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Abstract  
Water-energy nexus in a city can either prompt or undermine its development. Yet in China, the 

relevant research is rarely found. This study accounts the city-level water-energy nexus in Beijing-

Tianjin-Hebei region in 2012 from both production and consumption perspectives, where input-output 

analysis based on city-level input-output tables are applied to conduct consumption-based accounts. 

Regarding water for energy, Beijing, Tianjin and Tangshan occupy the largest amounts of water for 

production in the energy sector, at 203 million tonnes (Mt), 148 Mt and 118 Mt, and they also 

consume most water for energy, at 6690 Mt, 1328 Mt and 1476 Mt. In terms of energy for water, 

Shijiazhuang and Tianjin have the largest amounts of CO2 emissions for production and consumption 

respectively, at 28 thousand tonnes (Kt) and 1746 Kt. Furthermore, local authorities should prioritise 

electricity sector as it holds 69% and 72% of the total water amounts for production and consumption 

in the energy sector. Besides, integrated management is crucial for cities with low water and energy 

efficiency (Baoding and Zhangjiakou), and for large CO2 emitters in Hebei province in order to ensure 

their water and energy sustainability without stunting their economic growth. 
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1. Introduction 
Water and energy are inextricably interlinked. Water is required in a series of energy production 

processes, such as raw materials extraction and processing, electricity production, thermal plant 

cooling, waste products treatments and energy-generation facilities maintenance. On the other hand, 

energy plays an essential part in water-related processes such as desalination of brackish water or 

seawater, pumping from groundwater aquifers, water transfer from water-rich to water-poor regions, 

water purification and waste water treatment [1]. If the quality, quantity and accessibility of water is 

declining, the promotion of a diverse supply of reliable, affordable and sustainable energy will be at 

stake [2]. Conversely, restricted energy capacities limit the ability to produce clean water [1, 3]. 

 

In the context of environmental changes and globalisation, water-energy nexus affects the majority of 

countries worldwide, especially those exposed to natural hazards [4]. French highly-water-dependent 

electric power systems experienced hydropower shortfalls and large-scale shut-down of its nuclear 

reactors when a severe heat wave hit the country in August 2003 [5]. Similarly, an extreme drought 

occurred in Texas in 2011, which resulted in the lowest reservoir levels on record, and a tremendous 

decrease in its power output [6]. China is also one of the countries often attacked by natural disasters, 

such as typhoon and floods. 

 

Besides, China is facing perilous water crisis, especially in water-scarce northern China [7], [8]. Yet 

the United Nations (2018) [9] anticipated that middle- and southern China would undergo 

increasingly harsh water conditions due to climate change and socioeconomic development. China is 

also the world’s largest energy consumer and has huge energy demands to power its rapid 

industrialisation and urbanisation [10], [11], [12], [13]. Furthermore, regions abundant in energy are 

mostly located in arid places in China, which exacerbates its water-energy nexus issues. Aiming to 

achieve synergic management of water and energy, Chinese government added a water-for-coal plan 

in water policy Three Redlines in 2013 [14]. 

 

Unfortunately, China’s city-level water-energy nexus is still poorly understood and the issues remain 

unsolved despite the fact that cities are the basic units for local governments to implement policies as 

the center for population and human activities, and that how a city obtains, distributes and manages its 

water and energy supply directly affects its growth [15]. Moreover, relevant studies are rather limited 

due to the lack of city-level water and energy statistics and of city-level input-output tables. To bridge 

the gap, we newly compiled city-level water and energy data, and investigated embodied water/energy 

in the energy/water sector in Chinese cities by applying input-output analysis for the very first time. 

Regarding research scope, we chose cities in Beijing-Tianjin-Hebei region, including municipalities 

Beijing and Tianjin along with eleven prefecture cities in Hebei province. The cities could be service-

based (Beijing), high-tech oriented (Tianjin), light-manufacturing (Shijiazhuang) or heavy-

manufacturing (Tangshan and Zhangjiakou) [16]. In addition to their water/energy endowments and 

structure, water-energy nexus in these cities can then be mirrored in other Chinese or international 

cities with similar water/energy patterns and at similar development stages. 

 

2. Literature review 

2.1 Water for energy  
When studying water for energy, it is essential to distinguish water withdrawal and water 

consumption. Water withdrawal quantifies the total removal of water from a source, including water 

consumption and what is returned to its original watershed [17]. Some literature differentiated from 

the two concepts [18], while some emphasised one aspect over the other even if they had recognised 

their difference. Mielke et al (2010) [19] focused on water consumption of energy extraction, 

processing and conversion. Sovacool and Sovacool (2009) [20] used ‘water use’ to describe the water 

withdrawal and consumption together at most points throughout their paper for the sake of simplicity.  

 

Most of the literature have studied water for electricity or power generation in the United States. 

Averyt et al (2008) [21] compiled a database to calculate water for power plants in the US. Many 

American researchers conducted life cycle assessments to consolidate water estimates for the full life 



cycle of various electricity generating technologies, including both conventional technologies (coal 

and natural gas), and renewable technologies (concentrating solar, geothermal, photovoltaics, and 

wind power) [22], [23], [24], [25]. There is research regarding water for energy on other geographic 

levels, but most of them are still associated with electricity generation. Spang et al (2014) [26] posited 

an indicator-based framework for calculating water for energy production at global level. Van Vliet et 

al (2016) [3] presented a global assessment of the vulnerability of the world’s hydropower and 

thermoelectric power-generation system to water resources, and tested adaption options for 

sustainable water-energy security during the 21st century. Byers et al (2014) [27] concentrated on 

cooling water use in electricity generation in the UK and aimed to design a pathway to less water-

intensive energy industry. Murrant et al (2015) [28] estimated the water availability in the UK and 

analysed the implications on its thermal power generation. Yu et al (2011) [29] evaluated the water 

loss in China’s coal-fired electricity industry. However, some research considered more processes. 

Rio Carrillo and Frei (2009) [2] analysed water needs for energy production in Spain, concerning 

several process types, including extraction and refining of raw materials, and thermal plant use. 

  

2.2 Energy for water 
Various energy processes related to water have been studied. Cohen et al (2004) [30] divided energy-

for-water supply-use-disposal chain into five stages which included source and conveyance, 

treatment, distribution, end use and wastewater treatment. And Copeland and Carter (2017) [31] 

designated a systematic way to investigate energy for various water source (surface water and 

groundwater pumping), ways of treatment (treatment of high-ambient quality raw water and of 

brackish or seawater), intended end-use, means of distribution and amount of water loss in the system 

through leakage and evaporation, and level of wastewater treatment. Plappally and Lienhard (2012) 

[32] also added energy use for water reclamation. Rothausen and Conway (2011) [33] argued that not 

only ‘operational’ processes, but also ‘construction’ functions of energy-related water-processes 

should be considered by involving infrastructure construction and manufacturing of equipment. Yet 

disagreements exist in terms of which processes should be included. Some researchers held that end-

use should not be taken into consideration as a part of energy processes in the water sector.   

 

The existing research covered several aspects in different areas. Sanders and Webber (2012) [34] 

quantified water-related energy use in the US in order to establish a benchmark for energy-intensive 

water industry in the country. Liu et al (2016) [35] estimated water-related energy consumption for 

fourteen global regions, such as Canada, Middle East and China. Racoviceanu et al (2014) [36] 

analysed life-cycle energy use for water treatment systems in Canada. Li et al (2016) [37] 

disaggregated and quantified the magnitude and direction of energy and water flows in China through 

Sankey diagrams to achieve low-energy water utilisation at national level. 

 

2.3 Water-energy nexus  
Similar to energy for water, many researchers attempted to define ‘water-energy nexus’ but not yet 

reached a consensus. Some of them supported Gleick’s opinions. Gleick (1994) [1] brought up with 

the ‘water-energy nexus’ concept and elaborated water-related energy processes and energy-related 

water processes. Kyle et al (2016) [38] also proposed that ‘water for energy’ or ‘energy for water’ 

should only refer to water or energy used for processes whose main output is energy or water, and 

therefore end-use demands and commodities are categorised as ‘water and energy for other purposes’. 

Yet some broadened their research to end-use. Hamiche et al (2016) [39] furthermore categorised the 

water and energy interdependency into production links, transportation links and consumption links, 

demonstrating the flow sequence from the environment to the end users. 

 

Research about water-energy nexus could be divided into four main types with regard to their 

contents. First, they could be theoretical literature discussing water-energy nexus. Retamal et al 

(2008) [40] provided a detailed literature review from various perspectives, such as water-energy 

nexus at micro- and macro level. Second, they could be comprehensive reports published by global or 

local institutions worldwide. The United Nations (2014) [41] and International Energy Agency (2016) 

[42] draw attention on global water-energy issues. The US Department of Energy (2014) [5] primarily 



analysed the challenges and opportunities of the water-energy nexus in the United States. Third, they 

could be policy-oriented. Scott et al (2011) [43] demonstrated how water and energy coupled at 

multiple scales, and mainly uncovered institutional opportunities and impediments to joint decision-

making in the US. Qin et al (2015) [14] identified co-benefits and trade-off between water and energy 

policies in China and argued how their coordination can be improved. Fourth, they could be 

quantitative research. 

 

Several quantitative methods to study water-energy nexus were adopted by previous researchers. 

Some researchers adopted dynamic computable general equilibrium model. Zhou et al (2016) [44] 

built a multi-sectoral model to analyse how energy taxes influence water and energy resources. Zhou 

et al (2018) [45] assessed water-saving co-benefit of long-run energy efficiency improvement. 

Meanwhile, there are other methods. Zhuang (2014) [46] constructed a system dynamics approach 

model for integrated water and energy resources management. Yet examining water-energy nexus by 

using input-output analysis has been the most popular. Okadera et al (2015) [47], Liu et al (2016) [48] 

and Sun et al (2018) [49] evaluated the water footprint of the energy supply in Liaoning, Hebei and 

Shaanxi Province in China respectively. And some researchers furthermore developed diverse 

methods based on input-output analysis. Wang and Chen (2016) [50] conducted ecological network 

analysis based on the multiregional input-output table in Beijing-Tianjin-Hebei region. Wang et al 

(2017) [51] proposed a modified input-output model to analyse energy and water flows analysis for 

urban use. Fang and Chen (2017) [52] combined input-output and linkage analysis to explore the 

embodied water and energy flows in urban economy in Beijing. 

 

According to geographic scales, the existing literature can be divided into four categories: 

transboundary-level, national-level, regional-level and city-level [53]. Transboundary-level research 

occurs in a global setting with illustrations of several case studies, such as international reports. 

National-level studies involve certain country. Malik (2002) [54] examined the nature of water-energy 

interactions and the coping strategies to address shortages, uncertainties and unreliability of water and 

energy in India. Hardy et al (2012) [55] explored the water-energy nexus of Spain and offered 

calculations for the energy used in the water sector and the water required to run the energy sector. 

Regional-level research could be a large regional scale, or a regional area within a nation. Siddiqi and 

Anadon (2011) [56] studied water-energy nexus in the Middle East and North Africa region. Perrone 

et al (2011) [57] coined the concept ‘urban resource islands’ to consider the implication of geography 

on a community’s water and energy resource acquisition and use in Tucson, Arizona, United States. 

Yet city-level water-energy nexus studies are relatively limited. In China, Xie et al (2018) [58] used 

historical data of water and energy consumption of Wuxi city, a main city in Taihu Lake Basin region 

in Eastern China, to build a water-energy nexus chart in order to map their dynamic changes in the 

rapid urbanisation process of the past years. Chen and Chen (2016) [59] synthesised connections 

between water use and energy consumption, and merged them into urban nexus network in Beijing. 

 

This study bridges the research gaps by applying single-regional input-output analysis to quantify 

city-level water-energy nexus in China for the first time. We sided with Gleick and Kyle’s 

interpretation towards ‘water-energy nexus’. And we investigated water in five individual energy 

sectors: coal (coal mining and dressing), extraction (petroleum and natural gas extraction), coking 

(petroleum processing and coking), electricity (production and supply of electric power, steam and hot 

water) and gas (production and supply of gas); and energy in the water sector (production and supply 

of water). As regards to indicators, we used water withdrawal for water indicator, and CO2 emissions 

for energy indicator. Different energy types have their own units, which can all be converted into 

standard coal (with standard unit). In China, changes of CO2 emissions and standard coal over time 

have similar patterns as coal is the largest primary energy source. Thus, CO2 emissions can indirectly 

reflect the total energy consumed in China. 
 

3. Methods and data 

3.1 Study area 



Beijing-Tianjin-Hebei region is situated in North China. The population of thirteen cities within the 

region are illustrated in figure 1. Chinese government set the target of building it into ‘the world-class 

city group as the environmental improvement demonstration region’ as it has been facing the most 

severe environmental problems in China [60], [61]. Thus, studies on this region are of great 

significance. 

 
Figure 1 Population of thirteen cities in Beijing-Tianjin-Hebei region in 2012. Beijing (21 million); Tianjin (14 million); 
Baoding (11 million); Shijiazhuang (10 million); Handan (9 million); Tangshan (8 million); Cangzhou and Xingtai (7 million); 
Zhangjiakou, Langfang and Hengshui (4 million); Chengde and Qinhuangdao (3 million). Note: The indicator is permanent 
resident population. All the figures keep no decimal number 

 
The thirteen cities showcase different characteristics of water/energy structure and endowments.  

Regarding energy, for instance, Tianjin has oil fields (Bohai and Dagang). Tangshan involves a large-

scale coal mining activities. In addition to petroleum and natural gas, it also develops renewable 

resources (hydropower, wind/solar power and geothermal energy). As for water, the thirteen cities 

obtain their water from waterbody, reservoirs and waterworks (surface water and groundwater). Yet 

water supply of thirteen cities in Beijing-Tianjin-Hebei region are not self-sufficient, so water transfer 

from other cities/regions are also required. 

  

3.2 Methods 

Economic input-output analysis was developed by Leontief in the late 1930s, and then extended into 

environmentally-extended input-output analysis. This study adopts input-output analysis to account 

production- and consumption-based water/energy. Production-based water/energy is water/energy 

occurred during domestic production, either for domestic consumption or for exports, while 

consumption-based water/energy is water/energy embodied in products for domestic consumption, 

whether it is domestically-produced or imported products. 

 

In this study, matrixes are indicated by bold, upright capital letters; vectors by bold, upright lower-

case letters; row vectors, obtained by transposition of the column vectors, by a prime; scalars by 

italicised letters; and a diagonal matrix by a circumflex. In input-output models, Z represents 

intermediate demand matrix with sectors i and j; y stands for final demand; e is exports; m is imports, 

and x is total output. In addition, the subscript d means that the indicators are for domestic production, 

and the subscript m represents that the indicators are for imports. 

 



We first eliminated the effects of intermediary trading by applying the methods validated by 

Dietzenbacher [62]. Then we separated Zd from Z, yd from y as the city-level input-output tables are 

competitive, and the proportion of Zd in Z, yd in y can be calculated as: 
 

                                                           𝛼𝑖 = 1 − 
𝑚𝑖

(𝑥𝑖+ 𝑚𝑖 − 𝑒𝑖) 
                                                                    (1) 

  

Zd, yd can then be obtained by multiplying their original matrix or vectors by α, demonstrated in 

equation (1). We then calculated water/energy embodied in domestically-produced products for 

domestic consumption: 

 

                                      Internal water/energy footprint = 𝐟�̂�𝐋𝐝𝐲�̂� = 𝐟�̂�(𝐈 − 𝐀𝐝)−𝟏𝐲�̂�                       (2) 

 

 

We used 2012 national input-output table to calculate the average values of Am and Lm as single-

regional input-output analysis cannot tell where a city imports its water/energy [63]. Water/energy 

embodied in imported products for domestic consumption can be written as: 

 

                                     External water/energy footprint = 𝐟�̂�𝐋𝐦𝐲�̂� = 𝐟�̂�(𝐈 − 𝐀𝐦)−𝟏�̂�                   (3) 

 

In equation (2) and (3), f is the water/energy intensity, which indicates the water withdrawal/energy 

consumption each sector contributes in order to produce one unit of its corresponding output. L is the 

Leontief inverse matrix, which can also be written as (I-A)-1, whereas I is a diagonal matrix with 1 on 

its main diagonal, and A is x’ divided by Z. And L means the amount of x that sectors in the 

economic system need to produce to meet yd . 

 

3.3 Data   
CO2 emissions data were compiled by Shan and published in China Emission Accounts and Datasets 

[64], [65]. Water withdrawal data were also compiled. In Beijing and Tianjin, agricultural water and 

urban public water (allocated to construction and each service sector) were accessed in the water 

resources bulletins released by the Horology and Water Resources Investigation Bureaus. And we 

estimated their water in each industrial sector based on the 2008 water structure in Chinese economic 

census yearbook assuming the structure remained unchanged in 2012. 

   

In Hebei province’s eleven cities, agricultural water was either sourced from the water resources 

bulletins, or published papers. And we calculated their urban public water with rations between their 

agricultural water and urban public water. In Tangshan, Qinhuangdao, Zhangjiakou, Chengde and 

Hengshui, industrial water were collected from their statistic yearbooks. In Shijiazhuang, Handan, 

Xingtai, Baoding, Cangzhou and Langfang, we assumed that their water intensities in each industrial 

sector is identical as that in Hebei province. The water intensities ε j, k= 
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,
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                                            (4) 

Here, j, p and k represent cities, Hebei province and industrial sectors respectively. Cities’ industrial 

outputs were accessed in statistic yearbooks, and Hebei province’s output was sourced from economic 

yearbook. 
 

4. Results and discussions 
4.1 Water for Energy 
Figure 2 demonstrates water for energy in Beijing-Tianjin-Hebei region. Regarding production-based 

water for energy, Beijing (203 Mt) and Tianjin (148 Mt) occupy the 1st and the 2nd largest positions, 



followed by Tangshan (118 Mt) and Handan. In contrast, Qinhuangdao (5Mt) has the smallest 

amount. And water intensities can then be calculated as production-based water divided by total 

output in each city’s energy sector. Baoding, Langfang and Hengshui are the cities with the largest 

water intensities, while Qinhuangdao has the smallest water intensity, followed by Tianjin and 

Beijing. In terms of consumption-based water for energy, Beijing (6690 Mt) is the largest, much 

larger than the second and the third largest city Tangshan (1476 Mt) and Tianjin (1328 Mt). 

Comparatively, the amount of consumption-based water for energy is rather small in Handan, at 29 

Mt. Meanwhile, per capita consumption-based water for energy can also be calculated as 

consumption-based water divided by population in each city. The per capita consumption-based water 

is the largest in Beijing at 323 t/person, followed by Tangshan (192 t/person) and Tianjin (94 

t/person). Yet Handan has the least per-capita consumption-based water, at only 3 t/person. It can be 

observed that the rankings between consumption-based and per capita consumption-based water for 

energy only have a subtle change, which indicates that population is a main factor that affects water 

consumption in the energy sector. 

 

Figure 2 also illustrates the thirteen cities’ water patterns in five individual energy sectors. As regards 

production perspective, Tangshan and Handan have the largest amounts of water for coal, at 43 Mt 

and 39 Mt respectively, while Tianjin only withdraws 10 Kt water for coal. In extraction, Cangzhou, 

Tangshan and Tianjin occupy the largest amounts of water, at 21 Mt, 16 Mt and 13 Mt respectively, 

while Beijing only withdraws 1 Mt water in this sector. In coking, Tianjin, Cangzhou, Tangshan and 

Beijing have the largest amounts of water, at 30 Mt, 29 Mt, 19 Mt and 17 Mt. By contrast, 

Qinhuangdao only has 20 Kt water for coking. As for water for electricity, Beijing (180 Mt) and 

Tianjin (105 Mt) greatly surpass the others, especially Qinhuangdao (5 Mt), the city with the least 

water in this sector. In gas, Beijing (2 Mt) is the largest water withdrawer while Zhangjiakou only 

withdraws 20 Kt water for gas. In respect of consumption perspective, Beijing and Tangshan are 

ranked as the cities with the largest amounts of water for coal, at 525 Mt and 234 Mt, while Langfang 

only has 3 Mt water for coal. In extraction, Beijing (335 Mt) has the largest amount of water in this 

sector, followed by Shijiazhuang (122 Mt). Conversely, Hengshui and Chengde have small amounts 

of water for extraction, only at 1 Mt. In coking, the first three largest water consumers are Beijing, 

Tianjin and Tangshan, at 607 Mt, 198 Mt and 181 Mt respectively, while the smallest one is 

Zhangjiakou, which consumes 2 Mt water in this sector. The water for electricity in Beijing (5222 Mt) 

greatly outweighs the other cities, even the second largest water consumer Tianjin (1053 Mt). Yet 

Qinhuangdao only has 1 Mt water for electricity. In gas, Shijiazhuang (16 Mt) and Qinhuangdao (10 

Kt) are the largest and the smallest water consumers respectively. 

  



 

 
Figure 2 Water for energy. a) production-based water for energy, b) water intensity, c) consumption-based water for energy 
and d) per capita consumption-based water for energy. Note: All the figures keep no decimal number 
 

Beijing, Tianjin and Tangshan are the largest water withdrawers and consumers in the energy sector. 

Their consumption-based water are all driven by electricity, and the percentages of water in electricity 

account for 78%, 79% and 71% respectively of the total water for energy within the cities. From the 

production perspective, Beijing and Tianjin still occupy the largest percentages of water in electricity, 

at 89% and 71%. Yet Tangshan has 36%, the largest percentage, of its total water withdrawal in coal. 

Furthermore, it can be observed that electricity contains the largest amounts of water in Beijing-

Tianjin-Hebei region from both production and consumption perspectives. The total amount of 

production-based water withdrawn in electricity in the thirteen cities takes up 69% (669 Mt out of 965 

Mt) of total water withdrawal for energy in the region, and the consumption-based water in electricity 

accounts for 72% (8857 Mt out of 12318 Mt) of the total water for energy in the region. Yet based on 

our calculation, water efficiency in electricity is lower than that in any other energy sector. Therefore, 

decreasing water amount/improving water efficiency in electricity can dramatically reduce the 

production-based water/enhance water utilisation in the sector. 

 

4.2 Energy for Water 
Figure 3 presents energy for water in Beijing-Tian-Hebei region. With regard to production-based 

energy for water, Shijiazhuang is the largest, at 28 Kt, followed by Beijing and Zhangjiakou, at 13 Kt 

and 7 Kt, while the amounts are relatively small in Langfang, Hengshui and Xingtai. Concerning 

energy intensities, cities with the largest numbers are Shijiazhuang, Baoding and Zhangjiakou. By 

contrast, Langfang has the smallest energy intensity, followed by Hengshui and Tianjin. As for 

consumption-based energy for water, Tianjin (1746 Kt) is the largest energy consumer, greatly 

surpasses Shijiazhuang (825 Kt) and Baoding (519 Kt). In comparison, the amounts of consumption-



based energy for water are rather small in Qinhuangdao, Langfang and Handan, at 1 Kt, 8 Kt and 13 

Kt respectively. When per capita consumption-based energy for water is examined, Tianjin, 

Shijiazhuang and Chengde occupy the first three largest positions. Yet the per-capita consumption-

based energy for water are the smallest in Qinhuangdao, Beijing and Handan. 

 

Figure 3 Energy for water. a) production-based energy for water, b) energy intensity, c) consumption-based energy for 
water, and d) per capita consumption-based energy for water. Note: All the figures keep no decimal number 
 

4.3 Water-energy nexus 
Figure 4 illustrates the ranking of water/energy intensity versus that of production-based 

water/energy. The thirteen cities are ranked from large to small numbers/amounts of their 

intensities/production-based water. Hence, cities with larger water/energy intensities or more 

production-based water/energy have higher rankings. And water and energy intensities are calculated 

based on normalising water/energy with total outputs. They refer to the production-based 

water/energy utilised in the energy/water sector in order to have one unit of corresponding output in 

the sector, so smaller intensities/lower rankings indicate more efficient water/energy utilisation. 

 

Heterogeneity exists in water-for-energy and energy-for-water patterns. The ranking of water intensity 

versus production-based water for energy tends to present negative correlation, except for Chengde 

and Qinhuangdao. The negative correlation suggests that cities with more production-based water in 

the energy sector tend to have higher water efficiency. Yet Chengde and Qinhuangdao also have 

efficient water utilisation regardless of their small amounts of water for energy. In contrast, the 

ranking of energy intensity versus production-based energy for water tends to show positive 

correlation, with the exception of Beijing and Tianjin. The positive correlation indicates that most 

large CO2 emitters do not perform efficiently in the water sector. Nevertheless, Beijing and Tianjin 



still remain high efficiency despite their large amounts of CO2 emissions. Thus, strategies of 

improving efficiency of Hebei province’s large CO2 emitters in the water sector need to be executed. 

 

In addition, Baoding has both high water and energy intensities, with its water intensity ranked as the 

largest (19 × 10-4 t/CNY) and its energy intensity ranked as the 2nd largest (341× 10-7 t/CNY). 

Similarly, Zhangjiakou has its water and energy intensities ranked as the 4th (13 × 10-4 t/CNY) and the 

3rd (271× 10-7 t/CNY) largest respectively. In comparison, the water and energy intensities in Beijing 

and Tianjin are both low. Tianjin has the 2nd (3 × 10-4 t/CNY) and the 3th (15 × 10-7 t/CNY) lowest 

water and energy intensities respectively. And Beijing’s water intensity is the 3rd smallest (4 × 10-4 

t/CNY), and its energy intensity is the 5th smallest (23 × 10-7 t/CNY). Technological advancement is a 

practical and effective means of preventing environmental issues while maintaining economic growth. 

Cities with low water/energy utilisation in the region need to equip themselves with more advanced 

facilities and to master more cutting-edge technology and manufacturing techniques. In coking, for 

instance, brackish and reclaimed water can be recycled to support oil-sand and hydraulic fracturing, 

which enables less freshwater withdrawal and waste water treatment. In addition, the improvements 

can be more easily achieved through Beijing-Tianjin-Hebei integration, which drives the synergetic 

development of all the cities in the region, in aspects of technological exchange, financial support, or 

justified resource distribution. Besides, the reduction of water/energy for energy/water can also be 

achieved by replacing traditional resources with renewable or alternative resources. 

 
Figure 4 Left (Blue): Ranking: water intensity (x axis) versus production-based water for energy (y axis). Right (Pink): 
Ranking: energy intensity (x axis) versus production-based energy for water (y axis) 
 

5. Conclusions 

This study accounts the city-level water-energy nexus in Beijing-Tianjin-Hebei region by applying 

single-regional input-output analysis from both production and consumption perspectives for the very 

first time. We clearly elaborated the characteristics of ‘water for energy’ and ‘energy for water’ in 

each city, and then conducted an overall examination of ‘water-energy nexus’ in the region by 

combining the two elements. 

 

With regard to water for energy, Beijing, Tianjin and Tangshan are the cities with the largest amounts 

of water for energy, either from production perspective (203 Mt, 148 Mt and 118 Mt), or consumption 

perspective (6690 Mt, 1328 Mt and 1476 Mt). And the highest water demands are exhibited in 

electricity among five energy sectors. The production- and consumption-based water in the sector 

hold 69% (669 Mt out of 965 Mt) and 72% (8857 Mt out of 12318 Mt) of water in the entire energy 

sector in Beijing-Tianjin-Hebei region. Besides, it can be seen that population is a main factor that 

affects water consumption in the energy sector. Regarding energy for water, Shijiazhuang and 

Zhangjiakou have the largest amounts of production- and consumption-based CO2 emissions in the 

water sector, at 29 Kt and 1746 Kt respectively. In water-energy nexus, cities with more water 

withdrawal in the energy sector tend to have higher water efficiency, while largest CO2 emitters in 

Hebei province are non-efficient in the water sector. Furthermore, Baoding and Zhangjiakou have 

both low water/energy utilisation in the energy/water sector. In contrast, Beijing and Tianjin showcase 

high water/energy efficiency in their energy/water production and supply. Based on our analysis, we 

suggest that local authorities should strengthen effective management from the following aspects: 1) 



water in electricity (water amounts and water efficiency), 2) the efficiency of large CO2 emitters in 

Hebei province, and 3) Baoding and Zhangjiakou, cities with both low water and energy utilisation. 

 

Our current study only focuses on city-level water-energy nexus in thirteen cities within Beijing-

Tianjin-Hebei region, but the results can be referred to other domestic and international cities with 

similar water/energy patterns and at similar developing stages. And our methods of production-based 

water/energy data compilation and of consumption-based water/energy accounting can also be applied 

in other areas. However, single-regional input-output analysis itself cannot tell water/energy transfer 

among cities. In the future, we will adopt other quantitative methods to investigate water-energy 

nexus with the aim to achieve water and energy sustainability in more cities. 
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