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Exploring the Future Electric Vehicle Market ansl it
Impacts with an Agent-based Spatial Integrated lexaonk:
A Case Study of Beijing, China

Abstract

This paper investigates the potential expansionmpécts of Electric Vehicle (EV) market in

Beijing, China at the micro level with an agentdxhintegrated urban model (SelfSim-EV),
considering the interactions, feedbacks and dyrsfoiend in the complex urban system. Specifically,
a calibrated and validated SelfSim-EV Beijing modek firstly used to simulate how the EV market
might expand in the context of urban evolution 2816 to 2020, based on which the potential
impacts of EV market expansion on the environmgoiyer grid system and transportation
infrastructures were assessed at the multipleutisnk. The results suggest that 1) the adoptitn ra
of Battery Electric Vehicle (BEV) increases ovee fperiod, whereas the rate of Plug-in Hybrid
Electric Vehicle (PHEV) almost remains the sametiarmore, the so-called neighbour effects
appear to influence the uptake of BEVs, based esplatial analyses of the residential locations of
BEV owners; 2) the EV market expansion could evahtibenefit the environment, as evident from
the slight decrease in the amounts of HC, CO angdb@ssions after 2017; 3) Charging demand
accounting for around 4% of total residential eleitty demand in 2020 may put slight pressure on
the power grid system; 4) the EV market expans@ncinfluence several EV-related transport
facilities, including parking lots, refuelling sians, and charging posts at parking lots, in teois
guantity, layout and usage. These results are &gh¢z be useful for different EV-related
stakeholders, such as local authorities and matuas, to shape polices and invest in technologies

and infrastructures for EVs.

Keywords: Electric Vehicle Market; Agent-based Model; Envineental Impact; Power Grid System;

Transport Infrastructure; Beijing; SelfSim



1 I ntroduction

1.1 Background

Electrification of transport in cities has reavncreasing attention over the past few yearsiyMa
countries, including China (Cazzola and Gorner 820the UK (The-Guardian, 2017) and Norway
(Mersky et al., 2016), have tried to promote bt isage and purchase of Electric Vehicles (EVS)
mainly through policies (e.g., subsidies) (Haolgtz®14), technologies (e.g., on-board batteries)
(Chéron and Zins, 1997) and infrastructures (eltarging posts) (Bakker et al., 2011). In is hoped
that EV could become an alternative to ConvectiMeddicle (CV), so as to benefit the environmental
and energy systems at both local and global |giZ¢lage and Shao, 2019). Note that in this paper EV
particularly refers to Battery Electric Vehicle (Bgand Plug-in Hybrid Electric Vehicle (PHEV), as
both of them have an on-board battery that caretlearged through charging posts (Zhuge and Shao,
2018a; Zhuge and Shao, 2019). In order to provMedtated stakeholders, such as local authorities
and vehicle manufacturers, with tools, informationl evidence to support their policy marking and
investment in technologies and infrastructuregeatgdeal of research has been conducted, primarily
involving in the adoption of EVs (see Section 1efolw) and the potential impacts of the EV adoption

on the environment, power grid system and urbanastifuctures (see Section 1.3 below).

1.2  Previous Studies of the EV Adoption

Essentially, the studies of the adoption of E\ésenmfocused on the two aspects: 1) the factors that

might influence the purchase behaviour and 2) tagswio predict the adoption rate.

The EV purchase behaviour could be influenced tyde variety of factors, including vehicle price
(Sun et al., 2017), driving experience (Degirmeaa Breitner, 2017; Matthews et al., 2017), social
influences (Li et al., 2013), and the environmeatahreness (Degirmenci and Breitner, 2017; Smith
et al., 2017), as recently reviewed in (Biresséliag al., 2018; Li et al., 2017; Zhuge and Shao,
2019). Identifying these influential factors cotlelp to develop methods and models to predict the

EV penetration rates, as the factors can be usttttasdependent variables of an EV market model.



As reviewed by Al-Alawi and Bradley (2013), agéstsed model, discrete choice model (e.g.,
multinomial logit model) and diffusion rate modeld., the Bass model) have tended to be the three
of the most-used approaches to the EV market fetiecg(or predicting the market share). The
former two try to simulate the decision-making mdiividuals at the micro scale; while the lattegdri
to predict the EV penetration rate at the macrelledgent-based modelling has been increasingly
viewed as a promising approach to investigatingmemdynamic systems (Farmer and Foley, 2009;
Heppenstall et al., 2011; Waldrop, 2018). The EVkegis such a complex system in which several
EV-related stakeholders interact with each othmluding consumers (Eppstein et al., 2011; McCoy
and Lyons, 2014), governments (Zhang et al., 20hajufacturers (Zhang et al., 2011), fuel
suppliers (Sullivan et al., 2009) and urban plasiiédepetu et al., 2016), and therefore agent-based
modelling has been widely used to investigate tartarket (Al-Alawi and Bradley, 2013). In the
agent-based EV market models, consumer tendstteebmore agent type, as it makes decision on
vehicle purchase, and can also directly or indiygnteract with the other EV-related stakeholders.
Utility maximization theory (Aleskerov et al., 2008ppears to be one of the most-used approaches to
simulating the behaviour of agents in the EV marketlels with the assumption that consumer
agents always choose their vehicles with the hightdies. For example, Adepetu et al. (2016)dise
a utility function that considered the vehicle iatites (e.g., driving range) as variables to siteuthe
decision-making of consumer agents on vehicle mgehSimilarly, Brown (2013) used a discrete
choice model (specifically a mixed logit model),iethincorporated the utility maximization theory,

to predict the vehicle choices of consumer agent.

As reviewed above, although a wide variety of sileénd methods have been developed to
investigate the EV market expansion at both theeraad macro levels, these models were generally
only focused on the EV market, paying little atientto the interactions or connections between the
EV market and those associated urban elements asuysbpulation system and land use. This could
lead to an inaccurate estimation of the EV markeigprate rate from a dynamic perspective, as the
changes in those associated urban elements caalihfluence the EV market expansion. For

example, as the population system evolves over, tineedemographic characteristics of individuals



could change, which would further give rise to thange in the purchase behaviour of EV. More
importantly, all of these urban elements aboveatewith each other and evolve over time, making
the studies of the EV market expansion more comihiax generally expected. Therefore, an
integrated urban model would be useful here foetéeb estimation of the EV penetration rate,

considering the interactions, feedbacks and dyrafoiend there.

1.3  PreviousWork on Assessing the | mpacts of the EV Adoption

The EV market expansion may benefit the envirartraé both global and local levels (Zhuge and
Shao, 2019). The rising market share of EVs mayeedhe C@emissions, but the potential
reduction depends on the electric power plant.fleet example, Casals et al. (2016) found that some
EU counties, such as Germany and the UK, couldenéfit immediately from the uptake of EV, as
these countries needed to put more efforts intarenizing their power plant fleet. Similarly,
Doucette and McCulloch (2011)’s findings also siage that the reduction in the €@missions
might not occur until those highly G@ntensive countries, such as China, could decazbdheir
power plant fleet. Coupling renewable energy (sglar and wind energy) with EVs appears to a
promising way to reduce the G@missions (Lund and Kempton, 2008), as the etgistigeneration
would produce significantly less G@missions. For example, Chen et al. (2018) fohatad
significant reduction in COemissions could be expected at several leveldraf penetration, using
China as a case study. At the local level, the spdead adoption of EVs may improve the local air
guality and thus benefit human health. As foundFbyrero et al. (2016), only a high EV market share
(e.g., 50%) could have a substantial reductiohéngollutant concentrations. However, a lower EV
penetration rate was still helpful especially dgrihose intense pollution episodes. In addition,
Holland et al. (2016)'s work suggested that peaypth different incomes and EV subsidies could

receive different local environmental benefits fravs.

Integrating EVs into the power grid system cduolttease the demand for infrastructures and
equipment for generating and transmitting the algtt (Muratori, 2018), as the grid system neeuls t
accommodate the additional charging demand from EVMgeneral, the potential impacts of the EV

market expansion on the power grid system weresagdevithin various “what-if” scenarios,



including wind power scenario (Chen et al., 20p8)ce- and incentive-based demand response
scenario (Shafie-khah et al., 2016), Vehicle-tod@2G) scenario (Lund and Kempton, 2008), and
dumb grid scenario (Galus et al., 2010; Qian eall1). For example, Qian et al. (2011) found that
10% and 20% market shares of EV could result i8%7and 35.8% increases in peak load in a dumb
grid scenario (where no measures were taken togtithe integration of EV), respectively. V2G
(Pillai and Bak-Jensen, 2011), which enables EV&etbelectricity back to the grid, has been
increasingly viewed as a promising technology tdrasls some critical issues in the dumb grid system,
such as voltage problems (Clement-Nyns et al., @40, V2G could economically benefit EV

owners through the reduction in electricity pri¢@folinetz et al., 2018).

In addition, the rising EV market share couldaisse rise to the increase of the demand for
charging facilities, but the decrease of the denfandefuelling stations, due to the potential
competitions and interactions between chargingrafelling facilities (Zhuge and Shao, 2018a).
Previous studies have looked at several differeatging facilities, including charging lanes (Clatn
al., 2016), battery swap stations (Hof et al., 20dahg and Sun, 2015), enroute fast charging ststio
(Bae and Kwasinski, 2012), charging stations fectic taxis (Asamer et al., 2016), and show
charging posts at parking lots (Chen et al., 20IBgse studies generally tried to locate the chgrgi
facilities with several different objectives, inding minimizing the total number of the missedsrip
of EV drivers (Dong et al., 2014), minimizing thecgl cost (Chen et al., 2016), minimizing the tota
cost of charging facility, and satisfying as mublaiging demand as possible (Asamer et al., 2016;
Cavadas et al., 2015). Also, some constraints aleeimposed on the deployment of charging
facilities, including a limited budget (Cavadaskt 2015; Chen et al., 2016) and a fixed number of

charging stations to be added (Asamer et al., 2016)

Since the EV market expansion and its impactglasely linked, some attempts have been made to
simultaneously investigate the EV adoption angdtential impacts. For example, Wolinetz et al.
(2018) pointed out that the consumer behaviour tiigluence the magnitude of the impact of V2G,
and therefore tried to assess the impact withimtgrated framework, which combined a vehicle

adoption model, a charging behaviour model andestrecity system model. However, these studies



still did not fully connect the EV market expanstorits impact assessment, and thus were not able t
provide the EV-related stakeholders (e.g., loc#t@rities, utility companies and vehicle
manufacturers) with full information for their dewn-makings. Therefore, this paper attempts to
simultaneously investigate the potential expanaiwthimpacts of EV market within an integrated
framework. Here, the potential impacts of markeiagmsion on the environment, power grid system

and urban infrastructures will be fully assessed dtynamic way, as the EV market expands.

1.4 Commentson Previous Work

As reviewed and discussed in Sections 1.2 andHe3existing studies of EV market expansion and
its impacts were limited in 1) ignoring the inteians and linkages between the EV market and those
associated urban elements, such as land use aothpop systems and 2) investigating the expansion
and impacts of EV market separately. These linaitegticould lead to an inaccurate estimation of the
EV penetration rate through time and also a limitaderstanding of the impacts of the EV market. In
response to these limitations, this paper attetopsnultaneously explore the future EV market and
its impacts with an agent-based integrated urbagem&elfSim-EV) (Zhuge and Shao, 2018a; Zhuge
and Shao, 2018b; Zhuge et al., 2016), involvingixiEV-related urban sub-systems, namely
transportation, land use, population, economy,@nand energy systems, so as to take into account
the feedbacks, dynamics and interactions founcktheis expected that the model outcomes could be
more systematic and comprehensive and thus wouhddpe useful for those EV-related stakeholders

involved, such as local authorities and vehicle ufacturers.

The capital of China, Beijing, will be used asase study, as the Beijing government appeardto ac
actively in promoting both the purchase and usdd¢e/s (Sun et al., 2017; Zhang et al., 2018; Zhuge
and Shao, 2019). This paper will be focused onspeeific scenario with the assumption that the
Beijing urban system (including the EV market atschissociated urban sub-systems) would evolve as
before during the period from 2016 and 2020. Susbemario could be viewed as a reference scenario
(or baseline), which can be further compared toousr‘what-if” scenarios, which investigate how
different factors, such as the EV-related policieshnologies and infrastructures, may influenee th

EV market expansion and its impacts.



2 An Agent-based Integrated Urban M odel (SelfSm-EV) for

I nvestigating the Expansion and I mpacts of EV Mar ket

2.1 Framework of SelfSim-EV

Figure 1 shows the framework of SelfSim-EV, whiglupdated from an agent-based land use and
transport model, SelfSim (Zhuge et al., 2016),Hnpiporating several EV-related modules, including
an EV market model, a social network evolution ni@hel a transport facility development model.
Essentially, SelfSim-EV is composed of initializatiand simulation modules: the initialisation
module actually is a virtual city creator, whichused to generate an agent- and GIS-based viityal ¢
containing individuals, households and facilitias well as their attributes (e.g., sex and facility
capacity) and relationships (e.g., social networksg Zhuge et al. (2018b) and Zhuge et al. (204.8a)
work for more details; the simulation module coraps several spatial explicitly urban models,
including a demographic evolution model (Zhuge 8hdo, 2018b), a joint model of Residential
Location Choice and Real Estate Price (RLC-REPuehand Shao, 2018b), a social network
evolution model, an EV market model, an activitgda travel demand model (MATSIim-EV) (Horni
et al., 2016; Zhuge and Shao, 2018a; Zhuge 2@l7), an activity facility development model and a
transport facility development model (Zhuge andd&2818a), which form an annual loop to
simulate how the urban system evolves over timth aparticular focus on the EV market expansion

and its impacts on the environment, power gridesystnd transport infrastructures.
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Figure 1 Framework of the SelfSim-EV Model (Zhugel &hao, 2018a; Zhuge and Shao, 2018b;
Zhuge et al., 2018a)

Given a virtual city generated by the creatotfSSm-EV works in the following way: first, the
demographic evolution model is used to simulateestypical demographic transitions such as birth,
employment, marriage and immigration (see ZhugeSirab (2018b)’s work for model specification
and test); then the joint model of RLC-REP is usesimulate how purchaser, renter, investor,
landlord and seller agents interact with each athére dynamic housing market, resulting in new
residential locations and also selling prices @mds of houses (see Zhuge and Shao (2018b)’s work
for model specification and test); Next, the sonitiwork evolution model, which is updated from a
static social network generator proposed by Zhuged €2018b), is used to simulate how individuals

build and dissolve their friendships at the miaredl, using a utility function considering the



similarity in individual attributes (e.g., incomaid spatial closeness of their residential locadiath
workplaces (Zhuge et al., 2018b); further, the E&fkat model is used to simulate how consumer
agents make decision on vehicle purchase, consgldre interactions among consumer, government
and manufacturer agents (see Section 2.2 beloweh e activity-based model, MATSIim-EV,
which is an EV version of MATSim (Multi-Agent Trapart Simulation) (Horni et al., 2016), is used
to simulate how people perform their daily acteti(e.g., shopping and work) and travel from one
activity location to another using different tranggmodes, including both EVs and CVs (Zhuge and
Shao, 2018a). More detailed introduction to MATSiam be found in (Horni et al., 2016); Finally,
the activity facility development model and tranggacility development model are used to develop
(add or remove) activity and transport facilitie=spectively. Note that the activity facility
development model has not been implemented yéhesactivity facilities for each simulation will be
input when SelfSim-EV is initialised. A detailednoduction to the transport facility development

model can be found in the work of Zhuge and Shaa&a).

The key roles of these SelfSim-EV sub-model$igihvestigation of the EV market expansion and
its impacts are described as follows: 1) the ostfnaim the demographic evolution model are some
key socio-demographic characteristics (e.g., agaramome), which are associated with several
behavioural rules of agents (e.qg., vehicle conswandrEV driver) in SelfSim-EV. For example, some
socio-demographic attributes have been used astfables of discrete choice models (e.qg.,
multinomial logit model) (Bierlaire, 1998) for tis@mulation of parking and charging behaviours of
both BEVs and PHEVs in the MATSIim-EV simulation;tBe household residential locations can be
obtained from the RLC-REP model and can be funtised for, for example, the spatial analysis of
EV owners and charging demand. Also, the potengahbour effects in the adoption of EVs (Axsen
et al., 2009; Mau et al., 2008) can also be quadtifvith the residential locations; 3) the outpiutsn
the social network evolution model can be furtreedito quantify the potential social influence on
the adoption of EVs through individual social netkso(Axsen and Kurani, 2012; Axsen et al., 2013;
Pettifor et al., 2017), as the social influencedssidered as a utility term associated with the

decision-making of consumer agents in the EV mgdext Equation (1) below). The EV market,



MATSIm-EV and transport facility development modatg directly used for simulating the EV
maker expansion and assessing its impacts, whithevintroduced in more details in Sections 2.2

and 2.3 below.

2.2  Simulation of the EV Market Expansion

As aforementioned, the agent-based EV market hedesed to simulate whether consumer agents
would purchase vehicles or not, and if yes, whiehiele type to purchase, considering the
interactions with the government and vehicle mactuf@r agents in the vehicle market. The market
is assumed to have three vehicle types, namely BEEMEV and CV. As shown by Figure 2, the EV
market model is composed of two stages: At Stagadh agent in the population will be firstly
screened and only those agents passing all ohthe tonditions (e.g., driving license) can become
the consumer agents entering the vehicle markeBtdge 2: these consumer agents will interact with
the other EV-related stakeholders in the vehicleketafirst, consumer agents will decide which

vehicle type to purchase using a utility functi@msidering four key factors, namely, social inflaen

(U suciatiniivence )» driving experiencel 0, ), Vehicle purchase pricéJ(,, gaserice) @Nd

environmental awarenesd £ ... ), as well as a random terd (. ....), as presented by Equation

(2); then the government agent will update the Ebstdies according to the EV adoption rate, and
the vehicle manufacturer agents will update th&iralBd CV prices according to the purchase demand
(or market penetration rate). The EV subsidies\atdcle sale prices will be fed back to consumer

agents in the next simulation year, and the diffeeebetween the subsidy and sale price will be the

purchase priceld o, gaseprice )-

In the utility function for the decision-making consumer agent$) ;. 5, andU are

Environment
calculated based on the activity-based travel ddmaaodel (MATSIim-EV), which executes and
scores the daily plans of each agent in the papulatesulting in the moving trajectories of each
agent throughout the whole day: see Horni et @l162s work for more details. A daily plans
contains the detailed information on how the agentorms its daily activities (e.g., shopping) and

travels from one activity location to the next gtifferent transport modes (e.g., EVs and public
10



transport). MATSIm-EV uses a utility function oétrel and activity to score daily plans (see Hotni e

al. (2016) for a detailed introduction to the tyiliunction). Therefore, consumer agents can coenpar

the utilities of their daily plansuDai,yP,an) with different vehicle types. It is worth notitigat the

limited driving range of EVs is consideredlih, ., those BEV drivers, who use up electricity
before they reach their trip destinations wheregihg facilities are available, would receive very

high negative utilities. As a result, the BEV drivevill have very lowJ and thus will be

DailyPlan *
discouraged to purchase or use BEVs. For PHEV driveey will receive very low . p., only

when they use up both electricity and petrol. Iditoh, social influence has been found as an

important factor to the uptake of EVs (Axsen et2013; Pettifor et al., 2017; Zhuge and Shao, 2019

and thus are also considered as a utility tddg {,muence )» Which is calculated based on the social

network evolution model, as mentioned before.

UVehicIe = U Sociallnfluence + U DailyPlan + U PurchasePrice + U Environment + U Random (1)
I e |
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Figure 2 Framework of the EV Market Model
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2.3 Waysto Assessthe Impactsof EV Market Expansion with SelfSim-EV

The potential impacts of EV market expansionfendénvironment (see Section 2.3.1), power grid
system (see Section 2.3.2) and transport infrasire (see Section 2.3.3) can be assessed with

SelfSim-EV in the following ways:

2.3.1 Impact on the Environment

The environmental impact can be assessed basbe simulation of individual travel behaviour (or
the MATSIm-EV simulation) (Horni et al., 2016). Syfecally, the energy state of each vehicle is
traced in the simulation when they move from orteséig location to another in order to perform
their daily activities (e.g., shopping and workddferent places, as illustrated by Figure 3. Arrgy
consumption factor, which is the function of traspked, is used here to calculate the real-time
electricity or petrol consumption for each vehialeen they are moving on the road network (Yao
and Song, 2013; Yao et al., 2013). Similarly, aiealar emission factor, which is also a function of
travel speed (Yao and Song, 2013), is used to keddcthe amount of vehicular emissions when
vehicles consume fuel (Zhuge and Shao, 2018a)SiBelEV considers four typical types of vehicular
emission, namely HC, CO, CO2 and NOx. The energguwmption factor and emission factor in
MATSIm-EV are from the work of Yao and Song (2088 Yao et al. (2013). In addition, the street-
level emissions from the model can be aggregatdwedtaffic zone-, district- and city- levels, 89

to understand the environmental impacts at mulSpkgial resolutions.

12
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Figure 3 An Example lllustrating the Moving Traject of a Vehicle Agent and its Energy

Consumption and Emission in MATSIim-EV (Zhuge et 2018a)

2.3.2 Impact on Power Grid System

As mentioned above, the energy state of eacltieet@n be traced within the activity-based travel
behaviour simulation (or the MATSIm-EV simulatiafijorni et al., 2016), based on which the
charging demand of each EV can be estimated atthetenroute fast charging stations and the
parking lots with charging posts established {ptdestinations), as shown by Figure 3. The sptial
and temporally disaggregate charging demand céurtteer aggregated at the traffic zone-, district-
and city- levels. Such information can be usedss®eas the potential impacts of the integrationsd E
on the power grid system at both micro and macates¢cand should be useful, for example, for

electricity management and planning on charginiitias.

2.3.3 Impact on Transport Infrastructures

The increasing adoption of EVs may give risen®increase in the demand for charging facilities,
such as enroute fast charging stations and slovgictggposts at trip destinations (or parking lots).

Meanwhile, the demand for refuelling stations magrdase because of replacing CVs with EVs

13



(Zhuge and Shao, 2018a). In other words, the idtierss and competitions between refuelling and
charging facilities may occur, as the widespreazptidn of EVs. In order to quantify the potential
influence of the EV market expansion on those H¥tegl transportation facilities with the
consideration of the interactions and competititins transport facility development model
developed by Zhuge and Shao (2018a) is used hleeemddel considers four types of EV-related
transport facilities, namely parking lots, refuadjistations, enroute fast charging stations and slo
charging posts at parking lots, as shown by FiGuiEhe model results, which can also be presented
at station-, parking lot- , traffic zone-, distrietind city- levels, should be helpful for local lzarities

and urban planners to locate and optimize the HAtee transport facilities, so as to promote the

purchase and usage of EVs.

3 Case Study of Beijing, China

3.1 Scenario Description

The capital of China, Beijing was used as a sasgy. The scenario used 2015 as the base year, and
simulated the EV market expansion during the pelimoh 2016 to 2020 (which is the planning
period of the China’s thirteenth Five-Year Planithva calibrated and validated SelfSim-EV Beijing
model. Specifically, SelfSim-EV was calibratedwotways: 1) several behaviour types of individual
and household agents, including the purchase batvawf consumer agents, and the parking and
refuelling/charging behaviours of CV, PHEV and BE¥&re calibrated with the data collected in two
guestionnaire surveys in Beijing from Septembers2@IMarch 2016. For example, the empirical
findings from the survey on vehicle purchase (&mige and Shao, 2019) for more details) was used
to calibrate the utility function of consumer age(dee Equation (1)), which was used to simulate
their decision-makings on vehicle type; 2) Self&iwviwas also calibrated by fitting some macro data
from 2011 to 2014 on vehicle prices, vehicle sdidssubsidies, the numbers of different transport
facilities (e.g., parking lots) and real estategsiat both district- and city-levels, using a 8ty
Analysis (SA)-based method (Zhuge and Shao, 28zge and Shao, 2018b). Further, the

calibrated model was validated in 2015 using timeesdata type. The Mean Absolute Percentage
14



Errors (MAPESs) for model calibration and validatiwere 5.5% and 9.6%, respectively, exhibiting a

relatively satisfactory performance.

The scenario in this paper continued to run Hibated and validated SelfSim-EV Beijing model
from 2016 to 2020, with the assumption that thgiBgiurban system would evolve as before. The
results would be useful for attaining the goal mfipoting EVs, as established in the thirteenth Five
Year Plan of China. Note that the scenario hemigo exactly predict the future EV market, butiois
explore the likely EV market in the near futureyad| as its potential impacts on the environment,
power grid system and transport infrastructureshaguture of such a complex urban system is rathe
difficult to predict. It is also worth noting th#te SelfSim-EV model was run ten times and the
averages of these ten simulations were used dm#teesults, in order to take into account the
potential stochastic effects (or model variabilitiy) addition, the model performance was examined
again by comparing the predicted and observedarathe EV market and the EV-related transport
facilities in 2016, suggesting that the abilitypi@dict is satisfactory with a MPAE of 6.3% (sedl€a

5 in Appendix 2.1 for more details).

The outputs of SelfSim-EV simulation in 2015 wased as the inputs of the Beijing scenario here,
and can be viewed as an agent- and GIS- basedMg#ijing. Note that all of the facilities (inclind
both transport and activity facilities) in SelfSEY are assumed to be located at road nodes (or
interactions), meaning that agents need to trawel bne node to another in order to perform
activities in different node-based facilities (Zleugnd Shao, 2018a; Zhuge and Shao, 2018b; Zhuge et
al., 2018a; Zhuge et al., 2018b). Figure 4 shogegific element in the virtual Beijing: each dot i
the map, which is based on road node or interaatepresents a residential building with the capaci

information attached.

Apart from the virtual Beijing in 2015, the fuadyear SelfSim-EV simulations need the macro-level
constraints on demographical attributes and agtfeitilities, which are used to simulate the
demographic evolution and the activity facility é&pment, respectively. The constraints were
forecast using the Autoregressive Integrated Moviagrage (ARIMA) model (Box et al., 2015; Wei,

1994) with the time series data extracted fromviaaié statistical yearbooks. The forecasting wasdon
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within R software package (Shumway and Stoffer020The synthetic data on demographical

attributes and activity facilities for future-yesimulations can be found in Appendix 1.

Legend
<100
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= 300-500
= 500-1000
u>1000

Figure 4 Spatial Distribution of Residential Buiids in the Virtual Beijing in 2015

3.2 Potential EV Market Expansion from 2016 to 2020

3.2.1 Aggregate Resultsabout the Market Expansion

Figure 5 shows the aggregate data on the EV maxansion from 2016 to 2020, including EV
subsidies, vehicle sales and vehicle prices. Foiclesales, the CV sale decreases at the beginning
and starts to level off after 2018, while the BEAlesrises at the beginning and starts to levehivér
2018. This is mainly due to the constraints on t&eithand BEV purchase permits (or the license plate
lottery policy) (Yang et al., 2016; Zhang et aD18). Note that CV purchase permits mentioned in
this paper refers to the permits for both CVs aH&Ws, as PHEVs are treated as CVs in Beijing in
both the license plate lottery policy and the si§psicheme for EVs (but PHEV purchasers do receive

national subsidies). However, the number of PHEW®at remains zero over the period, as PHEVsS
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are significantly less competitive than CVs whegytBhare a fixed number of vehicle purchase
permits. One of the main reasons is probably thEE\Ps have a relatively higher price, though some
subsidies are provided by the national governntemtvehicle prices, the CV and BEV prices level
off from 2016 to 2017, due to the specific mechainid the EV market model (specifically, the EV
market model updates the vehicle prices basedeoditference of market penetration rates in two
consecutive years), but their prices start to glween and up in 2017, respectively, and then leffel o
again. The changes in the prices in 2017 are cans#te changes in their penetration rates. In
addition, the PHEV price remains the same ovepthéd due to its penetration rates of nearly zero.
For EV subsidies, the BEV subsidy decreases grdonar time, due to the increasing BEV
adoption rate; while the PHEV subsidy almost reménme same due to the almost unchanged PHEV
adoption rate over the period. In order to furtlvesimine the stochastic effects, the standard
deviations of the 10-run SelfSim-EV results abbet EV market expansion from 2016 to 2020 are
calculated, suggesting that the simulation outconfidise 10 runs tend to be close to the averages,
and the model stochastic uncertainty is unlikeljzgavily influence the outcomes: see Figure 18 in

Appendix 2.2.1 for more details.

In addition, the ability of the EV market modelgredict is somewhat evaluated with the latest
observed figures as follows: the numbers of BEV @ropurchase permits allocated in 2017 was
82,800 and 51,000, which are almost the same asirthgated BEV and CV sales, respectively; the
observed BEV price in 2017 was 228,722 RMB (no&t this was the average price of 25 BEV types
sold in 2017), which is quite close to the simudaB&V price of 211,088 RMB; The simulated BEV
subsidy in 2017 is 83,334 RMB, which was a littlenthe observed subsidy of 66,667 RMB. The
predict ability in 2017 appears to become weakanpared to that in 2016 (see Appendix 2.1).
However, it should be noted that the scenario haeto explore the likely future EV market and its
potential impacts, with the assumption that theaar§ystem would evolve as before. Exact prediction
tends to be impossible in such a dynamic compleiesy, and thus was not expected. The scenario

here is planned to be used as a baseline andtherfgompared to “what-if” scenarios considering
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the influence of different EV-related policies (e gubsides), technologies (e.g., battery capaaity)

infrastructures (e.g., battery swap station) onugtake of EVs and further its impacts.
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Figure 5 The EV Market Expansion from 2016 to 2020

3.22 Spatial Analysisof the EV Market Expansion: Neighbour Effects

The EV marker expansion is further analysed feogpatial perspective, based on the residential
locations of vehicle owners, in order to examiregh-called neighbour effects: For an agent, it may
be more likely to purchase an EV if its neighbduasse EVs (Axsen et al., 2009; Mau et al., 2008;
Zhuge and Shao, 2019). By comparing the spatigiligions in Figure 6-(a) and -(b), it can be seen
that that some clusters become bigger from 202028, due to new added dots (or BEV purchasers),
suggesting that the so-called neighbour effects imfiayence the purchase behaviour of BEVs. Such
neighbour influences can also be found in the adomif BEVs at the district level, as shown by
Figure 7 that aggregates, groups and maps the marobeehicle owners for each district. Note that
the numbers are grouped by a K-means clusterirggitiigh (Kanungo et al., 2002). Specifically, the
BEV adopters in 2016 are mostly resident in the thstricts (namely Chaoyang, Haidian,

Shijingshan and Tongzhou) as highlighted in dabkee; whereas the number of districts highlighted
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in darker blue grows to nine in 2020 with the fiveaw added districts (namely Dongcheng, Xicheng,
Fengtai, Daxing and Fangshan), which are closkeddur initial districts. However, such neighbour
influences are not significant in the adoption bfER/s. This is likely because PHEVs are not very

attractive, compared to BEVs.

More details on the spatial distributions of PH&W CV owners at the multiple resolutions can be
found in Appendix 2.2.2. Such spatially explicisuéis could be useful for both local authoritied an

electricity utilities to shape policies and invasprivate charging facilities for EVs.

Legend Year:2016 Legend Year:2020
1 <1

(a) BEV Owners in 2016 (b) BEV Owners in 2020
Figure 6 Spatial Distributions of BEV Owners in 83dnd 2020 at the Facility Level
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(a) BEV Owners in 2016 (b) BEV Owners in 2020
Figure 7 Spatial Distributions of BEV Owners in Btdnd 2020 at the District Level

3.3 Impactsof EV Market Expansion on Transport Facilities: Quantity,

Layout and Usage

The market expansion has little impact on neitb&relling stations nor enroute fast charging
stations (and thus the results are not presente(, e terms of quantity. This is very likely besa
the number of added vehicles (either CV or EV) dases over time, with a limited and relatively
small number of vehicle purchase permits allocateth year (according to the license plate lottery
policy). For example, the number of vehicles sal@010 was around 748,000 without the constraint
on the number of purchase permits; while the nurob&@Vs sold in 2016 was around 80,000, which
was only about 10% of the vehicle sale in 2010. Whae the impacts of the market expansion on the
public parking lots and public charging posts agy\significant, as shown by Figure 8. The numbers
of public parking spaces and charging posts riaendtically over the period. It should be noted that
the numbers of private charging posts and parlotgydre not presented here because in the SelfSim-
EV simulation, it is assumed that each vehicle ovimallocated with a private parking lot and each
EV owner is extra allocated with a private chargdogt, once they purchase vehicles. This means the
numbers are directly proportional to the numbergebiicles added. As before, the standard deviations
about the transport facilities are computed to stigate the model variability, suggesting that
standard deviations are again relatively small fraaion of the means (see Figure 21 in Appendix

2.2.1 for more detalils).

In addition, the ability of the transport fagilidevelopment model to predict is somewhat evatliate
with the latest observed figures: the number ofipydarking spaces was 2,060,352 in 2017, which is
guite close to the simulated number of 1,972,948 simulated number of public charging posts in
2017 is 40,398, which is a little greater thanréygorted number of 30,805 in January, 2018. This
suggests that the predict ability of the transfaarility development model also appears to become

weaker, compared to that in 2016 (see Appendix 2.1)
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Figure 8 Impacts of Market Expansion on the Quigstiof Transport Infrastructures

In addition, the EV market expansion can alsoeshat change the layout of public charging posts

at the facility- and zone-levels (see Figure 9 Bigdire 10), but it has little impact at the didttevel

(see Figure 22 in Appendix 2.3.2); while the EV kedirexpansion has marginal impact on the layouts

of the parking lots at the facility-, zone- or dist-levels: one possible reason might be thatehos

parking lots with higher number of parking spacagehalso been allocated with more parking spaces.

As a result, the spatial distributions do not clesignificantly, though the number of parking space

increases heavily over the period (as shown byrEige(a)).

In addition to the impact on the numbers andléyof transport facilities, the EV market expansio

could also influence the usage of the facilitiesse@ident from the changes in two indicators, hgmel

the average number of vehicles served and averagmpied time (see Appendix 2.3.3 for more

details).

Legend Year:2016

(a) Public Charging Posts in 2016

Year:2020

(b) Public Chaggdtosts in 2020
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Figure 9 Layouts of Public Charging Posts in 2046 2020

Legend ) Year:2016 Legend ) Year:2020
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(a) Public Charging Posts in 2016 (b) Public Chaggtosts in 2020
Figure 10 Layouts of Public Charging Posts in 2846 2020 at the Zone Level

34 Impactsof EV Market Expansion on the Environment

Figure 11 shows the total amounts of petrol corezliand vehicular emissions in one particular
weekday from 2016 to 2020. Overall, there are inadbt slight changes in both amounts, primarily
due to the constraint on the total number of C\thase permits (or the license plate lottery policy)
In addition, the total amounts of CO, €é@nd petrol consumed have similar tends over thiege
which increase in 2017 and then go down until 202t}e the amount of HC rises from 2016 to 2018
and then levels off, but the amount of NOx goesvgr the period. Although the numbers of CV and
PHEV increase over time, the amounts of vehicutaissions change differently. This is because the
amounts of emissions are associated with bothltspexd and distance which vary over time and
also across agents. In addition, for different §ypevehicular emissions, the amount of emissia ha
different relationships with travel speed. All bEte can eventually change the total amount of
emissions. Again, the stochastic effects are aadlysth the standard deviations, suggesting theat th
stochastic effects are not significant (see Appe@di.1 for more details). In addition, the
environmental impacts are also assessed at th@lauksolutions: see Appendix 2.4.2 for more

details.
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It is worth noting that the amounts of vehicldamissions and petrol consumed are estimated for one

particular weekday in Beijing, and the results arioe linearly scaled up for one year, for example,

by simply multiplying by the outcomes by 365. A miigsing approach to calculating the annual

amounts is using a day-to-day activity-based trdeehand model (Habib and Miller, 2008) instead of

the current single-day activity-based model, stoasmulate the travel behaviour of each agent

throughout the whole year. However, such day-toatdivity-based models, in general, require more

disaggregate input data on travel demand and aksornhuch longer computing time.
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3.5 Impactsof EV Market Expansion on Power Grid System

Figure 13 shows the total amounts of electripiyvided by both private and public charging posts
in one particular weekday from 2016 to 2020. Thaltamounts increase over the period due to the
increase of the EV number, but the increasinggate smaller, which is likely caused by the
decreasing number of EV purchasers (due to theedsitrg number of vehicle purchase permits, see
Figure 5-(a)). In addition, EVs are mostly chargfabugh private charging posts, as evident from the
significantly higher amount of electricity providég private charging posts. For example, in 2020,
the private charging demand is estimated to benar@,800,000 k\Ah in one particular weekday,
which is about 9 times of public charging demarat ts around 200,000 k\W per day. In addition, it
is estimated that the total charging demand witbaot for 4% of total residential electricity dendan
in 2020 and thus may put slight pressure on thespawd system. As before, the standard deviations
are not significant (see for Figure 29 in Appengii& in more details). In addition, the day-to-day
activity-based travel demand model mentioned alfeee Section 3.4) could also be used here to

estimate the annual charging demand in a more atecway.
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(a) Total Amount of Electricty Provided by (b) Total Amount of Electricty Provided by
Private Charging Posts Public Charging Posts
Figure 12 Total Amount of Electricty Consumed w@harging Posts in One Particular Weekday
from 2016 to 2020 (kW)

Figure 13 further maps the spatial distributiohboth private and public charging demand based at
parking lots (as charging posts are establishgdriing lots), and Figure 14 aggregates the demand
at the district level. It can be found from the m&pat most of charging demand either public or
private is at the central districts or the cerairglas of the outer districts. In addition, the jubl
charging demand in the central districts (e.g., g@hveng and Xicheng districts) become relatively
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larger, as the EV market expands from 2016 to 2626 Figure 14-(b) and (d); Note a K-means
clustering algorithm was also used to group tha)dathile the private charging demand in the outer
districts (such as Tongzhou district) tends to bezoelatively smaller from 2016 to 2020 (see Figure
14-(a) and (c)). Again, these changes might béated to many factors discussed above, such as
vehicle ownerships and travel patterns. Such dpyatisaggregate results about the charging demand
could be helpful for electricity utilities to inveim facilities and equipment for generating and

transmitting electricity, so as to better accomntediae increasing electricity demand from EVs.
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(a) Private Charging Demand in 2016 (b) Public @imey Demand in 2016
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(c) Private Charging Demand in 2020 (d) Public @ay Demand in 2020
Figure 13 Spatial Distributions of Charging Demam®ne Particualr Weekday in 2016 and 2020 at
the Facility Level (kWh)
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Figure 14 Spatial Distributions of Charging Demam@®ne Particualr Weekday in 2016 and 2020 at
the District level (kwh)

4 Discussion

The SelfSim-EV Beijing scenario explores thelljkiiture EV market from 2016 to 2020, with the
assumption that the urban system would evolve fséerl he results suggest that the BEV sale will
go up, but the CV sale will go down, mainly dudhe constraint on the number of vehicle purchase
permits (or the license plate lottery policy). TREV sale will almost remain over the period mainly
due to a relatively higher price. Accordingly, BBEV subsidies decrease over the period, because of

its increasing adoption rate; while the PHEV suiesidiimost stay the same, as its sale almost remain
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Another important finding in the EV market expamsis that the so-called neighbour effects appear
to influence the adoption of BEVs, based on thdiglanalyses of the residential locations of BEV
owners at both facility- and district-levels. Bdiksen et al. (2009) and Mau et al. (2008) tried to
investigate neighbour effects in the adoption offEd/m a statistical perspective, but their results
could not be presented spatially. With SelfSim-E\& neighbour effects can be easily captured at

multiple spatial resolutions, offering new insighito the neighbour effects from a spatial perdpect

Furthermore, the potential impacts of the EV reidkpansion on the environment, power grid

system and transport infrastructures are assesseel multiple resolutions:

1) Impacts on the environment: the amounts of 6C,and C@have tendencies to decrease from
around 2018; while the amount of NOx increases tweperiod but at a diminishing rate. This
suggests that introducing EVs appears to benefiettvironment, though the benefit is marginal
relative to the total amount of vehicular emissidswever, with the widespread adoption of EVs,
the environmental benefits could become signific&ampared to the existing environmental
assessments on the adoption of EV (Casals e0dl6; Zhen et al., 2018; Holland et al., 2016), the
assessment here can not only provide aggregatenafion on the changes in several typical
vehicular emissions, but also can present thetiadmhstributions. Such spatially disaggregate
information could be particularly useful for assegghe local environmental impact of EV market
expansion: for example, with the moving trajecteiié each agent in the population and also the
spatiotemporal distributions of different vehicutamissions (which can be obtained from the
MATSIm-EV simulation, see Section 2.3.1), the tiofeeach agent being exposed to vehicular

emissions can be calculated and thus the humathleftdct can be further assessed.

2) Impacts on the power grid system: EV driversitto charge their vehicles using private charging
facilities, and it is estimated that private chaggdemand in 2020 will be about 9 times of public
charging demand. It is further estimated that thal tharging demand only will account for arouid 4
of the total domestic electricity consumption irR20Therefore, the impact of EV market expansion
might be slight, due to a relative small EV adoptiate in 2020 (because of the constraint on the

vehicle purchase). The impact assessment heraglisghed between the public and private charging
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demands and also the dynamic demands were presgntedy high temporal (in second) and spatial
(at the node level) resolutions, which have reaknadatively scant attention in the previous stadie

(Chen et al., 2018; Muratori, 2018; Wolinetz et 2018).

3) Impacts on transport infrastructures: the EAflkat expansion could influence several EV-related
transport facilities, including parking lots, reflieg stations, and charging posts at parking lots,
terms of quantity, layout and usage. The numbechafging posts and parking lots increase over
time mainly because of the increasing number dfi ks and EVs; however, the number of vehicle
purchasers increases slightly relative to the nurabexisting vehicle owners. As a result, both the
quantity and layout of refuelling stations almostribt change, but the usage of station does change,
as evident from the varying average number of Vesiserved and occupied time. Previous studies of
EV charging facilities were only focused on oneetyd charging facility (Asamer et al., 2016; Chen
et al., 2016; Hof et al., 2017) and have geneighgred the interactions and competitions between
those EV-related facilities, including charging gogarking lots and refuelling station; Furthermor
these studies were mostly focused on the quamtdyiayout of charging facilities, paying little
attention to their usage. The impact assessmehisipaper tried to take into account the intecai
and competitions above and quantify the impacB\bfarket expansion on the quantity, layout and
usage of four typical EV-related transport faastj with an agent-based transport facility
development model for both CVs and EVs (Zhuge amibS2018a). Therefore, the results tended to

be more comprehensive and accurate and thus sheutwre useful.

The spatially and temporally explicit results ed@ould be very helpful for different EV-related
stakeholders involved: 1) Electricity Utilities:r8ie the number of EVs will still be relatively sinal
2020 (due to the license plate lottery policy), tharging demand may put slight pressure on the
power grid system. The electricity utilities may miut need to invest in too many charging faciliags
the current stage; on the other hand, the spasiiituitions of charging demand may help the
electricity utilities to better locate charging ifdies; 2) Local Authorities: introducing EVs call
somewhat benefit the environment. Therefore, lac#horities may want to shape policies to promote

the purchase and usage of EVs, so as to improvedhkair quality; In addition, the adoption rate
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PHEV will remain low over the period, likely duettee high sale price. More subsides may be
needed to for PHEV purchasers, if local authoritvesild make PHEVs competitive to CVs and

BEVs. In addition, the suggestions above may aésodeful for other cities in both China and the
other countries where the development of EV isistagt the early stage. For example, subsides have
been identified as an influential factor in Beijjra;d therefore the other cities are suggested to
carefully design financial incentives. Furthermdhe agent-based integrated framework was also
found as useful for investigating the EV marketangion and its impacts at multiple resolutions, and
was thus recommended, especially in those case®wlmmprehensive understanding of the EV

market expansion and its impacts is needed.

5 Conclusions

This paper used a calibrated and validated dggsdd spatial integrated urban model, SelfSim-EV
to simulate how the Electric Vehicle (EV) markeBaijing, China might expand in the context of
urban evolution at the micro scale, and then tesssthe potential impacts of the market expansimon o
the environment, power grid system and urban itriragures. As an EV version of SelfSim (an
agent-based land use and transport model), SeEESsMns composed of several spatial sub-models,
which form an annual loop to simulate how the urbggtem evolves over time, focusing on the EV

market expansion and its impacts.

With the SelfSim-EV Beijing model, it was fourftat Battery Electric Vehicle (BEV) would be
more favoured than Plug-in Hybrid Electric VehiRHEV) from 2016 to 2020, and the so-called
neighbour effects appeared to exist, as evident fre spatial differences between the residential
locations of BEV owners in 2016 and 2020 at botlilitg- and district-levels. The adoption of EV
would somewhat benefit the environment at the dlteweel, as evident from the slight decrease in the
amounts of HC, CO and G@missions after 2017; It was estimated that teetetity demand from
EVs would only account for 4% of the total domestiectricity demand in 2020, suggesting that the

impact of market expansion on the power grid systaght be slight too; The EV market expansions
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appeared to have more significant impacts on tlamtify, layout and usage of those EV-related

transport infrastructures, including parking lotsla@harging posts.

The further work will be focused on the followiagpects: 1) this paper explored the likely future
EV market with the assumption that the urban systeuld evolve as before. However, it is
impossible to exactly predict the future EV mank&h such a simple integrated model, compared
with the complex and dynamic urban system. Theegfibis necessary to explore the future EV
market within different “what-if” scenarios, for @mple, considering various policies, technologies
and infrastructures for EVs. Such “what-if” scepaanalyses could help understand different
possibilities about the future EV market and itpatts, using the scenario in this paper as a basel
2) the SelfSim-EV model can be further extendei¢orporate a dispersion model that is capable of
simulating the movement of vehicular emissionsasto assess the potential human health effect of
EV market expansion at the local scale, as disdusiseve; Furthermore, the SelfSim-EV model can
also be further extended to integrate a smartrgadel, so as to capture the interaction between the
EV market expansion and the power grid system. &by, the feedback from the power grid system

has not been considered.
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Appendix 1 Synthetic Data for Future-Year Simulations

Appendix 1.1 Synthetic Data on Demographic Attributesfor Future-Year

Simulations

The demographic input data from 2010 to 2015 exasacted from the Beijing Statistical Yearbooks,
and the data from 2016 to 2020 was predicted ubmglemographic time series data with the
Autoregressive Integrated Moving Average (ARIMA) aets. The forecast results and the specific
ARIMA models used are shown by Figure 15. The fasedemographic data from 2016 to 2020 is

summarized in Table 1.

Table 1 Forecast Demographic Data for Simulatioargérom 2016 to 2020

Y ear 2016 2017 2018 2019 2020
Marriage Rate 0.0076 | 0.0076/ 0.0075 0.0075 0.0074
Divorce Rate 0.0043 | 0.0050{ 0.0056 0.0068 0.0069
Unemployment Number 101181 | 107758 | 114859 | 121050 126914
Employment Number 425900 | 425600 425300 425000 424700
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Death Rate 0.0049 | 0.0049| 0.0044 0.0049 0.0049
Birth Rate 0.0087 | 0.0085| 0.008¢ 0.0086 0.0086
Immigration Rate 0.0077 | 0.0077| 0.007¢ 0.0076  0.0076
Emigration Rate 0.0041 | 0.0038| 0.0035 0.0030 0.0025
Individual Yearly Income (RMB) | 122,405| 131,940 141,287 150,808 160,168
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Figure 15 ARIMA Models for Demographic Time Serigsta

Appendix 1.2 Synthetic Data on Activity Facilitiesfor Future-Y ear
Simulations

As aforementioned, there are five basic actifaglity types in SelfSim-EV, namely, home, work,
education, leisure and shop. The work and educédilities were added based on the numbers of
activity opportunities available that were the totambers of students and jobs, respectively; the
remainder were added based on the floor space wkietied to be further converted into facility

capacity.
(1) Work and Education Facilities

The work facilities were added based on the nusbkeemployment and unemployment that were
forecast in Appendix 1.1. Specifically, the diffece between these two numbers was used as the

constraint and a specific number of work facilitiesre added or removed according to the difference.
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Similarly, the education facilities were added lohse both the numbers of students and schools that
were forecast with the time series data. FigursHdvs the ARIMA models that were used to
forecast the number of education facilities, ad a®lkheir capacities (or the numbers of education
opportunities available in the facilities). The edtion facilities were grouped into five types, redyn
Kindergarten, Primary, Middle School, High Schauid College. Table 2 summarizes the forecast

numbers of education facilities, as well as thapacities from 2016 and 2020.
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Figure 16 ARIMA Models for the Time Series Datakxfucation Facilities

Table 2 Forecast Macro-Level Constraints on Edandfacilities from 2016 to 2020

Y ear 2016 2017 2018 2019 2020
Kindergarten Num. 1550 1607 1669 1728 1788
Primary Num. 952 908 864 820 776
Middle School Num. 334 329 324 320 315
High School Num. 427 426 425 424 423
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College Num. 91 92 92 93 94
Opportunity Num. of Kindergarten | 164107 | 179172 19423 209302 224367
Opportunity Num. of Primary 138503 | 131130 12375 116384 109011
Opportunity Num. of Middle School | 85380 80625 75175 69909 64594
Opportunity Num. of High School 114897 | 121480 12148 121480 121480
Opportunity Num. of College 147514 | 141724 136086 130407 124739

~

~

OJ

(2) Home, Shop and L eisure Facilities

The macro-level constraints on the home, shogdeisadre facilities, which were the total numbefs o
activity opportunities available in the facilitiesere forecast using the ARIMA models as well.
Firstly, the added and removed floor space was&steusing the ARIMA models for each facility
type; next, the forecast floor space was furth@veaed into the number of activity opportunities (
facility capacity) with the ratio of floor space dotivity opportunity number. The ratio varies &as0
facility types and can be found in relevant stat@dtyearbooks. In Beijing, the ratio of floor spao
home opportunity number was 19.49 square metersgyson in 2010; the ratio for commercial
opportunity (referring to both shop and leisure anynities) was 1.5 square meters per person. More
details on the ARIMA models, assumptions and caltuhs that were used to estimate are shown in
Figure 17 and Table 3. Table 4 briefly summariesftiiecast numbers of activity opportunities added

or removed from 2016 to 2020.
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Figure 17 ARIMA Models for the Time Series Datafuxtivity Facilities

Table 3 Forecast Macro-Level Constraints on AgtifAacilities from 2016 to 2020 (Unit: Million
Square Meters)

Y ear 2016 | 2017 | 2018 | 2019 | 2020

Added Floor Space of Home Facility 1257 {1094 | 956 | 7.79 | 6.24
Added Floor Space of Commercial Facility 9.17 | 958 | 10.04 | 10.51 | 11.00
Removed Floor Space of Home Facility 10.43 | 10.59 | 10.74 | 10.90 | 11.06
Removed Floor Space of Commercial Facilities 448 | 454 | 461 | 468 | 4.75
Finally Added Floor Space of Home Facilities 214 | 035 | -1.18 | -3.11 | -4.82

Finally Added Floor Space of Commercial Facilities | 4.69 | 503 | 542 | 5.83 | 6.26

Finally Added Opportunity Num. of Home Facilities | 0.11 | 0.02 | -0.06 | -0.16 | -0.25

Finally Added Opportunity Num. of Commercial
Facilities

Finally Added Opportunity Num. of LeisureFacilities | 1.56 | 1.68 | 1.81 | 1.94 | 2.09

313 | 336 | 362 | 3.88 | 417

Finally Added Opportunity Num. of Shop Facilities 156 | 168 | 1.81 | 1.94 | 2.09

(Note: The forecast figures are highlighted inid@sl In addition, due to the lack of time serietadan
the removed floor space of commercial faciliti¢syas assumed that the removed floor space of
commercial facilities was associated with the reeabffoor space of home facilities, and the former
varied according to the latter with a fixed ratiog(ratio of the removed floor space of commercial
facilities) which was estimated based on relevastbhical data. In the Beijing scenario, the ratias
0.64. Another assumption here for the commercilifi@s was that the shop and leisure facilities

equally shared the total floor space of commefeicilities. )

Table 4 Forecast Macro-Level Constraints on Adgtitaacilities from 2016 to 2020 (Unit: Million)
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Y ear 2016 2017 2018 2019 2020
Number of Home Opportunities Added 0.11 0.02 -0.06 -0.16 -0.25
Number of Leisure Opportunities Added 1.56 1.68 1.81 1.94 2.09
Number of Shop Opportunities Added 1.56 1.68 1.81 1.94 2.09

Appendix 2 Resultsabout EV Market Expansion and Its I mpacts

Appendix 2.1 Validating SelfSim-EV in 2016

The performance of the calibrated and validafS8n-EV model was further examined by
comparing the simulated and observed data on them&Wet and EV-related transport facilities in
2016, as shown by Table 5. The MAPE is 6.3%, suggethat the performance is relatively

satisfactory. In particular, the transport facilitgvelopment model appears to have a relativeld goo

ability to predict at the aggregate level.

Table 5 Model Validation in 2016

2016
Model Type Data Type Observed | Simulated | Absolute Percentage
Data Data Error (APE)
BEV Price 254737 211088 17.1%
BEV Subsidy 83333 88272 5.9%
EV Market PHEV Subsidy 30000 34943 16.5%
BEV Sale 51000 51000 0.0%
CV Sale 81000 80993 0.0%
Number of Public | 1931479 | 1871520 3.1%
Transport Parking Space
Facility Numbq of Public 21940 29315 1.7%
Charging Posts
Appendix 2.2 EV Market Expansion from 2016 to 2020

Appendix 2.2.1 Stochastic Effects on the EV Market M odel

In order to further explore the stochastic eSgtite standard deviations of the 10-run SelfSim-EV

results about the EV market expansion from 2018&0 are calculated and shown by Figure 18. It

should be noted that most of the standard devisitoa relatively small and are difficult to present

error bars in the figures about results, thus Hreydrawn with separate figures. The following

conclusions can be drawn: 1) the standard deviatibrehicle sale, vehicle price and EV subsidy
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change over time. In addition, the standard denmatiof vehicle price remain zero for the years of
2016 and 2017, due to again the pricing behaviboramufacturer agents (in the EV market model)
that is based on the difference of market penetratites in two consecutive years; 2) the standard
deviations of CV and PHEV sales are the samejstiecause the total numbers of CV and PHEV
sold remain the same across the 10 runs and aatteghe total numbers of the so-called CV
purchase permits; Furthermore, they decrease t0iz@018, because the number of CV purchase
permits drops significantly and all of the pernate allocated to CV purchasers; 3) the three tgpes
standard deviations are relatively low, suggestiag the simulation outcomes of the 10 runs tend to

be close to the averages, and the model stochemtertainty is unlikely to heavily influence the

outcomes.
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12 H + T i h

10 D5
w 2
2 8 122
7] [T -
g & .g 10
=] &
g ¢ g s
5 25

2 T

2,016 2,017 2‘1518 2,019 2,020 2,016 2,017 2.'518 2,019 2,020
Year Year
[# cvsae +BEVSHe + PHEVSakE] [# CvPiice & BEVRIice - PHEVPriCe |
(a) Vehicle Sales (b) Vehicle Prices
(CVSale Overlaps PHEVSale)

=

EV Subsidy(RMB)

W@
8 o & o©

EV Subsidy (RMB)
=

M
= H =1

2,016 2,017 2,018 2,019 2,020
Year

|- BEVSUbsidy - PHEVSubsicly |
(c) EV Subsidy
Figure 18 Standard Deviations of the 10-Run Restitit the EV Market from 2016 to 2020

Appendix 2.2.2 Spatial Distribution of Vehicle Owners

Figure 19 and Figure 20 show the spatial digtidim of vehicle owners at the facility- and distyi
levels. Both CV and PHEV owners tend to live in teatral districts and the central areas of the

outer districts.
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Figure 19 Spatial Distributions of Vehicle Ownar2016 and 2020 at the Facility Level
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Figure 20 Spatial Distributions of Vehicle Ownan2016 and 2020 at the District Level

Appendix 2.3 Impactsof EV Market Expansion on Transport Facilities

Appendix 2.3.1 Standard deviations about the transport facilities

As before, the standard deviations about thespar facilities are computed to investigate the
model variability (see Figure 21): 1) the changéhim standard deviation of public parking spaces
over the period is quite similar to that of CV (dPHEV) sales (see Figure 18-(a)). This is likely
because the number of public parking spaces isttjirassociated with vehicle sales; 2) Standard
deviations are again relatively small as a fractibthe means.
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Figure 21 Standard Deviations of the 10-Run Restitit Transport Facilities from 2016 to 2020

Appendix 2.3.2Impacts of EV Market Expansion on Layouts of Transport Facilities

The EV market expansion can impact the layoseokral different EV-related transport facilities,
including charging posts and parking lots. Herdalipicharging posts were used as an example to
show the spatial impacts. Specifically, Figure @thpares the spatial distributions of public chaggin
posts in 2016 and 2020 at the district level, saggg that the spatial distributions change slightl

over the period.
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(a) Public Charging Posts in 2016 (b) Public Chagdrosts in 2020
Figure 22 Layouts of Public Charging Posts in 286 2020 at the District Level

Appendix 2.3.3Impacts of EV Market Expansion on the Usage of Infrastructures

In addition to the impacts on the number anduayd transport facilities, the impacts on the wsag

of transport facilities are further assessed usegral indicators, such as average number of keshic
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served and average occupied time. Next, chargisgvyid be used as an example to show the impact

on the usage of transport facilities.

Figure 23 and Figure 24 show the impacts of tagket expansion on the usage of charging posts
using the indicators of average number of vehistged and average occupied time. For private
charging posts, these two indicators go up in 20li¥decrease over the remaining time; for public
charging posts, these two indicators go up from62012018 and fluctuate over the remaining period.
The changes in these two indicators could be assocwith many factors, as well as the interactions
between them. For instance, the usage of chargists gould be influenced by both the number of
charging posts added and the layout of chargingspbrsaddition, private charging posts tend to
serve more vehicles than public ones, as evident the higher number of vehicles served and longer

occupied time of private ones.
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Figure 23 Average Numbers of Vehicles Served withr@ing Posts from 2016 to 2020
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Appendix 2.4

Impactsof EV Market Expansion on the Environment

Appendix 2.4.1 Standard deviations about the environmental impact

Again, the stochastic effects are analysed viaghstandard deviations (Figure 25): all of the déad

deviations increase over time, suggesting thatrtaiogy is on the rise, but the standard deviatianes

small relative to the total amounts, suggesting tie stochastic effects are not significant. Nbtg

the variability between runs tends to increase evleen mean values are falling, suggesting the

increases have more to do with increase in moderiginty over time, rather than just an increase i

line with upward trending mean values.
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Figure 25 Standard Deviations of the 10-Run Resliitgit Petrol Consumed and Vehicular

47



Emissions from 2016 to 2020

Appendix 2.4.2Spatial Distributions of Vehicular Emissions

Figure 26 compares the spatial distributionsaafrty link-based vehicular emissions in one
particular weekday in 2020 at both peak and offkgeaurs (one morning peak hour from 7 to
8AMand one off-peak hour from 2 to 3 PM), suggestimat the morning peak hour tends to have
more vehicular emissions, and the central distaots the central areas of the outer districts tend
have bigger amounts of vehicular emissions. Thieiy likely because the traffic flow either at gea
hours or at the central districts, tend to be ntusdwier. According to Figure 27 that aggregates,
groups and maps the vehicular emissions at thelegek the spatial distribution of emissions also
somewhat changes over the period. This could bibwtd to many factors, as discussed above, such
as the travel patterns, vehicle ownerships angigctocations. Note that the spatial distributiaits
not change at the district level, as shown in FBg28. In addition, such spatially and temporally
disagree results could be helpful for local autiesito shape policies and invest in infrastrucuoe
reduce the emissions effectively. For example,dlfaysas (or zones) with higher amounts of
vehicular emissions can put forward congestiongdhaolicies: CV drivers need to pay a fee during a

specific period, but it is free to EV drivers.
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Figure 26 Link-based Vehicular Emissions in OngiPaar Weekday in 2020 (Kilogram)
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Appendix 2.5 I mpact on the Power Grid System

As shown by Figure 29, the standard deviatiorsadso relatively small, suggesting that model
uncertainty (or stochasticity) may not heavily irghce the simulation results about the amount of

electricity provided.
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