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Abstract 

Pacific salmon are a keystone resource in Alaska, generating annual revenues of well over ~US$500 

million/yr. Due to their anadromous life history, adult spawners distribute amongst thousands of 

streams, posing a huge management challenge. Currently, spawners are enumerated at just a few 

streams because of reliance on human counters and, rarely, sonar. The ability to detect organisms by 

shed tissue (environmental DNA, eDNA) promises a more efficient counting method. However, 

although eDNA correlates generally with local fish abundances, we do not know if eDNA can 

accurately enumerate salmon. Here we show that daily, and near-daily, flow-corrected eDNA rate 

closely tracks daily numbers of returning sockeye and coho spawners and outmigrating sockeye 

smolts. eDNA thus promises accurate and efficient enumeration, but to deliver the most robust 

numbers will need higher-resolution stream-flow data, at-least-daily sampling, and a focus on 

species with simple life histories, since shedding rate varies amongst jacks, juveniles, and adults.  

 

Keywords:  environmental DNA, qPCR, Southeast Alaska, fisheries management, 

Oncorhynchus, ecosystem services, ecosystem functions 

 

Introduction 

Pacific salmon (Oncorhynchus spp.) support a $449 million/yr commercial fishery, play a significant 

role in the $470 million/yr sport fishery (National Marine Fisheries Service 2017) in Alaska alone, and 

remain a key cultural and subsistence resource for humans. Salmon are also a major source of 

marine nutrient and energy subsidies to terrestrial and aquatic food webs, in large part by being 
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important seasonal prey resources for bears, eagles, and other culturally, biologically, and 

economically important consumers (Gende et al. 2002; Gende et al. 2004; Schindler et al. 2003; 

Shakeri et al. 2018; Wheat et al. 2017). Due to their anadromous life history, salmon fisheries are 

often managed by setting escapement goals, where escapement refers to the number of fish that 

escape the mostly ocean-based fishery and are thus available for spawning in fresh water. For 

example, from April to October each year, the Alaska Department of Fish and Game (ADFG) 

continuously estimates salmon breeding population sizes in some Alaskan streams and issues 

temporary fishery closure notices to ensure that these escapements exceed minimum target sizes 

per species. 

  Of course, it is very costly to count fish. A typical salmon weir consists of a series of closely 

spaced bars across an entire stream to prevent the passage of salmon, except through a single, 

narrow gate over which a human observer tallies and identifies to species salmon as they file 

through (alternatively, Didson sonar can be used to count and size salmon individuals as they pass 

with species identity inferred from body size and run timing). The annual operating cost of a weir is 

approximately $80,000, not including installation or major maintenance (Fox 2018), and even this 

setup might be prone to undercounting (Eggers et al. 2009).  

More than 6,000 streams are used by various combinations of the five species of Pacific 

salmon in Southeast Alaska alone, and more than 1000 of those streams have been documented as 

hosting spawning populations (Johnson & Blossom 2018; Fig. S1). Not surprisingly, almost all these 

salmon runs are left unmonitored or are monitored only every few years with crude indices such as 

visual transects conducted on foot or from the air. Detailed sampling effort varies depending upon 

budgets, but only a few streams are enumerated and are given escapement targets in any given 

year. For example, coho salmon (O. kisutch) are managed in Southeast Alaska by monitoring 

escapements and commercial fishery take from only four to nine full indicator stock streams (Shaul 

et al. 2005). Full indicator stock streams are those in which juveniles (usually outmigrating smolts) 
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are tagged with coded wire tags and marked with an adipose fin clip. The proportion of marked fish 

sampled upon return, along with fishery and escapement sampling, are used to estimate smolt 

production, fishery interception rate, and escapement. Additional coho streams near urban centers 

are surveyed by air or on foot, and in some cases escapement goals are established, but there is no 

guarantee that these intermittent surveys overlap with the peak abundances of runs. Similarly, 

sockeye salmon (O. nerka) escapements are at least partially enumerated at only fourteen streams 

in Southeast Alaska (Munro & Volk 2016). Nearly all pink (O. gorbuscha) and chum (O. keta) salmon 

runs are left un-enumerated by weirs or sonar, despite these species making up the majority of 

salmon biomass, harvest, and economic value in this region. Instead, several larger chum and pink 

streams are surveyed by air or on foot several times each year (Munro & Volk 2016), but even this is 

complicated by the difficulty of distinguishing pink and chum because their migration timing and 

habitat use often overlap. Finally, enumeration is naturally focused on the largest, most 

economically valuable streams, leaving large numbers of subdominant runs for most salmon species 

unmonitored most years.  

Fry and smolt production resulting from spawning salmon is monitored with even less effort, 

which limits inference of future expected recruitment and harvest. Poor understanding of fry and 

smolt production also limits inference regarding the degree to which salmon productivity is limited 

by spawning habitat for adults or by rearing habitat for juveniles, and whether changes in marine or 

freshwater productivity are responsible for changes in salmon recruitment and abundance. Such 

information is critical for informed management and for judging the potential efficacy of stock 

enhancement programs.  

More generally, the under-monitoring of Pacific salmon stocks hinders the construction of 

reliable spawner-recruit models, which are used to determine escapement goals for maximum 

sustainable yield. The lack of such models increases uncertainty about whether, and where, there 

are sufficient spawners to maximize recruitment and increases the risk of long-term decline or loss, 
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especially of the small, subdominant components of salmon runs. These smaller salmon runs 

increase the resilience of salmon stocks through portfolio effects (Schindler et al. 2010), can restock 

a dominant component that has suffered a negative shock, and provide key resources for wildlife by 

extending the spatial range and phenology of salmon availability to terrestrial and aquatic food webs 

(Gende et al. 2002; Levi et al. 2015; Schindler et al. 2013). As fisheries increasingly transition towards 

ecosystem-based fisheries management (Levi et al. 2012), identifying, monitoring, and maintaining 

such spatially and temporally distributed salmon resources becomes increasingly important for 

conservation and management. 

  The advent of environmental DNA (eDNA) methods that detect DNA shed by organisms 

(Bohmann et al. 2014; Goldberg et al. 2016) provides a promising tool for monitoring salmon 

escapements and juvenile production because it could increase management-relevant information 

at low cost. However, while the efficacy of using eDNA for species detection is now widely 

recognized (Goldberg et al. 2016; Rees et al. 2014) and while several studies have demonstrated that 

eDNA is generally correlated with fish abundance in mesocosm experiments, lakes, and streams (Doi 

et al. 2015; Handley et al. 2018; Lacoursière‐Roussel et al. 2016; Takahara et al. 2013; Tillotson et al. 

2018; Wilcox et al. 2016), we do not yet know whether eDNA contains sufficient information to 

robustly and accurately estimate fish abundance, particularly for anadromous fish as they enter and 

leave a watershed. By robust, we mean accuracy that is not greatly affected by variation among 

years, species, stream, and/or details of the sampling protocol.  

Anadromous fish such as salmon provide a straightforward scenario for testing whether 

eDNA can be used to count fish, because potentially large numbers of salmon release their DNA as 

they pass a fixed sampling point, either as they swim upstream as returning adults or swim 

downstream as outmigrating juveniles. If eDNA degrades or settles quickly (as suggested by Jane et 

al. 2015; Jerde et al. 2016; Sassoubre et al. 2016; Shogren et al. 2016; Turner et al. 2015), then eDNA 

concentrations should primarily detect fish that are locally present in space and time. Thus, rather 
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than simply accumulating as fish enter a watershed, eDNA concentrations might spike up and down 

as a pulse of fish swims past a sampling point, with the size of the spike correlated with fish number 

and/or biomass. Because the concentration of eDNA in streamwater results from both the amount 

of DNA shed by organisms and the flow of water, the product of eDNA concentration and 

streamflow (measured in units of water volume per time) can be used to calculate absolute 

quantities of eDNA per unit time. Such ‘flow-corrected eDNA rates’ measured at regular intervals 

(e.g. daily) could then be substituted for, or complement, gold-standard count data from weirs. For 

sockeye, coho, and chinook salmon, which produce juveniles that typically rear in freshwater prior to 

outmigrating to the ocean as smolts, whether this is plausible depends on the strength of eDNA 

signal produced by adults relative to what is produced by juveniles residing upstream. If, for 

instance, juveniles rear sufficiently far upstream, the signal of their eDNA should be weak or 

undetectable, eliminating a source of noise that would prevent the robust enumeration of adult 

salmon entering lower stream reaches with eDNA. 

In the most comprehensive and relevant study to date, Tillotson et al. (2018) demonstrated 

that local counts of sockeye salmon in a spawning creek, particularly dead sockeye, indeed predict 

local eDNA concentrations. As Tillotson et al. (2018) put it, the next step is “reversing the model to 

predict abundance from eDNA.” We accomplish this by taking advantage of a daily census of sockeye 

and coho salmon carried out at the Auke Creek research weir in Juneau, Alaska to test whether 

eDNA concentrations and stream-flow measurements together produce quantitative and 

management-relevant indices of salmon escapement and juvenile outmigration. To explore the 

general ecology of eDNA, we also quantify the relative influences of salmon counts on the same day 

of water sampling, salmon that entered the watershed one day prior, and salmon that entered two 

days prior to an eDNA measurement, and we assess the eDNA signal produced by salmon of 

different life stages and body sizes. The purpose of these latter analyses is to test for two possible 

sources of error (long-distance transport of eDNA and differential shedding rates by body size and 

type) when using eDNA to enumerate salmon.  
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Methods 

Weir operation 

The Auke Creek research weir is located 19.2 km north of Juneau, Alaska, 400 m downstream from 

the outlet of Auke Lake above the high tide line at the mouth of Auke Creek (Fig. 1). The ~1072.5 ha 

watershed includes five tributaries that feed into Auke Lake, which is 1.6 km long and 1.2 km wide, 

with a surface area of 67 ha. The weir is cooperatively operated by the National Marine Fisheries 

Service, in collaboration with the University of Alaska, and the Alaska Department of Fish and Game, 

with the objective of capturing all outmigrants and returning spawners at Auke Creek. All 

outmigrants (from upstream) are enumerated from the beginning of March to the middle of June 

and released below the weir, after which the weir is converted to capture returning adult salmonids 

(from downstream), which are counted and then released above the weir. During monitoring of 

adult salmonids, fish are classified by species and life stage. The Auke Creek dataset represents 

probably the highest-temporal-resolution and most accurate wild Pacific salmon census data in 

Alaska, if not the world. Life stages for coho salmon include typical adult male and female fish along 

with smaller early maturing and small-bodied ‘jack’ males, and a unique ‘nomadic’ juvenile life-

history strategy in which coho fry rearing in the estuary and ocean return upstream (Koski 2009). 

Coho ‘nomads’ are similar to ocean-type chinook and sockeye salmon that outmigrate as fry rather 

than rearing in freshwater, with the exception that coho ‘nomads’ rear in the estuary within their 

salt tolerance and return to freshwater in the fall where they overwinter as juveniles before 

outmigrating to the ocean as smolts the following year (see Koski 2009 for details). Sockeye salmon 

can also produce jacks, but infrequently. Complete methods for weir operation can be found in 

Vulstek et al. (2018) (Weir photos in Supplemental information S2). River height is recorded daily 

and converted to streamflow (cubic feet per second) using an established rating curve (Bell et al. 

2017). 
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Environmental DNA quantitation 

We collected water samples from just upstream of the weir (location photograph in Supplemental 

Information S2) for three years, from 2014-2016, after each day’s salmon enumeration. In a 2014 

pilot study, we collected three 1L water samples weekly from 28 May to 11 December. Based on 

promising results, and to reduce costs, in 2015, we sampled weekly when few fish were entering the 

river and then increased sampling frequency up to daily during periods in which many salmon were 

entering the river. Because salmon eDNA disappeared entirely after October in 2014, we sampled 

from 12 May to 3 November in 2015. Based on further promising results from 2015, we increased 

sampling frequency to daily in 2016 from 10 May to 20 October. Because previous technical 

replicates had yielded consistent results, and because of the high frequency of water collection, we 

collected only two 1L water samples daily in 2015 and 2016. All water samples were collected using 

1L disposable sterile Whirlpak bags and filtered through a 0.45 micron cellulose nitrate filter. Filters 

were then folded and stored in 100% ethanol at 4C until laboratory processing.  

We maintained strict protocol to prevent contamination of filters and reagents. We 

performed DNA extraction and PCR setup inside of separate HEPA-filtered and UV-irradiated PCR 

cabinets (Air Science LLC, Fort Meyers, FL) within a separate lab where PCR product is prohibited. 

Filters were first removed from ethanol and air-dried overnight in sterile, disposable weigh boats.  A 

modified protocol for the Qiagen DNeasy Blood and Tissue kit was used to isolate DNA. This included 

the addition of 1.0 mm zirconia/silica beads to the initial lysis buffer and then a 15 minute vortex 

step to loosen the DNA from the filters. Incubation in lysis buffer was increased to 48 hours. After 

incubation, 300 ul of the lysed product was transferred to a new 1.7 ml microcentrifuge tube.  

Thereafter, we followed the manufacturer’s protocol. DNA was eluted in a total volume of 100 ul.   

Using species-specific primers and TaqMan minor groove binder (MGB) probes 

(ThermoFisher Scientific, Waltham, MA), developed by Rasmussen Hellberg et al. (2010) (Table 1), 

we targeted a fragment of the cytochrome c oxidase subunit 1 (COI) gene. For each species, each 
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sample was run in triplicate PCRs. Each 20 ul qPCR contained 6 ul of DNA template, 10 ul 

Environmental Master Mix 2.0 (ThermoFisher Scientific, Waltham, MA), 0.2 uM of both forward and 

reverse primers, 0.2 um of the TaqMan MGB probe, and sterile water. Additionally, each plate 

contained a four-point standard curve using DNA obtained from salmon tissue from each species. 

Extracted tissue was quantified using a Qubit Fluorometer (ThermoFisher Scientific, Waltham, MA) 

and diluted 10-fold from 10-1 to 10-4 ng/ul. PCR cycling conditions involved an initial denaturation 

step of 10 min at 95 C to activate the HotStart Taq DNA polymerase, followed by 50 cycles of 95 C 

for 15 s and 60 C for 60 s. All reaction plates contained a negative control (water) as well as 

extraction blanks. PCR was performed on an ABI PRISM 7500 FAST Sequence Detection System 

(Applied Biosystems, Foster City, CA) and analyzed on 7500 Software v2.0.6 (Applied Biosystems, 

Foster City, CA). Cycle values were converted to target-DNA concentration using the standard curve 

derived from the tissue samples, and each day’s eDNA concentration was taken as the mean across 

the two extractions and the three qPCR replicates from that day for that species.  

 

Data analysis 

To calculate the flow-corrected eDNA rate, we multiplied each day’s qPCR-estimated target-DNA 

concentration (
  

  
) against that day’s streamflow (

          

   
). There is no need to harmonize units 

because the product is now an estimate of DNA biomass rate (ng/sec) multiplied by a dimensionless 

constant (volume/volume): 
  

   
 
          

  
, and the fitted model parameters incorporate the 

conversion factor. Streamflow was usually taken at 8 AM each day, near the time that eDNA was 

sampled. Note that this measure is only for one time point per day and might not be fully 

representative of streamflow over the whole day.  
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We predicted salmon counts from the natural log of flow-corrected eDNA rate using a 

quasipoisson regression with a log-link function in order to account for overdispersed count data. 

The quasipoisson model produces the same coefficients as standard Poisson generalized linear 

models for count data, but it is more inferentially conservative (i.e. lower Type I error rates due to 

wider confidence intervals).  Log transformation of flow-corrected eDNA rate (1) allowed for the fit 

of zero salmon counts in the Poisson model, which would otherwise only be achievable if the eDNA 

rate approached negative infinity due to the log-link, and (2) fit a flexible power law (a linear model 

fit in log-log space). We fit separate models in 2015 and 2016 for returning adult sockeye salmon, 

returning total coho salmon, and outmigrating sockeye smolts. In our analysis, we included data for 

adult sockeye salmon from 18 June - 1 August, adult coho salmon from 15 August – 30 October, and 

outmigrating sockeye smolts from 15 April – 10 June. This time period captured the full runs of each 

species and life stage, but did not include a time period after the adult sockeye salmon run when 

DNA was transported downstream as salmon died in the lake. We used total coho, not just adult 

coho, because the coho run includes a varying mixture of nomadic juveniles, jacks, and adults, which 

are different sizes but with unknown relative contributions to DNA that we found to not scale 

predictably with biomass (see Ecology of eDNA). This is complicated in part by the fact that much 

larger-bodied adult salmon do not eat or defecate unlike juvenile nomads, potentially unlinking the 

rate of eDNA shedding to biomass or surface area. We detected a single high leverage outlier for 

coho salmon in 2016 in which a day with a large pulse of jacks retained a low concentration of eDNA. 

To avoid poor model predictions due to this outlier, we removed this data point from the results in 

the main text and include this outlier in the models in Supplemental Information S3. 

To determine whether the relationship between flow-corrected eDNA and salmon counts 

was consistent between the two years, we combined the data from the two years and fit a model 

with an additional interaction term between year and flow-corrected eDNA. A significant interaction 

effect would indicate a different relationship between count and eDNA between years, which would 

indicate a lack of model transferability.  
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We collected daily water temperature data, but we observed a strong negative correlation 

of temperature and flow (r = -0.75 for Sockeye adult dataset, r = -0.53 for Sockeye smolt dataset, r = 

-0.10 for coho total dataset), and we were concerned about spurious correlations caused by the 

temporal trend in temperature. Nevertheless, we explored models with stream temperature and 

observed no consistent results in the magnitude, sign, or significance of the temperature effect 

across years or species, which suggested to us that our concern about spurious temperature effects 

were warranted and could lead to overfitting that exaggerated the precision of our predicted 

number of counts. That is, temperature effects were not transferable among years within the same 

salmon type or among salmon types. 

 

Ecology of eDNA. – We also used the dataset to explore the ‘ecology of eDNA,’ using salmon counts 

from the same and previous days to predict that day’s flow-corrected eDNA rate. The purpose is to 

test for the possibility that long-distance, albeit attenuated, transport of eDNA from far-upstream 

salmon degrades the real-time quantitative accuracy of eDNA. We also test for the possibility that 

body size and/or life-history affects per-fish shedding rates.  

To directly estimate the timescale over which eDNA was detected in Auke Creek, we used a 

series of three linear regression models to relate daily counts of sockeye salmon in 2016 (the year 

with daily sampling) to flow-corrected eDNA concentration. We first modeled flow-corrected eDNA 

as a function of salmon counts from the same day. We then used the residuals from that model in a 

second regression that instead included salmon counts from the previous day as a predictor. Finally, 

we used the residuals from the second model in a regression using salmon counts from two days 

prior as a dependent variable. We interpreted significant lag variables from salmon counts in the 

second or third models as evidence that salmon entering the river one or two days ago influence the 

measured flow-corrected eDNA concentration. In order to explore the eDNA production by coho 

salmon of different life stages, we additionally used multiple linear regression with counts of adults, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

jacks, and nomad juveniles in 2015 and 2016 as predictors of flow-corrected eDNA measured that 

same day. 

 

Results 

Neither the concentration of eDNA nor flow-corrected eDNA rate increased monotonically as salmon 

accumulated in the Auke Creek watershed. Instead, flow-corrected eDNA rates reflected a highly 

local signal of salmon abundance in space and time, effectively tracking salmon that had passed near 

the water sampling site over the previous day (Figs. 2-4). This was true for both adult salmon and 

smolts. 

 

Tracking of salmon phenology and abundances with eDNA. – The natural logarithm of the product of 

stream flow (cubic feet per second, cfs) and eDNA concentration (ng/l), which we refer to as flow-

corrected eDNA rate, was highly predictive of the counts of returning adult sockeye and coho 

salmon, as well as of outmigrating sockeye salmon smolts in both 2015 and 2016 (Fig. 5; Adult 

sockeye 2015:  = 0.630.20, p = 0.008; Adult sockeye 2016:  = 0.790.11, p < 2e-8; Adult sockeye 

both years:  = 0.710.09, p < 2e-10; Total coho 2015:  = 0.700.10, p < 2e-8;  Total coho 2016:  = 

0.780.10, p < 3e-10;  Total coho both years:  = 0.660.06, p < 2e-16;  Sockeye smolts 2015:  = 

1.640.37, p = 0.004;  Sockeye smolts 2016:  = 1.420.35, p = 0.003); Sockeye smolts both years:  

= 1.330.30, p = 0.0005). 

The combined models for 2015 and 2016 unambiguously failed to identify an interaction 

effect between year and flow-corrected eDNA rate for adult sockeye salmon (p = 0.43), total coho 

salmon (p = 0.59), and for sockeye salmon smolts (p = 0.71), indicating that eDNA had a consistent 

relationship with salmon counts across years. 
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In all models, the quasipoisson regression models using flow-corrected eDNA rate as a single 

predictor produced visually representative predictions of counts through time that captured the 

phenology, temporal dynamics, and relative abundance of each run (Fig. 6). Similarly, we tried 

models with water temperature as an additional predictor but saw no consistently significant effects, 

and we were concerned about spurious correlations caused by the temporal trend in temperature 

data and its strong anti-correlation with flow (r = -0.75 for Sockeye adult dataset, r = -0.53 for 

Sockeye smolt dataset, r = -0.10 for coho total dataset). This result is not surprising since visual 

inspection of the temperature timelines (Figs. 2-4) reveals no covariance with fish counts.  

 

Ecology of eDNA. – As expected, sockeye salmon counts from the current day in 2016 significantly 

predicted flow-corrected eDNA rate ( = 0.00110.00016, p < 10-7), but salmon countsfrom one day 

prior were only marginally related to any residual variation from the first model ( = 

0.000260.00015, p < 0.09), and salmon counts from two days prior were completely unrelated to 

residual variation not accounted for by salmon counts from the same day and one day prior (p = 

0.99). 

When pooling 2015 and 2016 data, of the three coho salmon life-history categories (adults, 

jacks, and nomadic juveniles), adults produced the strongest flow-corrected eDNA signal ( = 

0.00590.00048, p < 10-15), which was 3.5 times higher than that produced by each juvenile fish class 

( = 0.00170.00058, p < 0.004). When accounting for the eDNA signal produced by adults and 

juveniles, counts of jacks were uncorrelated with flow-corrected eDNA ( = -0.00060.0014, p = 

0.69). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Discussion 

Since the efficacy of eDNA was first demonstrated for the detection of invasive bullfrogs (Ficetola et 

al. 2008), a rapidly growing body of literature has highlighted the efficacy of eDNA for rare species 

detection (Rees et al. 2014; Wilcox et al. 2016), has explored the technical aspects of eDNA 

(Goldberg et al. 2016), and has suggested that eDNA holds promise for quantifying the abundance of 

species (Doi et al. 2015; Lacoursière‐Roussel et al. 2016; Takahara et al. 2013; Tillotson et al. 2018). 

The next, and most transformative, technical step for mobilizing the use of eDNA for resource 

managers is to determine whether, and under what conditions, eDNA can be used to enumerate 

organisms. The possibility of enumerating Pacific salmon as they outmigrate or return to spawn 

represents a particularly promising application, with large economic and risk-management 

implications for a multibillion dollar fishery and keystone wildlife resource.  

To test the efficacy of eDNA for salmon enumeration, we coupled a complete census of 

returning and outmigrating anadromous salmon with daily quantitation of environmental DNA. We 

have demonstrated that flow-corrected eDNA rate:  

(1) predicts same-day, daily counts of two species of adult salmon returning into the watershed 

(Figs. 2, 3) and of one species of outmigrating salmon smolt (Fig. 4),  

(2) does not simply accumulate over time, which would have otherwise reflected the total number 

of salmon that have entered the watershed this season (Figs. 2, 3),  

(3) is minimally affected by upstream-rearing juveniles (Ecology of eDNA), given that the eDNA from 

the coho and sockeye fry rearing in Auke Lake appears to settle and/or attenuate prior to reaching 

lower stream reaches, 

(4) is highly accurate at delimiting the phenologies of returning adult and outmigrating juvenile 

salmon (Figs 2, 3, 4), and  
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(5) is affected by differential DNA-shedding rates across different life-history strategies and body 

sizes (Ecology of eDNA). 

We have also identified several remaining obstacles to straightforward implementation of eDNA for 

the enumeration of salmon. Most importantly, accurate measures of streamflow are crucial. This is 

particularly true because pulses of adult salmon immigration sometimes coincide with high 

streamflow events (Figs. 2-4), and the error in estimating streamflow is exacerbated because the 

ratings curves that relate river height (the measure that is actually recorded daily) to flow contain 

more error at extreme values, since extreme-flow estimates are either based on few calibration 

points or on none at all and just represent extrapolations.  

The adult sockeye runs are excellent examples of the importance of obtaining accurate 

streamflow data (Fig. 2). In 2015, non-flow-corrected sockeye eDNA concentration (‘DNA’ timeline) 

was highest around 1 July and declined monotonically through the month despite few adult 

returning sockeye in early July. However, early July was also a period of low stream flow. Only after 

accounting for stream flow (‘Flow X DNA’ timeline), which included a flood event around 15 July, did 

eDNA correctly predict the observed sockeye immigration peak on 15 July (‘Counts’ timeline). In 

2016, there were three non-flow-corrected eDNA peaks (‘DNA’ timeline), the timings of which very 

closely matched the three count peaks. However, the first two non-flow-corrected eDNA peaks, in 

early July, were taller than the third peak, which is the opposite to that seen in the count data (Fig. 

2). This occurred because the third eDNA concentration peak, in late July, occurred just as 

streamflow also rose, diluting the eDNA (‘Flow (cfs)’ timeline). The third eDNA peak’s shape and size 

more closely matched the count data after flow correction (‘Flow X DNA’ timeline), although the 

third eDNA peak is still smaller than expected based on the size of the first peak. We hypothesize 

that the streamflow value that we used to multiply the first day of the third eDNA concentration 

peak was too low, potentially because it was recorded before most of that day’s flow increase had 

occurred, causing us to under-correct and thus under-predict. We have informally substituted in the 
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next day’s much higher streamflow value (flow during the third sockeye peak rapidly more than 

tripled from 6.6 to 23.1 cfs between 23 and 24 July), and the third flow-corrected eDNA peak 

matches the count data more closely (data not shown). 

A second critical consideration for quantifying anadromous fish counts with eDNA is the 

temporal resolution of an eDNA measurement. As adult salmon move upstream, the signal produced 

by their shedding of DNA attenuates and is eventually not detectable. Therefore, effective 

monitoring of anadromous fish with highly variable daily counts requires eDNA to be sampled at 

least daily. Even with daily sampling, we can imagine that the eDNA signal produced by a medium-

sized pulse of fish now could be the same strength as the signal produced by a large pulse of fish 

that passed by hours ago. This ambiguity sets an upper limit on the accuracy of eDNA for quantifying 

anadromous fish abundance.  

How much the above two within-stream sources of error reduce reliability in decision-

making depends in part on the level of variation across streams. If a single stream, regardless of how 

accurately it is censused, does not reflect regional escapement sizes, due to variation in salmon 

abundance across streams, it might be more robust to collect data from many streams (probably 

only feasible with eDNA), even at a cost of reduced accuracy per stream. Currently, the Alaska 

salmon fishery does not have enough data to judge this possibility.  

A third consideration is that some salmon runs contain a mix of individuals with different life 

histories. This was particularly the case for coho salmon in 2016, for which jacks were numerically 

dominant early in the run and a nomadic juvenile coho life history strategy was dominant late in the 

run. Both nomadic juveniles and jacks were rare in 2015. Jacks and juveniles did not produce levels 

of DNA concordant with the production by adult salmon (Fig. 3), which introduced error into the 

relationship between flow-corrected eDNA and coho salmon counts (Figs. 5-6). For unknown 

reasons, coho jacks produced no detectable eDNA when controlling for adults and nomads.  
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A fourth consideration is the location of sample collection versus the locations of rearing 

juvenile salmon and spawning adults. Given our results, salmon enumeration should occur in lower 

stream reaches, as far as possible from spawning areas that will shed large quantities of eDNA from 

gametes and decaying fish and from large numbers of rearing salmon fry. It is possible that the 

presence of the lake upstream of our sampling location facilitated settling or degradation of eDNA, 

which may have increased the ratio of signal (current salmon moving past the weir) to noise (eDNA 

from other sources upstream) in our measurements. Similarly, the presence of the weir led to fish 

released upstream shortly before eDNA sampling. Implementation in a stream  

Finally, noise in enumeration with eDNA can be caused by a lack of primer specificity. Our 

assays are much more sensitive to sockeye and coho salmon DNA than to non-target salmonids, but 

there can be non-zero amplification of some non-target DNA. In particular, chinook and coho cross-

amplify at low levels (data not shown), which was not an issue in this research because Auke Creek 

does not have a resident population of chinook salmon (although strays do attempt to enter at the 

weir). Ensuring good primer specificity to the extant species will help reduce noise in future efforts 

to enumerate anadromous fish with eDNA. 

Pacific salmon are a valuable resource, but their distributed spawning and rearing habitat, 

due to their anadromous life history, makes monitoring their distribution and abundance a 

formidable challenge, which consequently injects an unknown but probably non-trivial amount of 

inefficiency and risk into management. Given the strong observed correlations between daily eDNA 

samples and fish counts (Figs. 5-6), investment in technology to allow frequent or even near-real-

time eDNA quantitation and stream-flow measurement could provide a more accurate and cost-

effective means of reducing this inefficiency and risk. This would be especially true if daily eDNA 

samples from many streams turn out to provide a more accurate estimate of regional escapement 

sizes than do intensive direct-count measurements at a few streams. However, our results also 

suggest that using eDNA to estimate fish abundance will require (1) accurate and ideally time-
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averaged streamflow measures and (2) frequent (at-least-daily) eDNA sampling due to the 

ephemeral nature of the eDNA signal. On the other hand, this very ephemerality is what makes 

eDNA such a sensitive correlate of salmon abundance.  

Even with a fixed budget constraint, it should be possible for a technician who would 

otherwise be paid to count fish in a single stream to instead collect water samples from many 

spawning streams across a watershed. In addition, water sampling could be extended to quantify 

smolt runs, which are currently only estimated in Southeast Alaska at a small number of index 

systems. Moreover, because post-sampling filters can be stored in a refrigerator or freezer for many 

days after sampling, it should be feasible to train and pay a network of citizen scientists to carry out 

sampling across multiple watersheds. Note also that although our analysis focused on sockeye and 

coho salmon, the same eDNA sample can be used to detect and/or quantify any number of aquatic 

species with the development of appropriate assays. Against these potential gains in sampling 

efficiency and information must be balanced the additional cost of the qPCR assays to be carried out 

in a dedicated eDNA lab.  

Our study is of a single stream in Southeast Alaska. However, it provides strong justification 

for an expanded effort to sample salmon eDNA over more streams, more species, and more days, 

both in the streams that currently have weirs, so that a robustly transferable model can be 

parameterized and validated, and in some of the many streams that are not currently monitored, to 

test for the possibility that multiple streams sampled daily with eDNA provide more useful 

information than a few streams counted intensively. The applicability of eDNA to expand monitoring 

of anadromous salmon to currently unmonitored rivers will depend on the transferability of flow-

corrected eDNA rate among streams. It is possible that differences in stream size, morphology, and 

hyporheic flow will be too idiosyncratic for results calibrated on one weir to be transferable among 

rivers, thus requiring independent calibration on every river to be monitored. Alternatively, results 

might be transferable among systems with similar morphology. For example, Auke Creek is a short 
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river course below a lake, which may lead to calibration results that are only transferable to systems 

with an upstream lake where eDNA settles prior to downstream transport. Given the huge size of 

the Alaska salmon fishery, even a small improvement in management effectiveness and/or a small 

decline in the risk of population decline or establishment by alien salmonids could justify the 

investment in large-scale eDNA calibration tests and an assessment of the efficacy of deploying 

eDNA to expand the portfolio of streams that can be effectively monitored.  
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Table 1. Species-specific primers and probes used in this study (Rasmussen Hellberg et al. 2010) 

 

Target species Forward Primer (5’-3’) Reverse Primer (5’-3’) Probe (5’-3’) 

Sockeye  

(Oncorhynchus 

nerka) 

GGAAACCTTGCCCACGCG  AAAAGTGGGGTCTGGTACTGAG  FAM-CTCTGTTGACTTAACCATC-MGB  

Coho  

(Oncorhynchus 

kisutch) 

CGCTCTTCTAGGGGATGATC  CTCCGATCATAATCGGCATG  FAM-ATTTACAACGTAATCGTC-MGB  
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Figure 1. The Auke Creek research weir is (A) located in Juneau, Alaska at the outflow of Auke Lake. 

(B) The weir is a permanent structure used to sort and enumerate outmigrating juvenile salmon and 

returning adult salmon. 
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Figure 2. Timeline from June 18 to August 1 of adult sockeye salmon counts, flow-corrected eDNA 

concentration (ng/l*cfs), uncorrected eDNA concentration (ng/l), stream flow (cfs, cubic-

feet/sec), and stream temperature (C) in 2015 and 2016. Environmental DNA results from 

consecutive days are connected by lines. Male and female salmon are denoted by yellow-brown and 

blue lines respectively, and jacks are denoted by green lines. Total adult sockeye salmon counts are 

denoted by thick red lines. 
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Figure 3. Timeline from August 15 to October 30 of coho salmon counts, flow-corrected eDNA 

concentration (ng/l*cfs), uncorrected eDNA concentration (ng/l), stream flow (cfs), and stream 

temperature (C) in 2015 and 2016. Environmental DNA results from consecutive days are connected 

by lines. Male and female coho salmon are denoted by yellow-brown and blue lines respectively, 

jacks are denoted by green lines, counts of a nomadic juvenile life history strategy in which young 

coho rear in the estuary and ocean and return upstream are denoted by teal lines, total adult (male 

+ female) coho salmon counts are denoted by red lines. Total coho salmon counts including jacks 

and juveniles are denoted by pink lines. Note that the adult male and female coho salmon were the 

dominant component of the run in 2015 while the jack and juvenile life history strategy was a major 

component of the run in 2016. A pulse of 62 coho jacks was recorded on Sep 7, 2016, but no 

concomitant eDNA signal was recorded. 
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Figure 4. Timeline from April 15 to June 10 of outmigrating sockeye salmon smolt counts, flow-

corrected eDNA concentration (ng/l*cfs), uncorrected eDNA concentration (ng/l), stream flow 

(cfs), and stream temperature (C) in 2015 and 2016. Environmental DNA results from consecutive 

days are connected by lines.  
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Figure 5. Results of quasipoisson regression models relating flow-corrected eDNA concentration to 

adult sockeye salmon counts (2015: p=0.008, 2016: p<2e-8, both years: p<1e-10), total coho salmon 

counts (2015: p<2e-8, 2016: p<3e-8, both years: p<2e-16), and counts of sockeye salmon smolts 

(2015: p=0.004, 2016: p=0.003, both years: p<0.005). Gray shading denotes the 95% confidence 

interval. 
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Figure 6. Counts of adult sockeye salmon, total coho salmon (including all life history strategies), and 

sockeye salmon smolts (black dots) and the predicted number of counts based on the flow-corrected 

eDNA concentration predictor in the quasipoisson regression model (blue dashed lines). Gray 

shading denotes the 95% confidence interval. 

  




