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ABSTRACT. We start with observing that the only connected finite dimensional
algebras with finitely many isomorphism classes of indecomposable bimodules
are the quotients of the path algebras of uniformly oriented A, -quivers mod-
ulo the radical square zero relations. For such algebras we study the (finitary)
tensor category of bimodules. We describe the cell structure of this tensor cat-
egory, determine existing adjunctions between its 1-morphisms and find a min-
imal generating set with respect to the tensor structure. We also prove that,
for the algebras mentioned above, every simple transitive 2-representation of
the 2-category of projective bimodules is equivalent to a cell 2-representation.
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1. INTRODUCTION AND DESCRIPTION OF THE RESULTS

Finitary 2-categories were introduced in [MM1] as “finite dimensional” counter-
parts of, in general, “infinite dimensional” 2-categories which were studied in the
categorification literature on the borderline between algebra and topology during
the last twenty years, see [BFK, CR, Kh, KL, Ro, St]. The series [MM1, MM2,
MM3, MM4, MM5, MMS6] of papers develops basics of abstract representation the-
ory for finitary 2-categories. Classical examples of finitary 2-categories are: the
2-category of Soergel bimodules over the coinvariant algebra of a finite Weyl group,
see [MM1, Subsection 7.1], and the 2-category of projective functors over finite
dimensional associative algebra, see [MM1, Subsection 7.3]. Further examples of
finitary 2-categories were constructed and studied in [GM1, GM2, Xa, Zh1, Zh2],
see also the above mentioned series [MM1]-[MMS6].

In the present paper we consider a new natural class of examples of finitary 2-
categories. The paper started from the following question:

For which finite-dimensional algebras, the corresponding tensor category of bimod-
ules is finitary?

Although we suspect that the answer to this question could be known to special-
ists in representation type, we did not manage to find any explicit answer in the
literature (the closest relevant reference we found is [Le]). In Theorem 1 we show
that the only finite dimensional algebras over an algebraically closed field, for which
the number of isomorphism classes of bimodules is finite, are those algebras whose
connected components are radical square zero quotients of uniformly oriented path
algebras of type A Dynkin quivers. This result motivates the rest of the paper where
we take a closer look at the tensor category of bimodules over such algebras.
1
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We start with an attempt to understand the combinatorics of left-, right- and two-
sided cells of this tensor category. These cells are natural generalizations of Green’s
relations for semigroups from [Gr] to the setup of tensor categories, see [MM2,
Section 3|. Apart from k-split bimodules, that is bimodules of the form X ® Y,
where X is a left module and Y is a right module, see [MMZ], the remaining
bimodules can be split into four families, which we call W, M, N and S, motivated
by the shape of the diagram of a bimodule. All k-split bimodules always form the
maximum two-sided cell which is easy to understand.

To describe the remaining structure, we introduce several combinatorial invariants
of bimodules, called left support and right support and also the number of wvalleys
in the diagram of a bimodule. We show that these invariants, in combination with
bimodule types, classify left, right and two-sided cells. For example, two-sided
cells are classified, in the case of non k-split bimodules, by the number of valleys in
bimodule diagrams. This result is a first step in understanding combinatorial struc-
ture for bimodule categories over arbitrary finite dimensional algebras, the latter
question forming the core of our motivation. We also give an explicit description
for all adjoint pairs of functors formed by our bimodules. This description covers
only some bimodules as, in general, the right adjoint of tensoring with a bimodule
is not exact and hence is not isomorphic to tensoring with some (possibly different)
bimodule.

Furthermore, we find a minimal generating set for our tensor category, with respect
to the tensor structure. It consists of the identity bimodule and three additional
bimodules in the two-sided cell closest to the one formed by the identity bimod-
ule, with respect to the two-sided order. To prove the statement, we give explicit
formulae for tensor products of each of these three bimodules with all other inde-
composable bimodules.

Finally, we study simple transitive of the 2-category of projective bimodules over
our algebras. Classification of such 2-representations is a natural problem which
was considered, for various classes of 2-categories in [MM5, MM6, Zhl, Zi, MZ,
MaMa, KMMZ, MT, MMMT, MMZ]. It also has interesting applications, see
[KiM1]. A natural class of simple transitive 2-representations is given by the so-
called cell 2-representations constructed in [MM1, MM2]. For the 2-category of
projective bimodules over a finite dimensional algebra A, it is known that cell 2-
representations exhaust all simple transitive 2-representations if A is self-injective
(see [MM5, MM6)), if A = k[x,y]/(z%,y?, zy) (see [MMZ]) and if A is the radical
square zero quotient of the path algebra of a uniformly oriented quiver of type A,
or As (see [MZ]). In the present paper we extend this result to all directed algebras
admitting a non-zero projective-injective module, see Theorem 19. We recover, with
a much shorter and much more elegant proof, the main results of [MZ], however,
our approach is strongly inspired by [MZ, Section 3]. Our approach to the proof
of Theorem 19 contains some new general ideas which could help to attack similar
problems for other finitary 2-categories. We note that there are natural examples of
2-categories which have simple transitive 2-representations that are not equivalent
to cell 2-representations, see [MaMa, KMMZ, MT, MMMT].

The paper is organized as follows: Section 2 contains the material related to the
formulation and proof of Theorem 1. Section 3 studies combinatorics of bimodules.
The main results of this section which provide a combinatorial description of the cell
structure are collected in Subsection 3.5. In Theorem 15 of Section 4, we describe a
minimal generating set of our tensor category with respect to the tensor structure.
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Finally, Section 5 contains the material related to classification of simple transitive
2-representations.

Acknowledgements: This research was partially supported by the Swedish Re-
search Council, Knut and Alice Wallenberg Stiftelse and Géran Gustafsson Stiftelse.
We thank Martin Herschend for information on reference [Le]. We also thank the
referee for very helpful comments.

2. CHARACTERIZATION VIA REPRESENTATION TYPE

2.1. Main object of study. Throughout the paper we fix an algebraically closed
field k. For n € {1,2,3,...}, we denote by A,, the quotient of the path algebra of
the quiver

(1) 1 2 3 n

modulo the relations that the product of any two arrows is zero. In particular, we
have A; = k, A, is isomorphic to the algebra of upper triangular 2 x 2 matrices
with coefficients in k and Rad(A,)? = 0, for any n. If n is fixed or clear from the
context, we will simply write A for A,.

We denote by
e A-mod the category of finite dimensional left A-modules;
e mod-A the category of finite dimensional right A-modules;
e A-mod-A the category of finite dimensional A-A-bimodules.

Fori=1,2,...,n, we denote by e; the trivial path at the vertex i. Thus we have a
primitive decomposition 1 = e; + e+ - - +e, of the identity 1 € A. Then P; = Ae;
is an indecomposable projective in A-mod and we denote by L; the simple top of P;.
Further, we denote by I; the indecomposable injective envelope of L;. Note that P;
has dimension 2, for i = 1,2,...,n—1, and P, = L,,. Similarly, I; has dimension 2,
for i =2,3,...,n, and Iy = Ly. Moreover, P; = I; 1, fori=1,2,...,n— 1.

2.2. Bimodule representation type. The main result of this subsection is the
following statement. We suspect that this claim should be known to experts, but
we failed to find any explicit reference in the literature.

Theorem 1. Let B be a finite dimensional associative k-algebra. Then the follow-
ing conditions are equivalent:

(a) The category B-mod-B has finitely many isomorphism classes of indecompos-
able objects.

(b) Each connected component of B is Morita equivalent to some A,,.

As B-mod-B is equivalent to B ® B°P-mod, condition (a) is equivalent to saying
that B ® B°P is of finite representation type.
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2.3. Proof of the implication (a)=-(b). Let B be a basic finite dimensional as-
sociative k-algebra such that the category B-mod-B has finitely many isomorphism
classes of indecomposable objects. Note that this, in particular, implies that B has
finite representation type. Consider the Gabriel quiver @ = (Qo, Q1) of B, where
Qo is the set of vertices and @) the set of arrows. Then, for any 7, j € Qg, we have
at most one arrow from i to j for otherwise B would surject onto the Kronecker
algebra and thus have infinite representation type.

Next we claim that ) has no loops. Indeed, if () would have a loop, B would have
a quotient isomorphic to the algebra D := k[z]/(2?) of dual numbers. However, the
algebra D @, D°P has a quotient isomorphic to k[z,y]/(2?,y% xy) and the latter
has infinite representation type since we have an infinite family of pairwise non-
isomorphic indecomposable 2-dimensional modules of this algebra on which z and

y act via
(8 (1)> and (8 3), where \ € k,

respectively (note that k, being algebraically closed, is infinite). This is a contra-
diction.

Next we claim that each vertex of @) has indegree at most 1 and outdegree at most
1. We prove the claim for indegrees and, for outdegrees, the proof is similar. If @
has a vertex with indegree at least two, then, taking the above into account, @ has
a subgraph of the form:

(2) i——=j<—Fk

Then B has a quotient isomorphic to the path algebra C of (2). We claim that
C ® C°P has infinite representation type thus giving us a contradiction. Indeed,
C ® C°P is isomorphic to the quotient of the path algebra of the solid part of the
following quiver:
O —>0<— 0
N
7 N
/ N
Ve N
O ——>0<— 0
7/
|

N
N
N 7/
NY /s

o —>0<— 0
modulo the commutativity relations indicated by dotted lines. In the middle of
this picture we see an orientation of the affine Dynkin diagram of type Dy. The
corresponding centralizer subalgebra thus has infinite representation type. It follows
that C ®, C°P has infinite representation type.

Next we claim that @@ does not have any components of the form e C o . If the
latter were the case, then B ®y B°P would have a quotient isomorphic to the path

T

~
modulo the relations that all squares commute. The latter has a quotient isomorphic
to the path algebra corresponding to the following orientation
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of an affine Dynkin quiver of type Ay and thus has infinite representation type, a
contradiction.

The above shows that @ is a disjoint union of graphs of the form (1). We now only
need to show that Rad(B)? = 0. If Rad(B)? # 0, then B has a quotient which is
isomorphic to the path algebra F' of (1), for n = 3. Then F' ®j F°P is isomorphic
to the quotient of the path algebra of the solid part of the following quiver:

— ———>

[ ]
N N
N N
N N
AN AN
°

_— ———>

N N
N N
N N
AN AN

—_— 0 ——> 0

Q<—"0<—"-20

modulo the commutativity relations indicated by dotted lines. Similarly to the
previous paragraph, this algebra has a centralizer subalgebra which is the path
algebra of a type Dy quiver. Therefore it has infinite representation type.

2.4. Proof of the implication (b)=(a). Note that A,/(e,) = A,,_1, for any n.
Therefore, for all m,n, there is a full embedding of the category of A,,-A,,-bimodules
into the category of Aj-Ag-bimodules, where k = max(m,n). Using additivity and
the fact that Morita equivalence, by definition, does not affect representation type,
we obtain that it is sufficient to prove that the category A,-mod-A,, has finitely
many isomorphism classes of indecomposable objects, for every n.

The algebra A, ®x A% is the quotient of the path algebra of the following quiver:

(3) 11 1]2 13 1ln
2|1 2|2 2|3 2|n
3|1 3|2 3/3 3n
nl1 n|2 n|3 njn

modulo the relations that all squares commute and the product of any two hori-
zontal or any two vertical arrows is zero.

The algebra A,, @k ASP is thus a special biserial algebra in the sense of [BR, WW].
According to these two references, each indecomposable module over a special bise-
rial algebra is either a string modules or a band module or a non-uniserial projective-
injective module. In our case, there are certainly finitely many indecomposable non-
uniserial projective-injective modules (they correspond to commutative squares in
our quiver).

We claim that, in the case of A, ®x A%, there are only finitely many string modules
(up to isomorphism) and that there are no band modules. This follows from the
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form of the relations. Indeed, the maximal (with respect to inclusion) strings
avoiding zero relations are:

(4)

1jnp-1 <—1jn 1jn-2 <— 1|n-1 1jn-3 <— 1|n-2
| i i
2|n 2ln-1 <—2|n 2|n-2 <— 2|n-1
| i
3n 3ln-1<—3|n
!
4ln

and so on (in total, there are 2n—2 such maximal strings). We see that edges of these
strings never intersect and that the strings never close into bands (corresponding
to primitive cyclic words in some references). Consequently, there are no band
modules and only finitely many string modules. The claim follows.

An exact enumeration of isomorphism classes of indecomposable objects in the
category A,-mod-A,, is given in the next subsection.

2.5. Enumeration of indecomposable A,-A,-bimodules.

Proposition 2. Forn =1,2,..., the category A,-mod-A,, contains exactly
4n® +3n? —Tn+3
3

isomorphism classes of indecomposable objects.

Proof. For n = 1, the claim is clear as A; = C and thus C ®¢ C = C is a simple
algebra and thus has exactly one isomorphism class of indecomposable modules. For
n > 1, we have (n — 1)? indecomposable projective-injective objects in A,-mod-
A,. From Subsection 2.4, we know that the remaining indecomposable objects
correspond to string A,, ®k ASP-module. A string module is uniquely identified by
the string the module is supported at, that is by a substring of one of the maximal
strings as shown in (4).

Foreach k = 3,5,7,...,2n—1, there are exactly two maximal strings with k vertices.
A string with k vertices supports k(k + 1)/2 string modules (which correspond to
connected substrings). Note that simple modules are supported just by vertices
and there are n? — 2 vertices, that is all but the left upper and right lower corners,
which belong to two different maximal substrings and hence are counted twice
above. Putting all this together and simplifying gives the necessary formula. O

3. COMBINATORICS OF A-A-BIMODULES

3.1. Cells. The main aim of the section is to describe the cell combinatorics of
A-A-bimodules in the sense of [MM2, Section 3]. Denote by S the set of isomor-
phism classes of indecomposable A-A-bimodules. Recall that the left preorder <p,
is defined as follows: for X, Y € S we have X <; Y provided that Y is isomorphic
to a direct summand of Z ® 4 X, for some A-A-bimodule Z. An equivalence class
with respect to <y, is called a left cell and the corresponding equivalence relation is
denoted by ~r. The right preorder <gr and the corresponding right cells and ~g are
defined similarly using tensoring over A from the right. The two-sided preorder <;
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and the corresponding two-sided cells and ~; are defined similarly using tensoring
over A from both sides.

The preorder <y, induces naturally a partial order on the set of all left cells. Abusing
notation, we denote this partial order also by <. Similarly for <p and the set of
all right cells, and for <; and the set of all two-sided cells.

3.2. k-split A-A-bimodules. For simplicity, in this section we will denote by N,,
the set {0,1,2,...,n — 1} and N} the set {1,2,...,n —1}.

An A-A-bimodule X is called k-split, cf. [MMZ], provided that X is isomorphic
to a direct sum of A-A-bimodules of the form M ®, N, where M € A-mod and
N € mod-A.

We will often argue using bimodule action graphs. We will depict the left action
using vertical arrows and the right action using horizontal arrows. Following the
proof of Proposition 2, we can now list all non-zero indecomposable k-split A-A-
bimodules (up to isomorphism) and describe their action graphs as follows:

e the projective-injective bimodules Ae; ®y e; 414, where 4,j € N}
i|lj<=——i1i]j+1

! i

i+l j<=——1i+1]|j+1;

e the simple bimodules i | j, where i,j € Ny |, that is, string A @ A°P-
modules of dimension 1 (we will denote the bimodule i | j by L;;);

e string A ®, A°P-modules of dimension 2:
ilj, 1eNy,jeEN; 3 ilj=<=—1ilj+1, €N, ,jeN;.

i

i+1]j

Note that the projective A-A-bimodules Ae, ®x e;4+1A4, where j € N, and also

Ae; ®x e1 A, where i € NI, belong to the last type of indecomposables (and they
are not injective).

We denote by Ji the set of all k-split elements in S.
Proposition 3.
(i) The set Jx is the unique mazimal two-sided cell in S.

(it) For each indecomposable right A-module N, the set of elements in Ji of the
form X ®x N, for some X € A-mod, forms a left cell. Moreover, each left cell
mn Jx is of such form.

(iit) For each indecomposable left A-module K, the set of elements in Jy of the
form K @Y, for someY € mod-A, forms a right cell. Moreover, each right
cell in Jx is of such form.

Proof. For X € Jix and Y any A-A-bimodule, both X ®4 Y and Y ®4 X are
obviously k-split, so k-split bimodules form a tensor ideal in A-mod-A. For any
indecomposable K; and K3 in A-mod and any indecomposable X € mod-A, we
have _

(K) @ A) @4 (Ko @ X) 22 (K @ X)P0m 52
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This implies claim (ii) and claim (iii) is proved similarly. This, combined with the
fact that k-split bimodules form a tensor ideal in A-mod-A, also implies claim (i),
completing the proof. O

3.3. A-A-bimodules which are not k-split. Consider the action graph 'y, for a
string A®y A°P-module M. Then, directly from the construction of string modules,
we can make the following easy observations:

e the indegree of each vertex in I'j; is at most two;
e the outdegree of each vertex in I'y; is at most two;
e cach vertex of ') is either a source or a sink (or both);

e M is simple if and only if both the indegree and the outdegree of each
vertex in I'ys is zero.

A vertex of I'y; of indegree exactly two will be called a valley. A typical example
of a valley in an action graph is the white vertex of the following graph:

oO<—e0

< 0

We denote by v(M) the number of valleys in I'p;. Clearly, 0 < v(M) < n — 1,
moreover, the only M for which v(M) = n — 1 is the regular bimodule M = 4A4.
For any A ®, A°P-module N which is not projective-injective, define

Vv(N) := max{v(M) : M is a string module and is as a direct summand of N}.
Indecomposable A-A-bimodules that are not k-split correspond to string A ® A°P-
modules whose action graphs have k vertices, where 3 < k < 2n — 1. Below we
list all such bimodules, fix notation for them and describe the corresponding action

graphs. We use the number of valleys in the action graph as a parameter, denoted
by t. Our choice for notation is motivated by the shape of the action graph.

Bimodules Wf] For any t € Ny, and 4,5 € N}, _,,;, we denote by ij the following
A-A-bimodule:

ilj

!

i+l |j=<=—1i41]j+1

!

i+2 ] j+1<—i+2]j+2

it | el

!

itt | jHt-1=—itt | j+t

In particular, we have 4 A4 = Wlnfl.
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Bimodules Sj;. For any t € N}, _;, 4 € N;,_,, and j € N;,_,,,, we denote by S}
the following A-A-bimodule:

ilj

i

it ] j=<—it1]j+1

!

i42] j+1<—i+2]| j+2

-

< iftel ] jttel

i

itt | j+t-1<—itt | j+t

i

itt+1]j+t

Bimodules ij. For any t € N, 1,4 € N} _,,; and j € N} _,, we denote by ij
the following A-A-bimodule:

i]j~——i]j+1

l

i+l ] jHl<— it ] j42

s

<1+t

i

itt | j+t <=—itt | j+t+1
Bimodules M/;. Forany t € N,,_; and 4, j € N},_;, we denote by M/; the following
A-A-bimodule:

ilj=—1ilj+1

\

i+l j+l=—1i+1]j+2

'

R

!

itt | j+t <——itt | j+t+1

i

i+t+1 ] j+t+1
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In particular, Homy (4 A4, k) 2 M2, As a concrete example, the action graph of
the bimodule M?j, where ¢,j € N7, is:
ilj<=—ilj+t

\

i+1]j+1

Let M be an indecomposable A-A-bimodule listed in Subsection 3.2-3.3. Then
vertices in I'js correspond to the standard basis of M denoted B(M). We will often
identify vertices in I'j; with this standard basis. Note the following:

e every vertex of non-zero indegree generates a simple sub-bimodule;

e every vertex of outdegree two generates a subbimodule which is isomorphic
to some M.

3.4. Supports. For an A-A-bimodule X, we define the left support of X as the
set of all i € {1,2,...,n} such that e, X # 0. The left support of X will be
denoted Lsupp(X). Similarly, the right support of X, denoted Rsupp(X), is the
set of all ¢ € {1,2,...,n} such that Xe; # 0. Note that, for any indecomposable
A-A-bimodule X, both Lsupp(X) and Rsupp(X) are convex subset of {1,2,...,n}.
Here X C {1,2,...,n} is convez if, for any x,y,z € {1,2,...,n}, the properties
r,z€ X and x <y < zimply y € X.

We define the width w(X) and the height h(X) of X to be, respectively,
w(X) :=1+ max{: € Rsupp(X)} — min{i € Rsupp(X)},
h(X) := 1+ max{i € Lsupp(X)} — min{i € Lsupp(X)}.
Note that, for an indecomposable X, we have |w(X) — h(X)| < 1.

It is worth noting that indecomposable bimodules in the families N and S are
uniquely determined (inside the set of isomorphism classes of indecomposable A-A-
bimodules) by their left and right supports and that for bimodules in these families
we always have |w(X) —h(X)| = 1. Further, each indecomposable bimodule in the
families M and W is uniquely determined by its left and right support inside its
family. Moreover, for each bimodule X in the families M and W, there is a unique
bimodule in the other family (i.e. in W if X is in M and vice versa) which shares
the left and right supports with X. Note that, if X of the M-family and Y of the
W-family share the left and right supports, then v(Y) > v(X).

The following lemma contains a crucial observation for our combinatorial descrip-
tion. The claim follows directly from the definitions.

Lemma 4. For any A-A-bimodules X and Y, we have
Lsupp(X ®4Y) C Lsupp(X) and Rsupp(X ®4Y) C Rsupp(Y).

3.5. Description of cells. For v € N,,, denote by J, the set of all non k-split
elements in S having exactly v valleys. Note that J,,_1 consists just of the identity
A-A-bimodule 4 A 4. Recall from [CM, Subsection 2.3] that a two-sided cell is called
idempotent provided that it contains three elements F, G and H (not necessarily
different), such that F is isomorphic to a direct summand of G ® 4 H.

In this subsection we present our main results. We start by describing two-sided
cells in S.
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Theorem 5.

(i) Fach J, is a two-sided cell in S, moreover, each two-sided cell in S coincides
with either Ji. or with one of the J,’s.

(it) The two-sided cells of S are linearly ordered as follows:

Tk>2g3To>25T1 2525 Tn—-1.

(iid) All two-sided cells but Jy are idempotent.

As left and right cells in Ji are already described in Proposition 3, it is left to
consider left and right cells formed by non k-split bimodules.

Theorem 6. Letv € N,,.

(i) Ifv >0, then, for each j € Ny _ ., the set of all bimodules of type W and S
in J, with right support {j,5+1,...,5 +v} forms a left cell in J,.

(i) For each j € N the set of all bimodules of type M and N in J, with right

n—uv’

support {j,j+1,...,5+v+ 1} forms a left cell in J,.
(ii1) Each left cell in T, is of the form given by (1) or (ii).
Theorem 7. Letv € N,.

(1) If v > 0, then, for each j € N},_, |, the set of all bimodules of type W and
N in J, with left support {j,j+1,...,j+ v} forms a right cell in J,.

(i) For each j € N _, . the set of all bimodules of type M and S in T, with left
support {j,j+1,...,7 + v+ 1} forms a right cell in J,,.

(i11) Each right cell in J, is of the form given by (i) or (ii).

As an immediate consequence from Theorems 5, 6 and 7, we have:

Corollary 8. All two-sided cells in J are strongly regular in the sense that we
have |[LNR| =1, for any left cell L in J and any right cell R in J.

Regular two-sided cells play an important role in the theory developed in [MM1]-
[MMB6], see also [KiM2].

The algebra A has an involutive anti-automorphism 2 which swaps e; with ey,
es with e,_1, a3 with a,_1 and so on. Using this anti-automorphism, we can
define an anti-involution on the tensor category A-mod-A which we, abusing no-
tation, also denote by 2. This anti-involution swaps the sides of bimodules and
twists both action by 2. Consequently, the multisemigroup S has an involutive
anti-automorphism. This anti-automorphism makes the statements of Theorem 6
and Theorem 7 equivalent. Remainder of the section is devoted to the proof of
Theorems 5 and 6.

3.6. Proof of Theorem 6. We start by introducing the following notation: for a
subset U C Z and for r € Z, we will denote by U[r] the set {i +r : i € U}.

Lemma 9. Let us fized a type, W, M, S or N, of non-k-split A-A-bimodules.
Then all bimodules of this type and with fized right support belong to the same left
cell.
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Proof. Denote by ¢ the endomorphism of A which sends

e; 14+ 1< mn; o 1+ 1 <mn;
e; — 1+1, > 1y o 141, )
0, else; 0, else.

Set € =ex+e3+---+ ey, =p(1l). Then €A has the natural structure of an A-A-
bimodule where the right action of a is given by multiplication with a and the left
action of a is given by multiplication with ¢(a). We will denote this bimodule by
#¢A. Similarly, Aé has the natural structure of an A-A-bimodule where the right
action of a is given by multiplication with ¢(a) and the left action of a is given by
multiplication with a. We will denote this bimodule by Aé¥.

We have Aé = éAée. Consequently, the multiplication map
YEA R AE¥ — ¥EAE®

is an isomorphism of A-A-bimodules. Set I := Ae,A. Then, mapping 1+ I —
€, gives rise to an isomorphism of A-A-bimodules between A/I and YéAé¥. In
particular, it follows that Y6A ® 4 Aé¥ = 4(A/I)a.

This means that, if X € A-mod is annihilated by I, then, tensoring X (from the
left) first with Aé¥ and then with €A, gives X back. If X has, additionally, the
structure of an indecomposable A-A-bimodule, then tensoring with Aé¥ just twists
the left action of A on X by ¢ and hence does not change the type (W, M, S or
N) of X. In particular, we have

Lsupp(4é¥ @4 X) = (Lsupp(X))[1] and Rsupp(Aé® ®4 X) = Rsupp(X).

Starting now with X such that 1 € Lsupp(X) and applying this procedure induc-
tively, we will obtain that all bimodules of the same type as X and with the same
right support as X belong to the left cell of X. This proves the claim. O

Lemma 10. Bimodules of types W and S with the same right support belong to
the same left cell.

Proof. After Lemma 9, it is enough to prove this claim for any two particular
bimodules of types W and S with the same right support. Let X be the unique
indecomposable subquotient of 4 A4 of type W with right support {j,7+1,...,k}.
Assume that & < n and let Y be the unique indecomposable subquotient of 4 A4
of type S with right support {j,5 + 1,...,k}. Then Y surjects onto X with one-
dimensional kernel.

Let @ = A(e;j + ej4+1 + - - - + ex)A be a subbimodule of the regular bimodule 44 4.
Consider the short exact sequence

0—-Q— A— Coker — 0

of bimodules. By construction, Coker ® 4 X = 0 and hence Q) ® 4 X surjects onto
X. Consequently, we either have Q ®4 X =2 X or Q ®4 X =2 Y. To determine
which of these cases takes place, we use adjunction:

HOHlA_A(Q ®a X, Y) = HOHlA_A()(7 HomA_(Q,Y)).

It is now easy to check that Hom.(Q,Y) = X and thus the right hand side of the
above isomorphism is non-zero. As Homy 4(X,Y") = 0, it follows that Q@4 X =Y.

If we denote by @’ the quotient of the above bimodule @ by the subbimodule ex+1@Q,
then we again have either Q' ® 4 Y =2 X or Q' ®4 Y =Y. By adjunction,

HOHIA_A(Q/ ®aY, Y) = HOIIIA_A(YV7 HOI’IIA_<QI,Y)).
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However, now Q' is a proper quotient of () and one sees that the dimension of
Hom 4_(Q',Y) is strictly smaller than that of Hom 4_(Q,Y"). Therefore Hom4_(Q’',Y)
is a proper subbimodule of X which yields

HOmA_A(Q/ XA Y,Y) =0.
This implies Q' ®4 Y = X and hence X and Y do belong to the same left cell.

In the case k = n the arguments are similar with the only difference that X has to
be changed to ¥éA ®4 X. This works only if j > 1. If j = 1 and k = n, then there
are no A-A-bimodules of type S with such right support. O

Lemma 11. Bimodules of types M and N with the same right support belong to
the same left cell.

Proof. This is similar to the proof of Lemma 10 and is left to the reader. (|

Lemma 12. Bimodules of types W and M cannot belong to the same left cell.

Proof. Let X be an A-A-bimodule of type W and Y an A-A-bimodule of type M.
Taking Lemma 4 into account, suppose that Rsupp(X) = Rsupp(Y) and consider
the right A-modules X 4 and Y4. Then from our explicit description of bimodules we
can see that X 4 is not a quotient of any module in add(Y4). Therefore no Z® 4 Ya
can have X 4 as a quotient, let alone direct summand. The claim follows. O

Claims (i) and (ii) of Theorem 6 follow from Lemmata 9-12. Claim (iii) follows
from claims (i) and (ii) and classification of indecomposable A-A-bimodules.

3.7. Proof of Theorem 5. Claim (i) follows from Theorems 6 and Theorem 7.
That fact that 7, for v > 1, are idempotent follows from the proof of Lemma 10.

To prove that two-sided cells are linearly ordered, for j = 1,2,...,n—1, consider the
quotient A-A-bimodule Q; := A/A(ej1o+- - -+e,)A of A (in particular, Q,—1 = A).
We have QQ; € Jj, for all j, in fact, Q; = lel. Consider also the A-A-bimodule
Homy (Q;, k) = Mfl_l € Jj—1. We can, in fact, interpret @; as the identity bimod-
ule for the algebra B := A/A(eji2+ - +ey,)A. After this interpretation it is clear
that
Wiy @p Miy ' = Wi @a My = M

Claim (ii) follows.

To complete the proof of Theorem 5, it remains to show that Jj is not idempotent.
Note that Jy only consists of bimodules of type M. Let X ®4 Y be the tensor
product of two bimodules from J;. We need to check that X ®,4 Y is k-split.
This can be done by a direct computation or, alternatively, argued theoretically as
follows.

If Rsupp(X) N Lsupp(Y) = @, then X ®4 Y = 0. If Rsupp(X) = {i,i + 1} and
Lsupp(Y) = {i + 1,i + 2}, then, tensoring Y with the short exact sequence

0— X" — X — Coker — 0,
where X 7?7 is simple with Rsupp(X’) = {i} and using X' ®4 Y = 0, implies
X®4Y = Coker ®4 Y is k-split as Coker is k-split.

If Rsupp(X) = {i + 1,7+ 2} and Lsupp(Y') = {4, + 1}, then, tensoring Y with the
short exact sequence
0— X — X — Coker — 0,
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where X' is simple with Rsupp(X’) = {i + 1}, we obtain Coker ®4 Y = 0 and
X'®Y =0 implying X ®4 Y = 0 which is certainly k-split.

If Rsupp(X) = Lsupp(Y) = {i,i + 1}, then we tensor Y with the short exact
sequence
0— X" — X — Coker — 0,

where X' is simple with Rsupp(X’) = {i}. Then Coker ® 4 Y = 0 and thus the
two-dimensional bimodule X’ ® 4 Y surjects onto X ®4 Y. Therefore X @4 Y
has dimension at most two and thus is k-split. The proof of Theorem 5 is com-
plete.

3.8. Adjunctions between indecomposable A-A-bimodules. In this subsec-
tion we will describe all pairs of bimodules which correspond to adjoint pairs of
functors.

Lemma 13. For any X,Y € A-mod-A, the pair (X ®4 —,Y ®4 _) is an adjoint
pair of endofunctors of A-mod if and only if X is projective as a left A-module and
Homy (X, A) 2Y as A-A-bimodules.

Proof. As (X ®4 —,Hom4 (X, _)) is an adjoint pair of functors, we have
Y®p_ = HomA(X, _),

in particular, the latter functor must be exact and hence X must be left A-
projective. As exact functors are uniquely determined by their action on the
category of projective A-modules, we get an isomorphism Homa4(X,A) =2 Y of
a A-A-bimodule. The converse implication is straightforward. O

An indecomposable A-A-bimodule X which is not k-split is left projective if and
only if it belongs to the following set:

(5) {Wlnlil} U {W:L—t|j7 S’fj7t € N:z—lvi € N:Lft’j € N;‘;ftJrl}'

For an A-A-bimodule X, we will denote by X the endofunctor X ® 4 _ of A-mod.
As Wt =2 4 Ay, the functor W7t is self adjoint. Considering the right adjoint
of the functors given by tensoring with bimodules in (5), we obtain the following
proposition.

Proposition 14. For anyt € N;,_,, we have the following:

(a) for any j € Ni_, ,, the pair (W'

" . . ) )
n7t|j7Nj|n7t71) is an adjoint pair of functors;

(b) for any j € Ni_, ., the pair (S}

1 W;l) s an adjoint pair of functors;

(¢) for anyieN;_ \{1} and j € N}_,,, the pair (S!;, N’

i j‘ifl) s an adjoint pair

of functors.

Proof. We start by proving claim (a) any claim (c) is proved similarly. As W' _ 0

is left projective, the right adjoint W’ _ tlj is automatically exact. We need to prove
that Hom4 (W?! A)= N

t
n—tlj’ jln—t—1-

As Wfl—ﬂj is indecomposable, as a bimodule, so is HomA(Wntl_t‘j,A). Now, re-
call that indecomposable A-A-bimodules of type N are uniquely determined by
their left and right supports. Therefore it is enough to check that the bimodules
Hom 4 (W? A) and N! have the same left support and the same right

n—tlj’ jln—t—1
support.
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The left A-action on X := HomA(tht‘j,
Wfl_ e Because of our notation, the minimum s for which e; does not annihilate
W:i—tu on the right is s = j. Furthermore, as a left A-module, Wfl_tlj has ¢t + 1

direct summands. This implies that

Lsupp(X) = {j,j + 1,...,j + t} = Lsupp(N}, , ;).

A) comes from the right A-action on

The direct summand Ae,, 415, for s =0,1,...,t, of WfL_t‘j maps only to the direct

summands Ae, ;45 and Ae, 4451 of A. This implies that
Rsupp(X)={n—-t—1,n—t,...,n} = Rsupp(N;‘n_t_l).

The claim follows.

Claim (b) is also proved analogously to claim (a) with one additional remark: we
determine the right adjoint using its support. For claim (b), the support argument
implies that the right adjoint might be either of type W or of type M. However,
exactness of this right adjoint determines its type uniquely as W. The rest is
completely analogous to claim (a). O

4. A MINIMAL GENERATING SET

4.1. The main result of the section. The main result of this subsection is the
following:

Theorem 15. Assume n > 3.

(i) The category A-mod-A coincides with the minimal subcategory of A-mod-A
containing

(6) {I/Vlnl_1 = AAAv W2nl_25 N1n1_27 S{LQ_Q

and closed under isomorphisms, tensor products and taking direct sums and
direct summands.

(ii) The set (6) is minimal in the sense that no proper subset of (6) has the
property described in (i).

In the case n = 1, we have just one indecomposable bimodule. In the case n = 2,
we have Wi, & 4 A4, its dual M7, and nine indecomposable k-split bimodules. In
particular, three of the bimodules in the list (6) do not exist. A direct adjustment
of (6), however, gives, for n = 2, the following minimal generating system:

{Wiy, M7, Loy, Aey ®y e2A}

which is easy to check by a straightforward computation (which uses the isomor-
phism MY} @4 MY, = Li5). Another, more obvious, minimal generating system,
for n = 2, is the following;:

{W111a M?h L1, Lag, Aey ® e2A}.

4.2. Comments on the proof of Lemma 9. Note that some of the bimodules
listed in (6) appeared already in Lemma 9. Namely, we have Aé¥ = Wj 2 and
$¢A = N2 in A-mod-A. We can similarly describe the A-A-bimodule S752 as
being isomorphic to Aé’w, where ¢/ = e1+es+--+e,1and Y :=10po (see
Subsection 3.5 for the definition of ¢). Note that ¢/ = (1) and that 1) sends

€1, 1—12>1; a1, 1—1>1;
€e; — o —
0, else; 0, else.
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Making a parallel with the proof of Lemma 9, we also have the A-A-bimodule Yel A.
This bimodule is isomorphic to Wy: 2. In fact, the anti-involution 2+ on A-mod-A
fixes both W}4~! and Wy, 2 but swaps Nj, 2 with S75 2. Similarly to the proof of
Lemma 9, we have

boA@, Ae 2V AdY = 4 (A)I) 4,
where I’ = Ae;A = Ae;. This means that, if X € mod-A is annihilated by I’,

then, tensoring X first with “e¢’A and then with Aeﬂj (both from the right), gives
X back. If X has the structure of an indecomposable A-A-bimodule, then tensoring
with ¢’ A just twists the right action of A on X by ¢ and hence does not change
the type (W, M, S or N) of X. Moreover, we have

Lsupp(X ®4 ’l’é’A) = Lsupp(X) and Rsupp(X ®4 1/’é’A) = (Rsupp(X))[-1]

(here we use the notation U[—1] from Subsection 3.6). This fact can be used to
prove the “other side” version of Lemma 9, which consequently contributes to the
proof of Theorem 7.

4.3. Auxiliary lemmata. By construction, the action graph I"x of an A-A-bimo-
dule X is a subgraph of the graph (3). In what follows, for a fixed A-A-bimodule
X, we will describe the outcome of tensoring of X with W52, N2, and S75 2,
both from the left and from the right, using combinatorial manipulations with the
graph I'x, considering the latter as a subgraph of (3).

Lemma 16. Let X be an indecomposable A-A-bimodule.

(i) The action graph of the A-A-bimodule Wi™* @ 4 X is obtained from T'x by
moving the latter vertically one step down and then cutting off all vertices and
arrows which fall outside the graph in figure (3).

(i) The action graph of the A-A-bimodule X @4 Wii=2 is obtained from T'x by
moving the latter horizontally one step to the left and then cutting off all
vertices and arrows which fall outside the graph in figure (3).

Proof. From the proof of Lemma 9, it follows that claim (i) is true as soon as
IX =0 (recall that I = Ae, A = e, A). Note that in this case, no “cutting off” is
necessary.

In general, we have W5, 2 & A¢% and IX = e, X is an A-A-subbimodule of X. If
en X # 0, then we have Aé¥ ® 4 €, X = 0 and hence Aé¥ @4 X = Ae? R4 (X /e, X).
As I(X/e,X) =0, we can apply the argument from the previous paragraph. Fac-
toring e, X out corresponds precisely to “cutting off” those vertices and edges
which fall outside the graph in figure (3) after the move. This completes the proof
of claim (i).

From Subsection 4.2 it follows that claim (ii) is true as soon as X I’ = 0. Note that
in this case, no “cutting off” is necessary.

In general, we have T/Vznf2 >~ Ye'A and XI' = Xe; is an A-A-subbimodule of X. If
Xe; # 0, then we have Xe; @4 ¥e’A = 0 and hence

X @AY A~ (X/Xe)) @4 Ve A

As (X/Xep)I' =0, we can apply the argument from the previous paragraph. Fac-
toring Xe; out corresponds precisely to “cutting off” those vertices and edges which
fall outside the graph in figure (3) after the move. This completes the proof of
claim (ii). O
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Let X be an indecomposable A-A-bimodule. A full subgraph I" of I'x will be called
thick provided that, for any arrow * — y in 'y, the condition x € T implies
yel.

Lemma 17. Let X be an indecomposable and not k-split A-A-bimodule.

(i) The action graph of the A-A-bimodule N7\2 @4 X is obtained from T'x by
moving the latter vertically one step up and then cutting off all vertices and
edges which fall outside the graph in figure (3).

(id) If dimy Xe; = 2, then the action graph of the A-A-bimodule X ®4 NT"2 is
obtained from I'x in the following three steps:

e first we move I'x one step to the right;

e then we cut off the thick subgraph generated by all vertices which fall
outside the graph in figure (3), we denote the resulting graph T';

e finally, we add to T' one new vertex and one new arrow as follows: let
v be the north-west corner of I', then we add to I' the immediate west
neighbor w of v and the arrow connecting v to w.

(iid) If dimy Xe; # 2, then the action graph of the A-A-bimodule X @4 N2 is
obtained from I'x by mowving the latter horizontally one step to the right and
then cutting off the thick subgraph generated by all vertices which fall outside
the graph in figure (3).

A good example to illustrate the procedure described in Lemma 17(ii) is the obvious
isomorphism W[ ™' ®4 NJv2 = N7;72 based on the fact that W' = 4A4. In
particular, this example shows that the second step of the procedure described in
Lemma 17(ii) can lead to elimination of some vertices which do not fall outside the
graph in figure (3). For n = 4, the transformation in this example can be depicted
explicitly as follows:

(1) eo————-—-————- — A
|
|
|
|
|
I
|
|
|

N |

Here dashed lines indicate the boundaries of the graph in figure (3), dotted arrows
and white vertices are the ones which are deleted during the second step of the
procedure described in Lemma 17 (ii). Finally, the triangle vertex and the double
arrow are the ones which are added during the last step of the procedure described
in Lemma 17 (ii).

Proof. Assume that e; X = 0 and let Y be an A-A-bimodule such that TI'y is
obtained by moving I'x one step up (note that this is well-defined as e; X = 0).
Then Y has the same type as X and

Lsupp(Y) = Lsupp(X)[—1] and Rsupp(Y) = Rsupp(X).
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From Lemma 16 (i) it follows that X = Wi 2 ®4 Y. This, together with the
discussion in Subsection 4.2, implies Nj; 2 ®4 X =Y in A-mod-A. Claim (i) in
the case e; X = 0 follows.

Assume now that e; X # 0. Consider the following short exact sequence of A-A-
bimodules:
(8) 0— éX — X — Coker — 0,

where éX — X is the natural inclusion. In this sequence we have that 4Coker
is semisimple, moreover, e;Coker = 0, for all ¢ > 1. Recall that Nlnl_2 >~ ¥YeA.
Then ?éA @4 Coker = 0. The functor N, 2 ®4 _ is exact as N{y 2 is right
projective (or due to Proposition 14 (a)). Therefore, applying NI\2 @4 _ to (8),
gives N[\2 @4 6X = N2 ®4 X. We can now apply the previous paragraph to
N2 ®4 éX and thus complete the proof of claim (i).

We have Lsupp(X ®4 #éA4) C Lsupp(X) by Lemma 4. Similarly to the proof of
Lemma 9, if XTI = 0, then, tensoring X (from the right) with YéA and then with
Ae¥ gives X back. Consequently, in the case X1 = 0 we have

Lsupp(X ®4 ¥€A) = Lsupp(X).

Consider the short exact sequence
9) 0 — YéAe; — PéA — Coker’ — 0

of A-A-bimodules where YéAe; — €A is the natural inclusion. Then we have
Coker’ = W52, Using Lemma 16 (ii) or the fact that e; Aé¥ = 0, we have

Coker’ ® 4 A8¥ = Y8A ®4 Aé®.

Therefore, tensoring X (from the right) with Coker’ and then with Aé¥ also gives
X back. Applying the functor X ® 4 — to (9), we thus obtain

Rsupp(X ®4 PéA4) C Rsupp(X ®4 “éAer) U Rsupp(X ®4 Coker’).
As tensor functors are right exact, we also have
Rsupp(X ®4 Coker’) C Rsupp(X @4 €A).

Just like in the proof of Lemma 9, tensoring with Wf‘{z twists the right A-action on
X by ¢ and hence does not change the type (W, M, S, or N) of X. In particular,
we have

Lsupp(X ®4 Coker’) = Lsupp(X) and Rsupp(X ®4 Coker’) = Rsupp(X)[1].
Therefore, considering the action graph of X ® 4 Coker’ corresponds to the first step
of claim (ii).

Note that Rsupp(X ®4 #é4e;) C {1}. Hence, the above arguments imply
(Rsupp(X))[1] € Rsupp(X ®4 ¥€A) C {1} U (Rsupp(X))[1].

Now, if dimy Xe; = 2, then B(X) contains the vertices j | 1 and j+1 | 1, for some

j. Moreover, we obtain that the A-A-bimodule X ® 4 YéAe; is of dimension one

with basis j | 1 ® oy (here it is important that X is not k-split). The image of this
element in X ® 4 YA is also non-zero. This implies that

Rsupp(X ®4 ?€A4) = {1} U (Rsupp(X))[1].
Therefore the sequence
0— X ®4%eAe; = X ®4 P8A — X ®4 Coker’ — 0

is exact, which completes the proof of claim (ii) in the case XTI = 0.
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If dimg Xej # 2, then we have X ® 4 ¥éAe; = 0 as 4(¥éAey) is simple and X is not
k-split. This implies that X ®4 YA = X ® 4 Coker’, which establishes claim (iii)
in the case X1 = 0.

If XI # 0, then we have XI ®4 YéA = 0 as the left action of e, annihilates
?éA. Hence we obtain X ®4 YéA = (X/XI) ®4 €A so that we can reduce our
consideration to the previous case XI = 0. This proves claims (ii) and (iii) in full
generality and we are done. O

Lemma 18. Let X be an indecomposable and not k-split A-A-bimodule.

(i) If dime, X = 2, then the action graph of the A-A-bimodule STy 2 @4 X is
obtained from U'x in the following three steps:

e first we move I'x wvertically one step up;

e then we cut off the thick subgraph generated by all vertices which fall
outside the graph in figure (3), we denote the resulting graph T';

e finally, we add to T' one new vertex and one new arrow as follows: let
v be the south-east corner of I, then we add to I' the immediate south
neighbor w of v and the arrow connecting v to w.

(ii) If dime, X # 2, then the action graph of the A-A-bimodule S75 2 @4 X is
obtained from T x by moving the latter vertically one step up and then cutting
off the thick subgraph generated by all vertices which fall outside the graph in
figure (3).

(ii7) The action graph of the A-A-bimodule X ®a Sy 2 is obtained from T'x by
moving the latter one step to the right and then cutting off all vertices and
edges which fall outside the graph in figure (3).

Proof. Observing that we have an isomorphism STy 2>~ pAe v of A-A-bimodules,
the proof is similar to that of Lemma 17 and is left to the reader. O

Again, a good example to illustrate the procedure described in Lemma 18 (i) is the
obvious isomorphism S75 2 ®4 Wi, 2 S75°2 based on the fact that W{, ™' =2 4A4.
In particular, this example shows that the second step of the procedure described in
Lemma 18 (i) can lead to elimination of some vertices which do not fall outside the
graph in figure (3). For n = 4, the transformation in this example can be depicted
(using the same conventions as in (7)) explicitly as follows:
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4.4. Proof of Theorem 15. Let X denote the minimal subcategory of A-mod-A
containing (6) and closed under isomorphisms, tensor products and taking direct
sums and direct summands. To prove Theorem 15 (i), we need to show that all
indecomposable A-A-bimodules belong to X.

Clearly, Wlnfl € X as it appears in (6). Further, MI”fQ € X as, for example,
Sts 2 ®a (W32 @a NiT?) 2 57572 @a N3y = MiT 2,

where we used Lemma 17 (ii) for the first isomorphism and Lemma 18 (i) for the
second one.

Starting from W', M2, S35 and Nji 2, and applying the manipulations
described in Lemma 16 (i)-(ii), Lemma 17 (i) and Lemma 18 (iii), it is clear that
we can obtain action graphs of all indecomposable A-A-bimodules which are not
isomorphic to Ae; ®kej41A4, where ¢, 7 € Nj,. Hence all such bimodules must belong
to X, in particular, all indecomposable string A-A-bimodules of dimension two are
in X.

Finally, tensoring indecomposable string A- A-bimodules of dimension two with each
other, we can get all bimodules of the form Ae; @y e;1A, where i, j € NY. Claim (i)
of Theorem 15 follows.

Now, let us prove claim (ii). Let T be a proper subset of (6) and Xr the mini-
mal subcategory of A-mod-A containing 7" and closed under isomorphisms, tensor
products and taking direct sums and direct summands. We have to show that Xp
is a proper subcategory of A-mod-A. If Wlnfl ¢ T, then the latter claim follows
directly from Theorem 5 (ii).

If W2”1_2 ¢ T, then, from Lemmata 17 and 18 it follows that the only possible
manipulations with actions graphs are to move them up or to the right. As we can
only start with action graphs of bimodules from T, it follows that, in particular,
W2"1*2 ¢ Xr. A similar argument also shows that, necessarily, either 5?272 €T or
N 2eT.

Assume that T is (6) without S75 . Then, from Lemmata 16 and 17, it follows
that all bimodules in Xr are either k-split or of type W or N. Assume that 7" is (6)
without N1n1—2. Then, from Lemmata 16 and 18, it follows that all bimodules in Xr
are either k-split or of type W or S. Claim (ii) follows and the proof of Theorem 15
is complete.

5. SIMPLE TRANSITIVE 2-REPRESENTATIONS OF PROJECTIVE A-A-BIMODULES

5.1. Finitary 2-categories and their 2-representations. In this section we
switch from the concrete algebras A,, considered above to general finite dimensional
algebras A.

For a finite dimensional k-algebra A, consider the 2-category % 4 of projective endo-
functors of A-mod, see [MM1, Subsection 7.3] (we note that this 2-category depends
on the choice of a small category equivalent to A-mod). We assume that A is basic
and connected and let €1 + €5 + --- + £, = 1 be a primitive decomposition of the
identity in A. The 2-category % 4 has one object i. A complete list of represen-
tatives of isomorphism classes of indecomposable A-A-bimodules which contribute
to 1-morphisms in %4 consists of the regular bimodule 4 A 4, which corresponds to
the identity 1-morphism 1;, and indecomposable projective bimodules Ae; ® €A,
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where 7,5 = 1,2,...,k, which correspond to indecomposable 1-morphisms respec-
tively denoted by F;;. Finally, 2-morphisms in € 4 are given by homomorphisms of
A-A-bimodules.

A finitary 2-representation of €4 is a functorial action, denoted M, on a category
M(i) equivalent to B-proj of projective modules over some finite dimensional k-
algebra B. All such 2-representations form a 2-category, denoted % 4-afmod, where
1-morphisms are 2-natural transformations and 2-morphisms are modifications, see

[MM3] for details.

A finitary 2-representation M is called transitive if M (i) has no proper & 4-invariant,
idempotent split and isomorphism closed additive subcategories. A transitive 2-
representation M is called simple if M(i) has no proper % 4-invariant ideals, see
[MM5, MMS6] for details.

Classical examples of simple transitive 2-representations are so-called cell 2-repre-
sentations as defined in [MM1, MMZ2]. The 2-category % 4 has, up to equivalence,
two cell 2-representations:

e The cell 2-representation Cy;,y which is given as the quotient of the left
regular action of €4 on €4(i,1) by the unique maximal % 4-invariant left
ideal.

e The cell 2-representation Cy,,; which is given (up to equivalence) by the
defining action of ¥ 4 on A-proj.

5.2. The main result of the section. The main result of this section is the
following:

Theorem 19. Assume that A has a non-zero projective injective module and is
directed in the sense that €;Ae; = 0 whenever i < j and €;Ae; = ke;, for all
i. Then every simple transitive 2-representation of € 4 is equivalent to a cell 2-
representation.

The algebra A, from Subsection 2.1 obviously satisfies both assumption of The-
orem 19. Therefore Theorem 19 provides a classification of simple transitive 2-
representation of €4 ,. In fact, any quotient of the path algebra of the quiver (1)
satisfies both assumption of Theorem 19. There are of course many other algebras
which satisfy these assumptions, for example incidence algebras of finite posets hav-
ing the minimum and the maximum element (for example, the Boolean of a finite
set) and many others. In the cases A = As and A = Az, Theorem 19 is proved in
[MZ].

The rest of this section is devoted to the proof of Theorem 19.

5.3. Notational preparation. We let M be a simple transitive 2-representation
of €4 and denote by B a basic k-algebra such that M(i) is equivalent to B-proj.
Let € + €3+ ---+ €, = 1 be a primitive decomposition of the identity in B. For
i,7 =1,2,...,r, we denote by G;; the endofunctor of B-mod given by tensoring
with the indecomposable projective B-B-bimodule Be; ® €;8. We note that r # k,
in general.

Without loss of generality we may assume that M is faithful. Indeed, the 2-category
% 4 is simple, see [MMZ, Subsection 3.2]. Therefore, if M is not faithful, then
M(F;;) = 0, for all 4,j. The quotient of ¥4 by the 2-ideal generated by all F;;
satisfies the assumptions of [MM5, Theorem 18] and hence M is equivalent to a cell
2-representation by [MM5, Theorem 18].
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So, from now on, M is faithful, in particular, each M(F;;) is non-zero. As A
has a non-zero projective-injective module, by [MZ, Section 3], each M(F,;) is a
projective endofunctor of B-mod, that is, is isomorphic to a direct sum of some
Ggt, s,t € {1,2,...,r}, possibly even with multiplicities. For i,j = 1,2,...,k, we
denote by

o X;; the set of all s € {1,2,...,7} such that G, is isomorphic to a direct
summand of M(F;;), for some t € {1,2,...,7};

e V;; the set of all ¢ € {1,2,...,r} such that G, is isomorphic to a direct
summand of M(F;;), for some s € {1,2,...,r}.

As each M(F;;) is non-zero, each X;; and each Y;; is not empty.

Recall that A is assumed to have a non-zero projective-injective module. Then
there exist ig,jo € {1,2,...,k} such that Ae;, = Homy(e;,A,k). In this case, for
every q € {1,2,...,k}, the pair

(10) (quo’ FioQ)

is an adjoint pair of 1-morphisms, see [MZ, Lemma 5].

For s =1,2,...,7, we denote by P the indecomposable projective B-module Beg
and by L, the simple top of P;. Whenever it does not lead to any confusion, we will

use action notation and simply write e.g. F;; M, for M € M(i) and M € B-mod,
instead of M(F;;)(M).

5.4. Analysis of the sets X;; and Yj;.
Lemma 20. Fori=1,2,... .k, we have X;;, = X;j,, for all j1,j2 € {1,2,...,k}.
Simalarly, for j =1,2,...,k, we have Y ; =Y,,;, for all i1,i2 € {1,2,...,k}.

Proof. We prove the first claim, the proof of the second one is similar. We have
(Aé‘i [ Ele) ®A (AEjl X EjQA) = AEi X Ejeradim(Elesjl).
Note that dim(ej, Aej,) > 0. Therefore F;;, is isomorphic to a direct summand of

Fij, oFj,j,. This implies X;;, C X;;, (as multiplication on the right cannot create
new indexing idempotents on the left). By symmetry, we also have X;;, C Xjj,.

The claim follows. O
After Lemma 20, for i = 1,2, ..., k, we may denote by X; the common value of all
Xij;, where j € {1,2,...,k}. Similarly, for j = 1,2, ..., k, we may denote by Y; the
common value of all Y;;, where i € {1,2,...,k}.

Lemma 21. We have X, UXoU---UX, ={1,2,...,r}.

Proof. The set X7 U X5 U---U X}, indexes those projectives that can be obtained
using the action of ¥ 4. Therefore the claim follows immediately from transitivity
of M. O

Lemma 22. For every q=1,2,...,k, we have X, =Y.

Proof. Consider the pair (Fgj,,Fi,q) of adjoint 1-morphisms given by (10). By
adjunction, for s € {1,2,...,r}, we have

Homp(Fy;, B, Ls) = Homp(B,Fiyq Ls),

in particular, the left hand side is non-zero if and only if the right hand side is
non-zero. At the same time, the left hand side is non-zero if and only if P, appears
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in Fyj, B, that is, s € Xg; while the right hand side is non-zero if and only if
Fi,q Ls # 0, that is, s € Y. The claim follows. O

As an immediate consequence of Lemmata 21 and 22, we have:

Corollary 23. We have YUY U---UY, ={1,2,...,7}.

Note that, until this point, we never used that A is directed. It will, however, be
crucial for the following two lemmata.

Lemma 24. For iy #i2 € {1,2,...,k}, we have X;, N X;, = @.

Proof. Let s € X;; N X;,. Then s € Y;; NY;, by Lemma 22. Without loss of
generality we may assume i1 < i. Then we have that M(F,,;, ) o M(F;,;,) contains
a direct summand isomorphic to Gz o Gy, for some z,y € {1,2,...,r}. Note that
Gys 0 Ggy # 0 as €,Be, # 0. Consequently, we obtain

M(Fiyi, 0 Fiyiy) = M(Fiyiy ) 0o M(Fipi, ) # 0.

At the same time, we have F,,;, o Fy,;; = 0 since ¢;, Ae;, = 0 by our assumption
that A is directed, a contradiction. The claim follows. O

Lemma 25. Fori=1,2,... k, we have | X;| = 1.

Proof. Let X; = {s1,52,...,5m}. For a fixed s,, the additive closure of all F;L,_,
where € {1,2,...,n}, is a non-zero € 4-invariant subcategory of B-proj and hence
must coincide with B-proj by transitivity of M. This implies that all G where
y € {1,2,...,m}, do appear as direct summands of M(F;;).

SySq)

As A is directed, we have ¢;Ae; = ke; and hence Fy; o Fy; =2 F;;. Therefore
(11) M(F;;) o M(Fy;) = M(Fy;)

as well. Let h denote the multiplicity of G5, in M(F;;). From the previous
paragraph we know that h > 0. Clearly, Gg,s, appears as a direct summand of
Gs, s, © Gsy s, - Therefore (11) implies A% < h, that is h = 1.

If m > 1, then Gg, 5, appears as a direct summand of Gg, s, © Gs,s,. Therefore in
this case (11) fails and we are done. O

As a consequence of Lemmata 21 and 25, we have k = r. Without loss of generality
we may now choose ¢;’s such that each F;; acts via Gy;.

Corollary 26. Fori,j=1,2,...,k, we have dim(e;Ae;) = dim(e; Be;).

Proof. As each Fy; acts via Gy, the claim follows by comparing

dim(e; Ae; ~ dim(e; Be;
FyoFj 2 FLIMEAD and G0 Gy =2 G5B,
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5.5. Completing the proof of Theorem 19. After the preparation in Subsec-
tion 5.4, the proof of Theorem 19 is similar to the arguments in [MZ, Section 6] or
[MaMa, Subsection 4.9]. Consider the principal 2-representation P; := € 4(1, _) of
% 4, that is the left regular action of ¥4 on ¥4(i,1i). The additive closure of all
Fi1, where i = 1,2,...,k, in ¥a(i,1) is ¥ a-invariant and gives a 2-representation
which we denote by INN. The latter has a unique % s-invariant left ideal I and
the corresponding quotient is exactly the cell 2-representation, see [MM2, Subsec-
tion 6.5].

Mapping 1; to Ly € B-mod, gives rise to a 2-natural transformation ® from N to
M which, because of the results in Subsection 5.4, sends indecomposable objects
to indecomposable objects. Since, by Corollary 26, the Cartan matrices of A and
B coincide, it follows that ® must annihilate I and hence induce an equivalence
between the cell 2-representation N /I and M. This completes the proof.
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