊗k A

op-module N which is not projective-injective, define

v(N) := max{v(M) : M is a string module and is as a direct summand of N}.

Indecomposable A-A-bimodules that are not k-split correspond to string A⊗kA
op-

modules whose action graphs have k vertices, where 3 ≤ k ≤ 2n − 1. Below we
list all such bimodules, fix notation for them and describe the corresponding action
graphs. We use the number of valleys in the action graph as a parameter, denoted
by t. Our choice for notation is motivated by the shape of the action graph.

Bimodules W t
ij. For any t ∈ N∗n and i, j ∈ N∗n−t+1, we denote by W t

ij the following
A-A-bimodule:

i | j

��
i+1 | j i+1 | j+1oo

��
i+2 | j+1 i+2 | j+2oo

��

i+t-1 | j+t-1oo

��
i+t | j+t-1 i+t | j+too

In particular, we have AAA ∼= Wn−1
11 .
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Bimodules Stij. For any t ∈ N∗n−1, i ∈ N∗n−t, and j ∈ N∗n−t+1, we denote by Stij
the following A-A-bimodule:

i | j

��
i+1 | j i+1 | j+1oo

��
i+2 | j+1 i+2 | j+2oo

��

i+t-1 | j+t-1oo

��
i+t | j+t-1 i+t | j+too

��
i+t+1 | j+t

Bimodules N t
ij. For any t ∈ N∗n−1, i ∈ N∗n−t+1 and j ∈ N∗n−t, we denote by N t

ij

the following A-A-bimodule:

i | j i | j+1oo

��
i+1 | j+1 i+1 | j+2oo

��

i+t-1 | j+too

��
i+t | j+t i+t | j+t+1oo

Bimodules M t
ij. For any t ∈ Nn−1 and i, j ∈ N∗n−t, we denote by M t

ij the following
A-A-bimodule:

i | j i | j+1oo

��
i+1 | j+1 i+1 | j+2oo

��

i+t-1 | j+too

��
i+t | j+t i+t | j+t+1oo

��
i+t+1 | j+t+1
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In particular, Homk(AAA,k) ∼= Mn−2
11 . As a concrete example, the action graph of

the bimodule M0
ij , where i, j ∈ N∗n, is:

i | j i | j+1oo

��
i+1 | j+1

Let M be an indecomposable A-A-bimodule listed in Subsection 3.2-3.3. Then
vertices in ΓM correspond to the standard basis of M denoted B(M). We will often
identify vertices in ΓM with this standard basis. Note the following:

• every vertex of non-zero indegree generates a simple sub-bimodule;

• every vertex of outdegree two generates a subbimodule which is isomorphic
to some M0

ij .

3.4. Supports. For an A-A-bimodule X, we define the left support of X as the
set of all i ∈ {1, 2, . . . , n} such that eiX 6= 0. The left support of X will be
denoted Lsupp(X). Similarly, the right support of X, denoted Rsupp(X), is the
set of all i ∈ {1, 2, . . . , n} such that Xei 6= 0. Note that, for any indecomposable
A-A-bimodule X, both Lsupp(X) and Rsupp(X) are convex subset of {1, 2, . . . , n}.
Here X ⊂ {1, 2, . . . , n} is convex if, for any x, y, z ∈ {1, 2, . . . , n}, the properties
x, z ∈ X and x < y < z imply y ∈ X.

We define the width w(X) and the height h(X) of X to be, respectively,

w(X) := 1 + max{i ∈ Rsupp(X)} −min{i ∈ Rsupp(X)},
h(X) := 1 + max{i ∈ Lsupp(X)} −min{i ∈ Lsupp(X)}.

Note that, for an indecomposable X, we have |w(X)− h(X)| ≤ 1.

It is worth noting that indecomposable bimodules in the families N and S are
uniquely determined (inside the set of isomorphism classes of indecomposable A-A-
bimodules) by their left and right supports and that for bimodules in these families
we always have |w(X)−h(X)| = 1. Further, each indecomposable bimodule in the
families M and W is uniquely determined by its left and right support inside its
family. Moreover, for each bimodule X in the families M and W , there is a unique
bimodule in the other family (i.e. in W if X is in M and vice versa) which shares
the left and right supports with X. Note that, if X of the M -family and Y of the
W -family share the left and right supports, then v(Y ) > v(X).

The following lemma contains a crucial observation for our combinatorial descrip-
tion. The claim follows directly from the definitions.

Lemma 4. For any A-A-bimodules X and Y , we have

Lsupp(X ⊗A Y ) ⊂ Lsupp(X) and Rsupp(X ⊗A Y ) ⊂ Rsupp(Y ).

3.5. Description of cells. For v ∈ Nn, denote by Jv the set of all non k-split
elements in S having exactly v valleys. Note that Jn−1 consists just of the identity
A-A-bimodule AAA. Recall from [CM, Subsection 2.3] that a two-sided cell is called
idempotent provided that it contains three elements F, G and H (not necessarily
different), such that F is isomorphic to a direct summand of G⊗A H.

In this subsection we present our main results. We start by describing two-sided
cells in S.
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Theorem 5.

(i) Each Jv is a two-sided cell in S, moreover, each two-sided cell in S coincides
with either Jk or with one of the Jv’s.

(ii) The two-sided cells of S are linearly ordered as follows:

Jk ≥J J0 ≥J J1 ≥J · · · ≥J Jn−1.

(iii) All two-sided cells but J0 are idempotent.

As left and right cells in Jk are already described in Proposition 3, it is left to
consider left and right cells formed by non k-split bimodules.

Theorem 6. Let v ∈ Nn.

(i) If v > 0, then, for each j ∈ N∗n−v+1, the set of all bimodules of type W and S
in Jv with right support {j, j + 1, . . . , j + v} forms a left cell in Jv.

(ii) For each j ∈ N∗n−v, the set of all bimodules of type M and N in Jv with right
support {j, j + 1, . . . , j + v + 1} forms a left cell in Jv.

(iii) Each left cell in Jv is of the form given by (i) or (ii).

Theorem 7. Let v ∈ Nn.

(i) If v > 0, then, for each j ∈ N∗n−v+1, the set of all bimodules of type W and
N in Jv with left support {j, j + 1, . . . , j + v} forms a right cell in Jv.

(ii) For each j ∈ N∗n−v, the set of all bimodules of type M and S in Jv with left
support {j, j + 1, . . . , j + v + 1} forms a right cell in Jv.

(iii) Each right cell in Jv is of the form given by (i) or (ii).

As an immediate consequence from Theorems 5, 6 and 7, we have:

Corollary 8. All two-sided cells in J are strongly regular in the sense that we
have |L ∩ R| = 1, for any left cell L in J and any right cell R in J .

Regular two-sided cells play an important role in the theory developed in [MM1]–
[MM6], see also [KiM2].

The algebra A has an involutive anti-automorphism ı which swaps e1 with en,
e2 with en−1, α1 with αn−1 and so on. Using this anti-automorphism, we can
define an anti-involution on the tensor category A-mod-A which we, abusing no-
tation, also denote by ı. This anti-involution swaps the sides of bimodules and
twists both action by ı. Consequently, the multisemigroup S has an involutive
anti-automorphism. This anti-automorphism makes the statements of Theorem 6
and Theorem 7 equivalent. Remainder of the section is devoted to the proof of
Theorems 5 and 6.

3.6. Proof of Theorem 6. We start by introducing the following notation: for a
subset U ⊂ Z and for r ∈ Z, we will denote by U [r] the set {i+ r : i ∈ U}.

Lemma 9. Let us fixed a type, W , M , S or N , of non-k-split A-A-bimodules.
Then all bimodules of this type and with fixed right support belong to the same left
cell.
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Proof. Denote by ϕ the endomorphism of A which sends

ei 7→

{
ei+1, i+ 1 ≤ n;

0, else;
αi 7→

{
αi+1, i+ 1 < n;

0, else.

Set ẽ = e2 + e3 + · · · + en = ϕ(1). Then ẽA has the natural structure of an A-A-
bimodule where the right action of a is given by multiplication with a and the left
action of a is given by multiplication with ϕ(a). We will denote this bimodule by
ϕẽA. Similarly, Aẽ has the natural structure of an A-A-bimodule where the right
action of a is given by multiplication with ϕ(a) and the left action of a is given by
multiplication with a. We will denote this bimodule by Aẽϕ.

We have Aẽ = ẽAẽ. Consequently, the multiplication map

ϕẽA⊗A Aẽϕ → ϕẽAẽϕ

is an isomorphism of A-A-bimodules. Set I := AenA. Then, mapping 1 + I 7→
ẽ, gives rise to an isomorphism of A-A-bimodules between A/I and ϕẽAẽϕ. In
particular, it follows that ϕẽA⊗A Aẽϕ ∼= A(A/I)A.

This means that, if X ∈ A-mod is annihilated by I, then, tensoring X (from the
left) first with Aẽϕ and then with ϕẽA, gives X back. If X has, additionally, the
structure of an indecomposable A-A-bimodule, then tensoring with Aẽϕ just twists
the left action of A on X by ϕ and hence does not change the type (W , M , S or
N) of X. In particular, we have

Lsupp(Aẽϕ ⊗A X) = (Lsupp(X))[1] and Rsupp(Aẽϕ ⊗A X) = Rsupp(X).

Starting now with X such that 1 ∈ Lsupp(X) and applying this procedure induc-
tively, we will obtain that all bimodules of the same type as X and with the same
right support as X belong to the left cell of X. This proves the claim. �

Lemma 10. Bimodules of types W and S with the same right support belong to
the same left cell.

Proof. After Lemma 9, it is enough to prove this claim for any two particular
bimodules of types W and S with the same right support. Let X be the unique
indecomposable subquotient of AAA of type W with right support {j, j+ 1, . . . , k}.
Assume that k < n and let Y be the unique indecomposable subquotient of AAA
of type S with right support {j, j + 1, . . . , k}. Then Y surjects onto X with one-
dimensional kernel.

Let Q = A(ej + ej+1 + · · ·+ ek)A be a subbimodule of the regular bimodule AAA.
Consider the short exact sequence

0→ Q→ A→ Coker→ 0

of bimodules. By construction, Coker ⊗A X = 0 and hence Q ⊗A X surjects onto
X. Consequently, we either have Q ⊗A X ∼= X or Q ⊗A X ∼= Y . To determine
which of these cases takes place, we use adjunction:

HomA-A(Q⊗A X,Y ) ∼= HomA-A(X,HomA-(Q,Y )).

It is now easy to check that HomA-(Q,Y ) ∼= X and thus the right hand side of the
above isomorphism is non-zero. As HomA-A(X,Y ) = 0, it follows that Q⊗AX = Y .

If we denote by Q′ the quotient of the above bimodule Q by the subbimodule ek+1Q,
then we again have either Q′ ⊗A Y ∼= X or Q′ ⊗A Y ∼= Y . By adjunction,

HomA-A(Q′ ⊗A Y, Y ) ∼= HomA-A(Y,HomA-(Q
′, Y )).
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However, now Q′ is a proper quotient of Q and one sees that the dimension of
HomA-(Q

′, Y ) is strictly smaller than that of HomA-(Q,Y ). Therefore HomA-(Q
′, Y )

is a proper subbimodule of X which yields

HomA-A(Q′ ⊗A Y, Y ) = 0.

This implies Q′ ⊗A Y ∼= X and hence X and Y do belong to the same left cell.

In the case k = n the arguments are similar with the only difference that X has to
be changed to ϕẽA⊗A X. This works only if j > 1. If j = 1 and k = n, then there
are no A-A-bimodules of type S with such right support. �

Lemma 11. Bimodules of types M and N with the same right support belong to
the same left cell.

Proof. This is similar to the proof of Lemma 10 and is left to the reader. �

Lemma 12. Bimodules of types W and M cannot belong to the same left cell.

Proof. Let X be an A-A-bimodule of type W and Y an A-A-bimodule of type M .
Taking Lemma 4 into account, suppose that Rsupp(X) = Rsupp(Y ) and consider
the right A-modulesXA and YA. Then from our explicit description of bimodules we
can see that XA is not a quotient of any module in add(YA). Therefore no Z⊗A YA
can have XA as a quotient, let alone direct summand. The claim follows. �

Claims (i) and (ii) of Theorem 6 follow from Lemmata 9–12. Claim (iii) follows
from claims (i) and (ii) and classification of indecomposable A-A-bimodules.

3.7. Proof of Theorem 5. Claim (i) follows from Theorems 6 and Theorem 7.
That fact that Jv, for v > 1, are idempotent follows from the proof of Lemma 10.

To prove that two-sided cells are linearly ordered, for j = 1, 2, . . . , n−1, consider the
quotient A-A-bimodule Qj := A/A(ej+2+· · ·+en)A of A (in particular, Qn−1 = A).

We have Qj ∈ Jj , for all j, in fact, Qj ∼= W j
11. Consider also the A-A-bimodule

Homk(Qj ,k) ∼= M j−1
11 ∈ Jj−1. We can, in fact, interpret Qj as the identity bimod-

ule for the algebra B := A/A(ej+2 + · · ·+ en)A. After this interpretation it is clear
that

W j
11 ⊗B M

j−1
11
∼= W j

11 ⊗AM
j−1
11
∼= M j−1

11 .

Claim (ii) follows.

To complete the proof of Theorem 5, it remains to show that J0 is not idempotent.
Note that J0 only consists of bimodules of type M . Let X ⊗A Y be the tensor
product of two bimodules from J0. We need to check that X ⊗A Y is k-split.
This can be done by a direct computation or, alternatively, argued theoretically as
follows.

If Rsupp(X) ∩ Lsupp(Y ) = ∅, then X ⊗A Y = 0. If Rsupp(X) = {i, i + 1} and
Lsupp(Y ) = {i+ 1, i+ 2}, then, tensoring Y with the short exact sequence

0→ X ′ → X → Coker→ 0,

where X??′ is simple with Rsupp(X ′) = {i} and using X ′ ⊗A Y = 0, implies
X ⊗A Y ∼= Coker⊗A Y is k-split as Coker is k-split.

If Rsupp(X) = {i+ 1, i+ 2} and Lsupp(Y ) = {i, i+ 1}, then, tensoring Y with the
short exact sequence

0→ X ′ → X → Coker→ 0,
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where X ′ is simple with Rsupp(X ′) = {i + 1}, we obtain Coker ⊗A Y = 0 and
X ′ ⊗ Y = 0 implying X ⊗A Y = 0 which is certainly k-split.

If Rsupp(X) = Lsupp(Y ) = {i, i + 1}, then we tensor Y with the short exact
sequence

0→ X ′ → X → Coker→ 0,

where X ′ is simple with Rsupp(X ′) = {i}. Then Coker ⊗A Y = 0 and thus the
two-dimensional bimodule X ′ ⊗A Y surjects onto X ⊗A Y . Therefore X ⊗A Y
has dimension at most two and thus is k-split. The proof of Theorem 5 is com-
plete.

3.8. Adjunctions between indecomposable A-A-bimodules. In this subsec-
tion we will describe all pairs of bimodules which correspond to adjoint pairs of
functors.

Lemma 13. For any X,Y ∈ A-mod-A, the pair (X ⊗A −, Y ⊗A −) is an adjoint
pair of endofunctors of A-mod if and only if X is projective as a left A-module and
HomA(X,A) ∼= Y as A-A-bimodules.

Proof. As (X ⊗A −,HomA(X,−)) is an adjoint pair of functors, we have

Y ⊗A − ∼= HomA(X,−),

in particular, the latter functor must be exact and hence X must be left A-
projective. As exact functors are uniquely determined by their action on the
category of projective A-modules, we get an isomorphism HomA(X,A) ∼= Y of
a A-A-bimodule. The converse implication is straightforward. �

An indecomposable A-A-bimodule X which is not k-split is left projective if and
only if it belongs to the following set:

(5) {Wn−1
11 } ∪ {W t

n−t|j , S
t
ij , t ∈ N∗n−1, i ∈ N∗n−t, j ∈ N∗n−t+1}.

For an A-A-bimodule X, we will denote by X the endofunctor X ⊗A − of A-mod.
As Wn−1

11
∼= AAA, the functor Wn−1

11 is self adjoint. Considering the right adjoint
of the functors given by tensoring with bimodules in (5), we obtain the following
proposition.

Proposition 14. For any t ∈ N∗n−1, we have the following:

(a) for any j ∈ N∗n−t+1, the pair (Wt
n−t|j ,N

t
j|n−t−1) is an adjoint pair of functors;

(b) for any j ∈ N∗n−t+1, the pair (St1j ,W
t
j1) is an adjoint pair of functors;

(c) for any i ∈ N∗n−t \ {1} and j ∈ N∗n−t+1, the pair (Stij ,N
t
j|i−1) is an adjoint pair

of functors.

Proof. We start by proving claim (a) any claim (c) is proved similarly. As W t
n−t|j

is left projective, the right adjoint Wt
n−t|j is automatically exact. We need to prove

that HomA(W t
n−t|j , A) ∼= N t

j|n−t−1.

As W t
n−t|j is indecomposable, as a bimodule, so is HomA(W t

n−t|j , A). Now, re-

call that indecomposable A-A-bimodules of type N are uniquely determined by
their left and right supports. Therefore it is enough to check that the bimodules
HomA(W t

n−t|j , A) and N t
j|n−t−1 have the same left support and the same right

support.
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The left A-action on X := HomA(W t
n−t|j , A) comes from the right A-action on

W t
n−t|j . Because of our notation, the minimum s for which ei does not annihilate

W t
n−t|j on the right is s = j. Furthermore, as a left A-module, W t

n−t|j has t + 1

direct summands. This implies that

Lsupp(X) = {j, j + 1, . . . , j + t} = Lsupp(N t
j|n−t−1).

The direct summand Aen−t+s, for s = 0, 1, . . . , t, of W t
n−t|j maps only to the direct

summands Aen−t+s and Aen−t+s−1 of A. This implies that

Rsupp(X) = {n− t− 1, n− t, . . . , n} = Rsupp(N t
j|n−t−1).

The claim follows.

Claim (b) is also proved analogously to claim (a) with one additional remark: we
determine the right adjoint using its support. For claim (b), the support argument
implies that the right adjoint might be either of type W or of type M . However,
exactness of this right adjoint determines its type uniquely as W . The rest is
completely analogous to claim (a). �

4. A minimal generating set

4.1. The main result of the section. The main result of this subsection is the
following:

Theorem 15. Assume n ≥ 3.

(i) The category A-mod-A coincides with the minimal subcategory of A-mod-A
containing

(6) {Wn−1
11
∼= AAA, W

n−2
21 , Nn−2

11 , Sn−212 }
and closed under isomorphisms, tensor products and taking direct sums and
direct summands.

(ii) The set (6) is minimal in the sense that no proper subset of (6) has the
property described in (i).

In the case n = 1, we have just one indecomposable bimodule. In the case n = 2,
we have W 1

11
∼= AAA, its dual M1

11, and nine indecomposable k-split bimodules. In
particular, three of the bimodules in the list (6) do not exist. A direct adjustment
of (6), however, gives, for n = 2, the following minimal generating system:

{W 1
11,M

0
11, L21, Ae1 ⊗k e2A}

which is easy to check by a straightforward computation (which uses the isomor-
phism M0

11 ⊗A M0
11
∼= L12). Another, more obvious, minimal generating system,

for n = 2, is the following:

{W 1
11,M

0
11, L11, L22, Ae1 ⊗k e2A}.

4.2. Comments on the proof of Lemma 9. Note that some of the bimodules
listed in (6) appeared already in Lemma 9. Namely, we have Aẽϕ ∼= Wn−2

21 and
ϕẽA ∼= Nn−2

11 in A-mod-A. We can similarly describe the A-A-bimodule Sn−212 as

being isomorphic to Aẽ′
ψ

, where ẽ′ = e1 + e2 + · · · + en−1 and ψ := ı ◦ ϕ ◦ ı (see

Subsection 3.5 for the definition of ı). Note that ẽ′ = ψ(1) and that ψ sends

ei 7→

{
ei−1, i− 1 ≥ 1;

0, else;
αi 7→

{
αi−1, i− 1 ≥ 1;

0, else.
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Making a parallel with the proof of Lemma 9, we also have the A-A-bimodule ψ ẽ′A.
This bimodule is isomorphic to Wn−2

21 . In fact, the anti-involution ı on A-mod-A
fixes both Wn−1

11 and Wn−2
21 but swaps Nn−2

11 with Sn−212 . Similarly to the proof of
Lemma 9, we have

ψ ẽ′A⊗A Aẽ′
ψ ∼= ψ ẽ′Aẽ′

ψ ∼= A(A/I ′)A,

where I ′ = Ae1A = Ae1. This means that, if X ∈ mod-A is annihilated by I ′,

then, tensoring X first with ψ ẽ′A and then with Aẽ′
ψ

(both from the right), gives
X back. If X has the structure of an indecomposable A-A-bimodule, then tensoring
with ψ ẽ′A just twists the right action of A on X by ψ and hence does not change
the type (W , M , S or N) of X. Moreover, we have

Lsupp(X ⊗A ψ ẽ′A) = Lsupp(X) and Rsupp(X ⊗A ψ ẽ′A) = (Rsupp(X))[−1]

(here we use the notation U [−1] from Subsection 3.6). This fact can be used to
prove the “other side” version of Lemma 9, which consequently contributes to the
proof of Theorem 7.

4.3. Auxiliary lemmata. By construction, the action graph ΓX of an A-A-bimo-
dule X is a subgraph of the graph (3). In what follows, for a fixed A-A-bimodule
X, we will describe the outcome of tensoring of X with Wn−2

21 , Nn−2
11 , and Sn−212 ,

both from the left and from the right, using combinatorial manipulations with the
graph ΓX , considering the latter as a subgraph of (3).

Lemma 16. Let X be an indecomposable A-A-bimodule.

(i) The action graph of the A-A-bimodule Wn−2
21 ⊗A X is obtained from ΓX by

moving the latter vertically one step down and then cutting off all vertices and
arrows which fall outside the graph in figure (3).

(ii) The action graph of the A-A-bimodule X ⊗A Wn−2
21 is obtained from ΓX by

moving the latter horizontally one step to the left and then cutting off all
vertices and arrows which fall outside the graph in figure (3).

Proof. From the proof of Lemma 9, it follows that claim (i) is true as soon as
IX = 0 (recall that I = AenA = enA). Note that in this case, no “cutting off” is
necessary.

In general, we have Wn−2
21

∼= Aẽϕ and IX = enX is an A-A-subbimodule of X. If
enX 6= 0, then we have Aẽϕ⊗A enX = 0 and hence Aẽϕ⊗AX ∼= Aẽϕ⊗A (X/enX).
As I(X/enX) = 0, we can apply the argument from the previous paragraph. Fac-
toring enX out corresponds precisely to “cutting off” those vertices and edges
which fall outside the graph in figure (3) after the move. This completes the proof
of claim (i).

From Subsection 4.2 it follows that claim (ii) is true as soon as XI ′ = 0. Note that
in this case, no “cutting off” is necessary.

In general, we have Wn−2
21
∼= ψ ẽ′A and XI ′ = Xe1 is an A-A-subbimodule of X. If

Xe1 6= 0, then we have Xe1 ⊗A ψ ẽ′A = 0 and hence

X ⊗A ψ ẽ′A ∼= (X/Xe1)⊗A ψ ẽ′A.

As (X/Xe1)I ′ = 0, we can apply the argument from the previous paragraph. Fac-
toring Xe1 out corresponds precisely to “cutting off” those vertices and edges which
fall outside the graph in figure (3) after the move. This completes the proof of
claim (ii). �
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Let X be an indecomposable A-A-bimodule. A full subgraph Γ of ΓX will be called
thick provided that, for any arrow x → y in ΓX , the condition x ∈ Γ implies
y ∈ Γ.

Lemma 17. Let X be an indecomposable and not k-split A-A-bimodule.

(i) The action graph of the A-A-bimodule Nn−2
11 ⊗A X is obtained from ΓX by

moving the latter vertically one step up and then cutting off all vertices and
edges which fall outside the graph in figure (3).

(ii) If dimkXe1 = 2, then the action graph of the A-A-bimodule X ⊗A Nn−2
11 is

obtained from ΓX in the following three steps:

• first we move ΓX one step to the right;

• then we cut off the thick subgraph generated by all vertices which fall
outside the graph in figure (3), we denote the resulting graph Γ;

• finally, we add to Γ one new vertex and one new arrow as follows: let
v be the north-west corner of Γ, then we add to Γ the immediate west
neighbor w of v and the arrow connecting v to w.

(iii) If dimkXe1 6= 2, then the action graph of the A-A-bimodule X ⊗A Nn−2
11 is

obtained from ΓX by moving the latter horizontally one step to the right and
then cutting off the thick subgraph generated by all vertices which fall outside
the graph in figure (3).

A good example to illustrate the procedure described in Lemma 17(ii) is the obvious
isomorphism Wn−1

11 ⊗A Nn−2
11

∼= Nn−2
11 based on the fact that Wn−1

11
∼= AAA. In

particular, this example shows that the second step of the procedure described in
Lemma 17(ii) can lead to elimination of some vertices which do not fall outside the
graph in figure (3). For n = 4, the transformation in this example can be depicted
explicitly as follows:

(7) •

��
• •

��

oo

• •

��

oo

• •oo

7→ N •

��

ks

• •

��

oo

• •

��

oo

◦ ◦oo

Here dashed lines indicate the boundaries of the graph in figure (3), dotted arrows
and white vertices are the ones which are deleted during the second step of the
procedure described in Lemma 17 (ii). Finally, the triangle vertex and the double
arrow are the ones which are added during the last step of the procedure described
in Lemma 17 (ii).

Proof. Assume that e1X = 0 and let Y be an A-A-bimodule such that ΓY is
obtained by moving ΓX one step up (note that this is well-defined as e1X = 0).
Then Y has the same type as X and

Lsupp(Y ) = Lsupp(X)[−1] and Rsupp(Y ) = Rsupp(X).
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From Lemma 16 (i) it follows that X ∼= Wn−2
21 ⊗A Y . This, together with the

discussion in Subsection 4.2, implies Nn−2
11 ⊗A X ∼= Y in A-mod-A. Claim (i) in

the case e1X = 0 follows.

Assume now that e1X 6= 0. Consider the following short exact sequence of A-A-
bimodules:

(8) 0→ ẽX → X → Coker→ 0,

where ẽX → X is the natural inclusion. In this sequence we have that ACoker
is semisimple, moreover, eiCoker = 0, for all i > 1. Recall that Nn−2

11
∼= ϕẽA.

Then ϕẽA ⊗A Coker = 0. The functor Nn−2
11 ⊗A − is exact as Nn−2

11 is right
projective (or due to Proposition 14 (a)). Therefore, applying Nn−2

11 ⊗A − to (8),
gives Nn−2

11 ⊗A ẽX ∼= Nn−2
11 ⊗A X. We can now apply the previous paragraph to

Nn−2
11 ⊗A ẽX and thus complete the proof of claim (i).

We have Lsupp(X ⊗A ϕẽA) ⊂ Lsupp(X) by Lemma 4. Similarly to the proof of
Lemma 9, if XI = 0, then, tensoring X (from the right) with ϕẽA and then with
Aẽϕ, gives X back. Consequently, in the case XI = 0 we have

Lsupp(X ⊗A ϕẽA) = Lsupp(X).

Consider the short exact sequence

(9) 0→ ϕẽAe1 → ϕẽA→ Coker′ → 0

of A-A-bimodules where ϕẽAe1 → ϕẽA is the natural inclusion. Then we have
Coker′ ∼= Wn−2

12 . Using Lemma 16 (ii) or the fact that e1Aẽ
ϕ = 0, we have

Coker′ ⊗A Aẽϕ ∼= ϕẽA⊗A Aẽϕ.
Therefore, tensoring X (from the right) with Coker′ and then with Aẽϕ also gives
X back. Applying the functor X ⊗A − to (9), we thus obtain

Rsupp(X ⊗A ϕẽA) ⊂ Rsupp(X ⊗A ϕẽAe1) ∪ Rsupp(X ⊗A Coker′).

As tensor functors are right exact, we also have

Rsupp(X ⊗A Coker′) ⊂ Rsupp(X ⊗A ϕẽA).

Just like in the proof of Lemma 9, tensoring with Wn−2
12 twists the right A-action on

X by ϕ and hence does not change the type (W , M , S, or N) of X. In particular,
we have

Lsupp(X ⊗A Coker′) = Lsupp(X) and Rsupp(X ⊗A Coker′) = Rsupp(X)[1].

Therefore, considering the action graph of X⊗ACoker′ corresponds to the first step
of claim (ii).

Note that Rsupp(X ⊗A ϕẽAe1) ⊂ {1}. Hence, the above arguments imply

(Rsupp(X))[1] ⊂ Rsupp(X ⊗A ϕẽA) ⊂ {1} ∪ (Rsupp(X))[1].

Now, if dimkXe1 = 2, then B(X) contains the vertices j | 1 and j+1 | 1, for some
j. Moreover, we obtain that the A-A-bimodule X ⊗A ϕẽAe1 is of dimension one
with basis j | 1⊗α1 (here it is important that X is not k-split). The image of this
element in X ⊗A ϕẽA is also non-zero. This implies that

Rsupp(X ⊗A ϕẽA) = {1} ∪ (Rsupp(X))[1].

Therefore the sequence

0→ X ⊗A ϕẽAe1 → X ⊗A ϕẽA→ X ⊗A Coker′ → 0

is exact, which completes the proof of claim (ii) in the case XI = 0.
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If dimkXe1 6= 2, then we have X⊗A ϕẽAe1 = 0 as A(ϕẽAe1) is simple and X is not
k-split. This implies that X ⊗A ϕẽA ∼= X ⊗A Coker′, which establishes claim (iii)
in the case XI = 0.

If XI 6= 0, then we have XI ⊗A ϕẽA = 0 as the left action of en annihilates
ϕẽA. Hence we obtain X ⊗A ϕẽA ∼= (X/XI) ⊗A ϕẽA so that we can reduce our
consideration to the previous case XI = 0. This proves claims (ii) and (iii) in full
generality and we are done. �

Lemma 18. Let X be an indecomposable and not k-split A-A-bimodule.

(i) If dim enX = 2, then the action graph of the A-A-bimodule Sn−212 ⊗A X is
obtained from ΓX in the following three steps:

• first we move ΓX vertically one step up;

• then we cut off the thick subgraph generated by all vertices which fall
outside the graph in figure (3), we denote the resulting graph Γ;

• finally, we add to Γ one new vertex and one new arrow as follows: let
v be the south-east corner of Γ, then we add to Γ the immediate south
neighbor w of v and the arrow connecting v to w.

(ii) If dim enX 6= 2, then the action graph of the A-A-bimodule Sn−212 ⊗A X is
obtained from ΓX by moving the latter vertically one step up and then cutting
off the thick subgraph generated by all vertices which fall outside the graph in
figure (3).

(iii) The action graph of the A-A-bimodule X ⊗A Sn−212 is obtained from ΓX by
moving the latter one step to the right and then cutting off all vertices and
edges which fall outside the graph in figure (3).

Proof. Observing that we have an isomorphism Sn−212
∼= Aẽ′

ψ
of A-A-bimodules,

the proof is similar to that of Lemma 17 and is left to the reader. �

Again, a good example to illustrate the procedure described in Lemma 18 (i) is the
obvious isomorphism Sn−212 ⊗AWn−1

11
∼= Sn−212 based on the fact that Wn−1

11
∼= AAA.

In particular, this example shows that the second step of the procedure described in
Lemma 18 (i) can lead to elimination of some vertices which do not fall outside the
graph in figure (3). For n = 4, the transformation in this example can be depicted
(using the same conventions as in (7)) explicitly as follows:

•

��
• •

��

oo

• •

��

oo

• •oo

7→ ◦

��
◦ •

��

oo

• •

��

oo

• •

��

oo

N
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4.4. Proof of Theorem 15. Let X denote the minimal subcategory of A-mod-A
containing (6) and closed under isomorphisms, tensor products and taking direct
sums and direct summands. To prove Theorem 15 (i), we need to show that all
indecomposable A-A-bimodules belong to X .

Clearly, Wn−1
11 ∈ X as it appears in (6). Further, Mn−2

11 ∈ X as, for example,

Sn−212 ⊗A (Wn−2
21 ⊗A Nn−2

11 ) ∼= Sn−212 ⊗A Nn−2
21
∼= Mn−2

11 ,

where we used Lemma 17 (ii) for the first isomorphism and Lemma 18 (i) for the
second one.

Starting from Wn−1
11 , Mn−2

11 , Sn−212 and Nn−2
11 , and applying the manipulations

described in Lemma 16 (i)-(ii), Lemma 17 (i) and Lemma 18 (iii), it is clear that
we can obtain action graphs of all indecomposable A-A-bimodules which are not
isomorphic to Aei⊗k ej+1A, where i, j ∈ N∗n. Hence all such bimodules must belong
to X , in particular, all indecomposable string A-A-bimodules of dimension two are
in X .

Finally, tensoring indecomposable string A-A-bimodules of dimension two with each
other, we can get all bimodules of the form Aei⊗kej+1A, where i, j ∈ N∗n. Claim (i)
of Theorem 15 follows.

Now, let us prove claim (ii). Let T be a proper subset of (6) and XT the mini-
mal subcategory of A-mod-A containing T and closed under isomorphisms, tensor
products and taking direct sums and direct summands. We have to show that XT
is a proper subcategory of A-mod-A. If Wn−1

11 6∈ T , then the latter claim follows
directly from Theorem 5 (ii).

If Wn−2
21 6∈ T , then, from Lemmata 17 and 18 it follows that the only possible

manipulations with actions graphs are to move them up or to the right. As we can
only start with action graphs of bimodules from T , it follows that, in particular,
Wn−2

21 6∈ XT . A similar argument also shows that, necessarily, either Sn−212 ∈ T or
Nn−2

11 ∈ T .

Assume that T is (6) without Sn−212 . Then, from Lemmata 16 and 17, it follows
that all bimodules in XT are either k-split or of type W or N . Assume that T is (6)
without Nn−2

11 . Then, from Lemmata 16 and 18, it follows that all bimodules in XT
are either k-split or of type W or S. Claim (ii) follows and the proof of Theorem 15
is complete.

5. Simple transitive 2-representations of projective A-A-bimodules

5.1. Finitary 2-categories and their 2-representations. In this section we
switch from the concrete algebras An considered above to general finite dimensional
algebras A.

For a finite dimensional k-algebra A, consider the 2-category CA of projective endo-
functors of A-mod, see [MM1, Subsection 7.3] (we note that this 2-category depends
on the choice of a small category equivalent to A-mod). We assume that A is basic
and connected and let ε1 + ε2 + · · · + εk = 1 be a primitive decomposition of the
identity in A. The 2-category CA has one object i. A complete list of represen-
tatives of isomorphism classes of indecomposable A-A-bimodules which contribute
to 1-morphisms in CA consists of the regular bimodule AAA, which corresponds to
the identity 1-morphism 1i, and indecomposable projective bimodules Aεi ⊗ εjA,
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where i, j = 1, 2, . . . , k, which correspond to indecomposable 1-morphisms respec-
tively denoted by Fij . Finally, 2-morphisms in CA are given by homomorphisms of
A-A-bimodules.

A finitary 2-representation of CA is a functorial action, denoted M, on a category
M(i) equivalent to B-proj of projective modules over some finite dimensional k-
algebra B. All such 2-representations form a 2-category, denoted CA-afmod, where
1-morphisms are 2-natural transformations and 2-morphisms are modifications, see
[MM3] for details.

A finitary 2-representation M is called transitive if M(i) has no proper CA-invariant,
idempotent split and isomorphism closed additive subcategories. A transitive 2-
representation M is called simple if M(i) has no proper CA-invariant ideals, see
[MM5, MM6] for details.

Classical examples of simple transitive 2-representations are so-called cell 2-repre-
sentations as defined in [MM1, MM2]. The 2-category CA has, up to equivalence,
two cell 2-representations:

• The cell 2-representation C{1i} which is given as the quotient of the left
regular action of CA on CA(i, i) by the unique maximal CA-invariant left
ideal.

• The cell 2-representation C{Fi1} which is given (up to equivalence) by the
defining action of CA on A-proj.

5.2. The main result of the section. The main result of this section is the
following:

Theorem 19. Assume that A has a non-zero projective injective module and is
directed in the sense that εiAεj = 0 whenever i < j and εiAεi = kεi, for all
i. Then every simple transitive 2-representation of CA is equivalent to a cell 2-
representation.

The algebra An from Subsection 2.1 obviously satisfies both assumption of The-
orem 19. Therefore Theorem 19 provides a classification of simple transitive 2-
representation of CAn

. In fact, any quotient of the path algebra of the quiver (1)
satisfies both assumption of Theorem 19. There are of course many other algebras
which satisfy these assumptions, for example incidence algebras of finite posets hav-
ing the minimum and the maximum element (for example, the Boolean of a finite
set) and many others. In the cases A = A2 and A = A3, Theorem 19 is proved in
[MZ].

The rest of this section is devoted to the proof of Theorem 19.

5.3. Notational preparation. We let M be a simple transitive 2-representation
of CA and denote by B a basic k-algebra such that M(i) is equivalent to B-proj.
Let ε1 + ε2 + · · · + εr = 1 be a primitive decomposition of the identity in B. For
i, j = 1, 2, . . . , r, we denote by Gij the endofunctor of B-mod given by tensoring
with the indecomposable projective B-B-bimodule Bεi⊗ εjB. We note that r 6= k,
in general.

Without loss of generality we may assume that M is faithful. Indeed, the 2-category
CA is simple, see [MMZ, Subsection 3.2]. Therefore, if M is not faithful, then
M(Fij) = 0, for all i, j. The quotient of CA by the 2-ideal generated by all Fij
satisfies the assumptions of [MM5, Theorem 18] and hence M is equivalent to a cell
2-representation by [MM5, Theorem 18].
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So, from now on, M is faithful, in particular, each M(Fij) is non-zero. As A
has a non-zero projective-injective module, by [MZ, Section 3], each M(Fij) is a
projective endofunctor of B-mod, that is, is isomorphic to a direct sum of some
Gst, s, t ∈ {1, 2, . . . , r}, possibly even with multiplicities. For i, j = 1, 2, . . . , k, we
denote by

• Xij the set of all s ∈ {1, 2, . . . , r} such that Gst is isomorphic to a direct
summand of M(Fij), for some t ∈ {1, 2, . . . , r};

• Yij the set of all t ∈ {1, 2, . . . , r} such that Gst is isomorphic to a direct
summand of M(Fij), for some s ∈ {1, 2, . . . , r}.

As each M(Fij) is non-zero, each Xij and each Yij is not empty.

Recall that A is assumed to have a non-zero projective-injective module. Then
there exist i0, j0 ∈ {1, 2, . . . , k} such that Aεi0

∼= Homk(εj0A,k). In this case, for
every q ∈ {1, 2, . . . , k}, the pair

(10) (Fqj0 ,Fi0q)

is an adjoint pair of 1-morphisms, see [MZ, Lemma 5].

For s = 1, 2, . . . , r, we denote by Ps the indecomposable projective B-module Bεs
and by Ls the simple top of Ps. Whenever it does not lead to any confusion, we will
use action notation and simply write e.g. FijM , for M ∈M(i) and M ∈ B-mod,
instead of M(Fij)(M).

5.4. Analysis of the sets Xij and Yij.

Lemma 20. For i = 1, 2, . . . , k, we have Xij1 = Xij2 , for all j1, j2 ∈ {1, 2, . . . , k}.
Similarly, for j = 1, 2, . . . , k, we have Yi1j = Yi2j, for all i1, i2 ∈ {1, 2, . . . , k}.

Proof. We prove the first claim, the proof of the second one is similar. We have(
Aεi ⊗ εj1A

)
⊗A

(
Aεj1 ⊗ εj2A

) ∼= Aεi ⊗ εj2A⊕ dim(εj1Aεj1 ).

Note that dim(εj1Aεj1) > 0. Therefore Fij2 is isomorphic to a direct summand of
Fij1 ◦ Fj1j2 . This implies Xij2 ⊂ Xij1 (as multiplication on the right cannot create
new indexing idempotents on the left). By symmetry, we also have Xij1 ⊂ Xij2 .
The claim follows. �

After Lemma 20, for i = 1, 2, . . . , k, we may denote by Xi the common value of all
Xij , where j ∈ {1, 2, . . . , k}. Similarly, for j = 1, 2, . . . , k, we may denote by Yj the
common value of all Yij , where i ∈ {1, 2, . . . , k}.

Lemma 21. We have X1 ∪X2 ∪ · · · ∪Xk = {1, 2, . . . , r}.

Proof. The set X1 ∪X2 ∪ · · · ∪Xk indexes those projectives that can be obtained
using the action of CA. Therefore the claim follows immediately from transitivity
of M. �

Lemma 22. For every q = 1, 2, . . . , k, we have Xq = Yq.

Proof. Consider the pair (Fqj0 ,Fi0q) of adjoint 1-morphisms given by (10). By
adjunction, for s ∈ {1, 2, . . . , r}, we have

HomB(Fqj0 B,Ls)
∼= HomB(B,Fi0q Ls),

in particular, the left hand side is non-zero if and only if the right hand side is
non-zero. At the same time, the left hand side is non-zero if and only if Ps appears
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in Fqj0 B, that is, s ∈ Xq; while the right hand side is non-zero if and only if
Fi0q Ls 6= 0, that is, s ∈ Yq. The claim follows. �

As an immediate consequence of Lemmata 21 and 22, we have:

Corollary 23. We have Y1 ∪ Y2 ∪ · · · ∪ Yk = {1, 2, . . . , r}.

Note that, until this point, we never used that A is directed. It will, however, be
crucial for the following two lemmata.

Lemma 24. For i1 6= i2 ∈ {1, 2, . . . , k}, we have Xi1 ∩Xi2 = ∅.

Proof. Let s ∈ Xi1 ∩ Xi2 . Then s ∈ Yi1 ∩ Yi2 by Lemma 22. Without loss of
generality we may assume i1 < i2. Then we have that M(Fi2i1)◦M(Fi2i1) contains
a direct summand isomorphic to Gxs ◦Gsy, for some x, y ∈ {1, 2, . . . , r}. Note that
Gxs ◦Gsy 6= 0 as εsBεs 6= 0. Consequently, we obtain

M(Fi2i1 ◦ Fi2i1) ∼= M(Fi2i1) ◦M(Fi2i1) 6= 0.

At the same time, we have Fi2i1 ◦ Fi2i1 = 0 since εi1Aεi2 = 0 by our assumption
that A is directed, a contradiction. The claim follows. �

Lemma 25. For i = 1, 2, . . . , k, we have |Xi| = 1.

Proof. Let Xi = {s1, s2, . . . , sm}. For a fixed sq, the additive closure of all FxiLsq ,
where x ∈ {1, 2, . . . , n}, is a non-zero CA-invariant subcategory of B-proj and hence
must coincide with B-proj by transitivity of M. This implies that all Gsysq , where
y ∈ {1, 2, . . . ,m}, do appear as direct summands of M(Fii).

As A is directed, we have εiAεi = kεi and hence Fii ◦ Fii ∼= Fii. Therefore

(11) M(Fii) ◦M(Fii) ∼= M(Fii)

as well. Let h denote the multiplicity of Gs1s1 in M(Fii). From the previous
paragraph we know that h > 0. Clearly, Gs1s1 appears as a direct summand of
Gs1s1 ◦Gs1s1 . Therefore (11) implies h2 ≤ h, that is h = 1.

If m > 1, then Gs1s1 appears as a direct summand of Gs1s2 ◦ Gs2s1 . Therefore in
this case (11) fails and we are done. �

As a consequence of Lemmata 21 and 25, we have k = r. Without loss of generality
we may now choose εi’s such that each Fij acts via Gij .

Corollary 26. For i, j = 1, 2, . . . , k, we have dim(εiAεj) = dim(εiBεj).

Proof. As each Fst acts via Gst, the claim follows by comparing

Fsi ◦ Fjt ∼= F
⊕ dim(εiAεj)
st and Gsi ◦Gjt

∼= G
⊕ dim(εiBεj)
st .

�
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5.5. Completing the proof of Theorem 19. After the preparation in Subsec-
tion 5.4, the proof of Theorem 19 is similar to the arguments in [MZ, Section 6] or
[MaMa, Subsection 4.9]. Consider the principal 2-representation Pi := CA(i,−) of
CA, that is the left regular action of CA on CA(i, i). The additive closure of all
Fi1, where i = 1, 2, . . . , k, in CA(i, i) is CA-invariant and gives a 2-representation
which we denote by N. The latter has a unique CA-invariant left ideal I and
the corresponding quotient is exactly the cell 2-representation, see [MM2, Subsec-
tion 6.5].

Mapping 1i to L1 ∈ B-mod, gives rise to a 2-natural transformation Φ from N to
M which, because of the results in Subsection 5.4, sends indecomposable objects
to indecomposable objects. Since, by Corollary 26, the Cartan matrices of A and
B coincide, it follows that Φ must annihilate I and hence induce an equivalence
between the cell 2-representation N/I and M. This completes the proof.
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