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a b s t r a c t

Older adults struggle in dealing with changeable and uncertain environments across several cognitive
domains. This has been attributed to difficulties in forming adequate task representations that help
navigate uncertain environments. Here, we investigate how, in older adults, inadequate task represen-
tations impact on model-based reversal learning. We combined computational modeling and pupill-
ometry during a novel model-based reversal learning task, which allowed us to isolate the relevance of
task representations at feedback evaluation. We find that older adults overestimate the changeability of
task states and consequently are less able to converge on unequivocal task representations through
learning. Pupillometric measures and behavioral data show that these unreliable task representations in
older adults manifest as a reduced ability to focus on feedback that is relevant for updating task rep-
resentations, and as a reduced metacognitive awareness in the accuracy of their actions. Instead, the data
suggested older adults’ choice behavior was more consistent with a guidance by uninformative feedback
properties such as outcome valence. Our study highlights that an inability to form adequate task rep-
resentations may be a crucial factor underlying older adults’ impaired model-based inference.
� 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In situations of unreliable or changeable action-outcome re-
lationships, we need to rely on abstract task representations to
estimate the likely outcomes of our actions and make adaptive
adjustments based on these outcomes. Evidence across several
cognitive domains shows that older adults have difficulties in
forming adequate task representations (Hämmerer et al., 2014). For
instance, in conflict tasks, attentional filtering of inputs based on
task representations is less pronounced or absent in older adults
(Gazzaley, 2011; Hämmerer et al., 2010; Störmer et al., 2013). In
ndon, Institute of Cognitive
K. Tel.: (0)20 7679 4727; fax:

rer).

Inc. This is an open access article u
decision-making, recent modeling studies show that older adults
have difficulties in capturing uncertainties in task representations
(Nassar et al., 2016) and show a weaker tendency in deploying
model-based decision-making (Eppinger et al., 2013a,b).

Here we investigate the question of formation of task repre-
sentations and their influence on decision-making in older adults,
by comparing choice performance of young and older adults in a
model-based reversal learning task (see Fig. 1). The task required
subjects to infer their current state, framed as to whether the cur-
rent season is winter or summer, and to also detect switches be-
tween the seasons. Participants were not explicitly informed of
what the current seasonwas, but inferred this from sales of winter-
specific or summer-specific items. In simple terms, the seasonwas a
hidden state. Switches between task states (winter or summer)
occurred with a certain frequency (reversal probability) and feed-
back for correct responses (choosing the seasonally appropriate
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Probabilistic reversal task. Participants were asked to choose between a winter and summer item (A) according to their belief that the current season was either summer or
winter. Correct seasonal choices (and correct deliveries) resulted in 87% of the trials in a profitable or unprofitable sale [happy or sad face in (D), respectively]. To balance gains and
losses, the delivery service (C) would not always bring the desired item. Moreover, half of the trials were uninformative for learning about the current season (i.e., did not allow a
choice between winter or summer items). After every trial, participants were asked to rate how sure they were that the current season was summer or winter (E). Background, font
color, as well as pictures where adjusted to an overall luminance of 0.5 to allow for continuous pupillometric recordings. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

D. Hämmerer et al. / Neurobiology of Aging 74 (2019) 90e100 91
item) was reliable in 87% of choices (outcome predictability). Par-
ticipants were informed about the underlying uncertainty in
outcome prediction, but were not told about the precise reversal
probability or outcome predictability.

To examine behavior in a fine-grained manner, we used
computational modeling which assessed how these 2 types of un-
certainty were expressed in subjects’ choices. Based on prior evi-
dence suggestive of inaccurate task representations in older adults
(Nassar et al., 2016), we predicted older adults would be impaired in
representing task uncertainties. Furthermore, as we wanted to
investigatewhether an inability to formprecise task representations
impacts on the evaluation of action outcomes, we recorded changes
in pupil diameter during outcome feedback. Pupil diameter is a
proxymeasure for increased activity of the noradrenergic system, as
pupils dilate when increased neuronal activity is triggered in the
locus coeruleus (LC) (Joshi et al., 2016). Current theories regarding
the role of noradrenergic modulation in higher cognitive functions
suggests increasednoradrenergicmodulation during events that are
(subjectively) relevant in a given task context (Aston-Jones and
Cohen, 2005; Dayan, 2012; Sara and Bouret, 2012; Yu and Dayan,
2005). For instance, a common finding is increased phasic firing to
target stimuli in an oddball task (Aston-Jones and Cohen, 2005).
Interestingly, Aston-Jones et al showed that nontarget stimuli in
oddball tasks are not encoded in phasic LC firing, even if they are as
rare and as unexpected in occurrence as target stimuli (Aston-Jones
et al.,1994). Furthermore, activity in the noradrenergic LC is seen for
both aversive and appetitive stimuli, as long as these are important
in a given task context (e.g., novel stimuli, stimuli indicating the
necessity to alter behavior) (Berridge and Waterhouse, 2003). This
supports the idea that the noradrenergic system indexes the (sub-
jective) salience of events given their relevance in a particular task
context (Berridge and Waterhouse, 2003).

We used pupil diameter recordings to infer the subjective
salience of feedback for events that either did, or did not, allow
updatingof current task representations.We expected that feedback
that allowed updating of task representations would be more sub-
jectively salient and therefore lead to an increased pupil diameter.
By contrast, inadequate task representations would be expected to
be reflected in a reduced ability to differentiate between feedback
that is relevant or irrelevant in updating task representations. To
stringently test for the relevance of task representations during
feedback evaluation we included 2 experimental manipulations.

First, half of the trials were uninformative for learning about the
current season, as on these trials, there were sales of winter as well
as summer items which disallowed an inference as to whether a
successful sale was related to either winter or summer. Conse-
quently, positive or negative outcomes on these trials were not
informative for updating beliefs about the current season (task
representation). This allowed us to decorrelate belief update from
the pure unexpectedness of a stimulus (O’Reilly et al., 2013;
Schwartenbeck et al., 2015). If subjects can successfully dissociate
between these 2, then informative (seasonally specific) feedback
should elicit a stronger pupillometric response as compared with
uninformative (seasonally unspecific) feedback.

Second, above chance performance results in a clustering of
negative outcomes around reversal time points in reversal learning
tasks. This means that the information content imparted by a
stimulus and its valence are often correlated in reversal learning
tasks, rendering it problematic for assessing the relevance of task
representations via individual responses to feedback as the salience
of feedback will depend on its valence as well as its expectedness
given a task representation. Unlike previous paradigms, our task
design therefore orthogonalized information content (seasonal or
nonseasonal items), expectedness (valid or invalid feedback) and
valence of action outcomes. Specifically, choice accuracy was
decoupled from outcome valence by introducing an unreliable
delivery of chosen items (see Fig. 1). This way, the amount of gains
and losses for (un-)expected outcomes could be balanced. Gain and
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loss outcomes were balanced for informative (seasonally specific)
as well as uninformative (seasonally unspecific) trials. Unlike prior
studies, this allowed us to investigate age differences in feedback
evaluation based on task representations independent of age dif-
ferences in the sensitivity to loss or gain outcomes or age differ-
ences in processing the expectedness of feedback (Hämmerer and
Eppinger, 2012; Hämmerer et al., 2011; Larkin et al., 2007).

Finally, by orthogonalizing informativeness and expectedness of
outcomes, we could address whether the mere unexpectedness of
an event (surprise) can be differentiated from its informativeness
for learning about task representations (model updating). There is
currently an open debate whether the noradrenergic system is
more responsive to events that are surprising given a particular task
context (unexpected events that do not necessarily allow for
learning about task states) or is only responsive to events that allow
for model updating (unexpected events that allow for learning
about task states) (Nassar et al., 2012; O’Reilly et al., 2013;
Schwartenbeck et al., 2015). Previous studies report contradictory
findings as to whether surprising events that allow for model
updating are more salient, as evident in increased pupillometric
responses duringmodel-based learning (Nassar et al., 2012; O’Reilly
et al., 2013). Here, we can examine age differences in the encoding
of surprise and model updating in model-based learning. Surprise
(how unexpected is an event given the task representation in case
of uninformative feedback?) was formalized as the negative log
probability of the event occurring, which we refer to as “Shannon
surprise” (Schwartenbeck et al., 2013). Model updating (how much
is the task representation changed in case of informative feedback?)
was defined via the Kullblack-Leibler divergence from before pos-
terior beliefs about task contingencies [often called “Bayesian sur-
prise” (Itti and Baldi, 2006)].

2. Methods

2.1. Participants

A total of 25 healthy younger adults (15 female, mean age ¼
23.83) and 22 healthy older adults (11 female, mean age ¼ 68.15)
participated in the study. Data from 3 older adults had to be
excluded because of difficulties in understanding task instructions
(switching between task states in around 50% of the trials, N ¼ 2)
and faulty pupillometric recordings (N ¼ 1), resulting in a final
sample size of 25 younger adults and 19 older adults. Eligibility
criteria were being aged between 20 and 30 years for younger
adults and over 60 years for older adults, with normal or corrected
to normal vision, English as a first language, and no history of
psychiatric disorder. Younger adults were recruited from the UCL
ICN subject database, whereas older adults were recruited via ad-
vertisements and contacted by phone and email to assess their
eligibility. Written informed consent was obtained from the par-
ticipants before starting the task, and the experiment was approved
by the UCL ethics committee. Participants were paid £20 for taking
part in the 2h study.

2.2. Experimental procedure

Task details are outlined in the Results and Fig. 1. The paradigm
measured participants’ ability to establish a model of the task con-
tingencies and use this model to perform inference on a latent state
in this task, operationalized as the current season (winter or sum-
mer, cf. Fig. 1). Specifically, participants were tasked to bid on either
winter or summer items (e.g., warm clothes or bathing suits, hot
soup or ice cream) depending on their beliefs about the current
season. Participantswere not informed about the current season but
had to perform trial-by-trial inference on the season based on
feedback in the task (operationalized as which seasonal items were
currently selling better, see Fig. 1 for an illustration). Participants
were informed that seasons would remain constant for an extended
period of time and encouraged to detect switches in seasons as soon
as possible. Importantly, half of the trials in this paradigm were
informative whereas the other half of the trials were uninformative
for learning about the current season. In informative trials, subjects
could choose between a winter and a summer item and receive
positive or negative feedback on their chosen item. Thus, in these
trials, subjects could perform inference on the current season based
on their chosen item and received feedback. In uninformative trials,
subjects were forced to choose a “package” consisting of an un-
known ratio of winter and summer items. Thus, in these trials, no
inference about the current season could be made. The feedback in
both conditionswas probabilistic and had a predictability or validity
of 87% (i.e., 87% chance of receiving a gain for selling the correct
seasonal item on informative trials and the offered package on un-
informative trials). In the computational modeling, we treated the
estimated outcome predictability (as well as the estimated reversal
probability of switches between seasons) as a free parameter that
was estimated based on observed behavior (see the following).

Finally, on informative as well as on uninformative trials, an un-
reliable delivery service was introduced to decorrelate choice accu-
racy from feedback valence. Importantly, this task design allowed us
to disentangle the effects for positive and negative, informative and
uninformative, as well as expected and unexpected feedback in
probabilistic reversal learning. To allow for a clear separation of re-
versals and probabilistic feedback, trials with invalid feedback were
predefined and did not occurwithin 2 trials of task state reversals. At
the end of each trial, participants were asked to indicate what the
current task state (season) is aswell as howcertain theywere in their
assessment on a 7-point Likert scale (cf. Fig. 1).

The task consisted of 324 trials in total separated into 4 blocks of
81 trials each. As part of the remuneration, a bonus payment of £6
was available, depending on the rating accuracy (thresholded at
70% per block) as well as the gains in the task (thresholded at 50
points per block, with gains counting as 2 points and losses
counting as minus 1 point). Once the task had been completed,
participants were given a questionnaire about their current mood,
their opinions on the task’s difficulty, their motivation to do well in
the task, and whether they had used any particular strategies for
choosing the correct seasonal item. Participants completed an
extensive practice session consisting of 50 trials before starting the
task to ensure that all participants understood the task.

2.3. Materials

The experimental task was programmed using MATLAB R2015a
(version 8.5.0.197613, the MathWorks, Inc, 2015) and Cogent 2000
software. Stimuli were presented on a computer screen and viewed
from a distance of 80 cm. All images were controlled to a luminance
of 50%. Head position was stabilized using a chin and headrest.
Participants’ pupil measurements were recorded using EyeLink
2000 eye-tracker (SR Research, 35 Beaufort Dr, Kanata, ON K2L 2B9,
Kanada). Eye-tracking and pupil datawere analyzed inMATLAB and
FieldTrip (version 20140615, Oostenveld, Fries, Maris, and Schof-
felen, 2011) software. Participants’ choices of task stimuli and cer-
tainty ratings were recorded using 2 four-choice button boxes. Data
were analyzed in SPSS version 21 (IBM Corp., 2012).

2.4. Acquisition and preprocessing of pupillometric data

Pupillometric data were recorded from the right eye with a
sampling rate of 1000 Hz. Pupillometric data were collected
continuously during the task. Eye-tracking calibration was



Fig. 2. Age differences in behavioral performance and model estimates of Bayesian
inference on probabilistic reversal learning task. Age groups did not differ in overall
accuracy of choices or overall estimates of the outcome predictability, which were
close to the actual outcome predictability. However, older adults overestimate the
frequency of task state reversals. Bars indicate means per age groups, error bars SEs,
asterisks reliable group differences at p <0.05.
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conducted before the start of each task block. For preprocessing,
data were segmented 500 ms before and 2500 ms after feedback
onset and 1750 ms before and 500 ms after cue onset. A custom-
made MATLAB script detected eye-blinks in segmented data
based on pupil diameter. Periods of missing data because of blink-
related eye artifacts were cut out in time windows of 200 ms and
30 ms around large and small artifacts, respectively, and replaced
by linear interpolation. Trials were then individually inspected and
excluded if they contained excessively noisy or missing data (on
average, 10.8% of the trials were removed in younger adults and
10.1% in older adults). For the assessment of phasic pupil diameters,
pupil data were baseline-corrected with respect to a window
200 ms before outcome onset, and z-scored per individual to allow
comparison of phasic pupil diameter changes across trial types
independent of interindividual differences in pupil diameter
changes across the task.

2.5. Analysis of pupillometric data

Cleaned pupillometric data were analyzed with respect to con-
dition and age differences in changes of pupil diameter across the
task. We used general linear model (GLM) analyses to examine
whether trialwise changes in model updating or surprise were re-
flected in pupil dilation. Specifically, in a first-level analysis, trial-
wise regressors of interest were entered in 1 GLM per person to
predict trial-by-trial changes in pupil diameter with different
amounts of model updating as well as surprise. In addition, re-
gressors indicating gain versus loss trials, and trials where re-
sponses between seasons were changed [as increased LC firing was
observed for response reversals in animals and increased pupil
diameters might thus just indicate the decision to switch (Bouret
and Sara, 2004)]. This allowed us to assess changes in pupil diam-
eter with model updating and surprise in the course of learning
independent of more noticeable trial properties or categorical dif-
ferences between trials which might result in independent effects
on pupil diameters. To assess effects of model parameters on pupil
diameters independent of interindividual differences in model pa-
rameters, individual regressors were z-scored. Significant differ-
ences in pupil diameter between conditions as well as between age
groups were assessed with permutation tests (compared against
time series with randomly shuffled condition labels across trials
within participants [100 repetitions] or age group labels [1000
repetitions], respectively). Permutation analyses were chosen
because pupil diameter measures can be assumed to be auto-
correlated across sample points. In this manner, we provided
comparison against intact sequences of pupil diameter changes,
which had the same extent of autocorrelation. A further advantage
of GLM analyses on pupil data is that condition effects as well as age
differences in condition effects can be assessed independently of
age differences in mean pupil diameter changes across conditions
(which are captured in the intercept of the regression analyses).

Younger and older adults pupil data did not differ in the number
of excluded trials because of artifacts or noisy recordings
(t(1,42) ¼ �0.7, p ¼ 0.86) as well as baseline noise in pupil diameter
recordings (t(1,42) ¼ �1.6, p ¼ 0.12; assessed as mean of standard
deviation in time window 200 ms before feedback as well as onset
of fixation cross before cue presentation). We would thus not as-
sume to see age differences in pupil data solely because of differ-
ences in measurement properties.

2.6. Analyses of behavioral and model data

Individual behavioral data were analyzed as aggregated data
across thewhole task (mean choice accuracy, frequencyof switching
after gains, and losses, see Fig. 2) as well as aggregated across trials
immediately after reversals (first 6 trials after reversals) and trials
later on in learning (7e12 trials after reversals). Reaction times
exceeding 3.5 SD as compared with median reaction times were
excluded for each individual. Similarly, parameter estimates char-
acterizing choice behavior across thewhole task (estimated reversal
probability, estimated reliability of feedback) were compared across
age groups as well as aggregated across trials (belief about the sea-
son, belief updating) analogous to the behavioral data (first 6 trial
after reversals vs. 7e12 trials after reversals) to assess learning after
reversals. Nonparametric tests were used when data or model esti-
mates were not normally distributed, greenhouse-geisser corrected
resultswere reportedwhen assumptions of sphericitywere violated
and t-tests for groups with unequal variances were reported when
variances differed between age groups.

Belief about the season was defined as the task state beliefs of
the currently correct task state (beliefs independent of task state
summer or winter, calculated as j P(task state ¼ winter)�0.5 j) and
generally increased after reversals (cf. Fig. 3B). The extent of belief
or model updating (Fig. 3E) was determined by calculating the
Kullblack-Leibler divergence (DKL) on the change from before pos-
terior beliefs after making an observation at a given trial:
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Furthermore, we derived the trial-by-trial information-theoretic
surprise (Fig. 3D) as a measure of the pure unexpectedness of an
observation (O’Reilly et al., 2013; Schwartenbeck et al., 2016):
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and belief entropy (Fig. 3C) as a measure of absolute uncertainty
during decisions as follows:
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Fig. 3. Age differences in trialwise accuracy and model estimates after reversals. [(A) Dip in accuracy around trial 5 is because of increased numbers of unexpected (probabilistic)
feedback around trial 5 after reversals, see Methods]. Older adults show lower levels of correct choices (A), increased belief uncertainty (B) and lower belief estimates of the currently
correct task state (C), especially in the second half of trials after reversals. This suggests that they strugglewith converging on an unequivocal belief about the current season, evenwhen
beliefs about the current season should be established by consistent feedback. During feedback processing, surprise (D) is lower in older adults early after reversals whereas model
updating (E) is higher in older adults later on after reversals. This suggests that older adults change beliefs more frequently than younger adults later on after reversals. Note that
accuracy, surprise, andmodel updating are only reported for informative trials (cf. Fig.1, choices on uninformative trialswere defined to be correct if carried out as instructed andmodel
updating was not possible for uninformative trials). Beliefs and belief uncertainty are shown for all trials as they reflect certainty and beliefs at the beginning of a trial before the
informativeness of the trial was determined. Error bars indicate SEs. Dashed circles indicate reliable group differences in first or second half of trials after reversals.
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3. Results

We used a probabilistic reversal learning task (Fig. 1) to examine
adult age differences in relying on adequate task representations in
model-based reversal learning. As in a typical probabilistic reversal
learning task, participants had to identify alternating task states
(winter or summerdalternating with a certain reversal probability
per trial [6%]) based on probabilistic feedback (successful sale of
winter or summer itemsdwith success of selling seasonally suitable
items dependent on a certain preset outcome predictability [87%]).

On each trial (cf. Fig. 1), participants were first presented with
the items available for bidding by the wholesaler (A). After making
their choice (B), the received item was presented. Participants did
not always receive the item that they bid on (C) (and this was
attributed to an unreliable delivery service), to balance learning
from losses and gains (i.e., balanced number of expected or unex-
pected gains and losses across trials, cf. supplementary Table 2).
After being presentedwith the delivered item (C), participants were
shown whether they made a gain from the sale of the delivered
items (D). Outcomes were gains (smiling faces) or losses (frowning
faces). Outcomes for correct seasonal items resulted in a profitable
sale on about 87% of trials, with the 13% of losses attributed to
unreliability in customer choices.
As outlined previously, feedback was uninformative for learning
about seasons on half of the trials (participants had to bid on
packages of mixed seasonal items, Fig. 1). Participants were
explicitly instructed about the uninformativeness of these trials,
that is, they were told that the ratio of summer or winter items
within the package was unknown, and that gains or losses were
thus not informative for learning about the current season. Partic-
ipants were instructed to pick the offered package and informed
that choosing the offered package would result in most of the cases
in a profit. However, as in informative trials, offered packages were
not guaranteed to result in a profit (due to probabilistic feedback),
resulting in higher surprise (cf. supplementary Fig. 2). In addition,
as in the case of informative trials, gains and losses were balanced
for expected and unexpected outcomes under cover of an unreliable
delivery service. This allowed us to isolate the relevance of task
representations for feedback evaluation as well as to distinguish
surprise from model updating.

3.1. Model comparison favors Bayesian inference models over
learning models for probabilistic reversal learning

To estimate task representations underlying choice behavior, we
compared a Bayesian inference (Hidden Markov) model, 3 Rescorla



D. Hämmerer et al. / Neurobiology of Aging 74 (2019) 90e100 95
Wagner (RW) learning models, and a simple switching model (see
Methods for details). Bayesian inference modeling derives trialwise
regressors reflecting the strength of belief of being in a “Summer”
or “Winter” state. At any given trial, a posterior belief is obtained
using Bayes rule based on the prior belief about the current task
state, the overall assumed predictability of task states as well as the
current outcome history. Posterior beliefs are updated at each trial,
taking into account also an assumed overall reversal probability of
task states. Updated posterior beliefs served as a prior belief at the
subsequent trial. The RW-learning models were (1) a standard RW-
learning model in which each action value was updated indepen-
dently for the 2 seasons, (2) a model in which values across seasons
were simultaneously updated, (3) a model with an adaptive
learning rate based on the size of prediction errors (see
supplementary Table 1). Moreover, we tested a simple switching
model where the expected value of a seasonal stimulus on the next
trial was only determined by the feedback on the previous trial and
not by beliefs or values of the current task state.

In keeping with previous findings on reversal learning tasks
(Costa et al., 2015, in preparation; Hampton et al., 2006;
Schlagenhauf et al., 2014; Wilson and Niv, 2012), model compari-
son favored the Bayesian inference model in both age groups (see
supplementary Table 1). The winning model fitted 3 free parame-
ters for every individual: an estimate of the reversal probability, an
estimate of the outcome predictability and an inverse temperature
parameter to account for choice randomness. Younger and older
adults did not differ in terms of model fits (t(1,42) ¼ �0.65, p ¼
0.52). Moreover, simulated choice behavior based on the winning
model matched closely the empirical choice behavior observed in
both age groups (supplementary Fig. 1).

3.2. Age differences in the representation of task-inherent
uncertainties

Individual parameter estimates allowed us to assess whether
younger and older adults’ differ in their task representations, spe-
cifically in their estimates of the task-inherent uncertainties
(reversal probability and outcome predictability). Fig. 2 shows that
younger and older adults did not differ in overall choice accuracy
(calculated as percentage of trials when the seasonally appropriate
item was chosen). Likewise, estimates of outcome predictability
were comparable in both age groups and similar to actual outcome
predictabilities (actual outcome predictability 87%, mean estimated
outcome predictability in younger as well as older adults 85%, no
age group difference (t(1,42) ¼ �0.63, p ¼ 0.53). However, older
adults systematically overestimated the reversal probability of
seasons (6% actual reversal probability, mean estimated reversal
probability in older adults 13%, in younger adults 9%, age group
difference: z ¼ �2.72, p < 0.01). Computational modeling hence
suggests that older adults might perceive states (seasons) as more
volatile than they actually are. This means that older adults find it
harder to converge on an unequivocal representation of the current
state and are more prone to alter their belief about the current
season. In line with this, we observed that older adults switched
their choices more frequently between winter and summer items,
especially if they encountered a loss in the previous trial
(supplementary Fig. 3 interaction age group � switching after los-
ses or gains, F(1,42) ¼ 7.54, p < 0.01, rICC ¼ 0.39).

3.3. Age differences in updating beliefs about the current season
during reversal learning

While model estimates at the individual level allow one to
characterize interindividual differences in uncertainties of task
representations, model estimates at the trial level enable us to
understand what these mean for the development of task repre-
sentations during learning.We examined trialwise empirical choice
behavior and related model estimates after reversals in task states
(Fig. 3). As seen in Fig. 2, overall accuracy (mean of correct seasonal
choices across all trials) did not differ between age groups (t(1,
42) ¼ 0.96, p ¼ 0.34). However, when examining age differences in
trialwise accuracy after reversals (Fig. 3A), we found that older
adults display more accurate behavior shortly after a reversal, but
failed to attain levels of choice accuracy as seen in younger adults
later after a reversal (F(1, 42) ¼ 4.22, p < 0.05, rICC ¼ 0.30, [inter-
action age group � trials 1e6 vs. 7e12 following a reversal on
choice accuracy]). This speaks to the fact that older adults converge
less on an unambiguous representation of the current season,
which facilitates the detection of reversals but also prevents them
from displaying consistent behavior later on. In a reversal learning
task, this is in particular detrimental for choice accuracy later on
after reversals, where it manifests as more frequent choices of the
wrong option. However, it can result in more frequent (possibly
accidentally) correct choices early on after reversals. In line with
this, we observed that overall mean accuracywas rather captured in
outcome predictability estimates (younger adults r(1,25) ¼ 0.34,
p ¼ 0.09, older adults r(1,19) ¼ 0.70, p < 0.01), and not in reversal
probability estimates (younger adults r(1,24) ¼ �0.30, p ¼ 0.14,
older adults r(1,19) ¼ 0.005, p ¼ 0.98).

Note that computational modeling suggests that older adults’
inconsistent choice behavior is not because of age differences in
choice randomness, as individually estimated values for the inverse
temperature did not differ between age groups (Fig. 2). Instead,
modeling choice behavior suggests that older adults’ choices are
less consistent because they overestimate reversal probabilities of
task states and are consequently less able to converge on a
consistent belief about the current season. To further probe the
effects of overestimating reversal probabilities on learning in older
adults, we examined trial-by-trial estimates of uncertainty about
the current season, which was treated as a hidden state that had to
be inferred. Uncertainty was defined as the entropy of beliefs about
the current season (see Fig. 3B, calculated as

P
i
log PðseasoniÞ),

which is maximal if agents assign uniform probability to both
winter and summer (cf. supplementary Fig. 2 and Figs. 3B and C).

Overall, older adults displayed higher uncertainty about the
current season (Fig. 3B), again indicative of an impaired ability to
converge on an unequivocal task representation. This is particularly
prevalent in later trials after a reversal (F(1,42) ¼ 4.71, p < 0.05,
rICC ¼ 0.32), where younger adults show stronger evidence in favor
of a task representation that reflects 1 particular season because of
evidence accumulated over time. As seen in simulations of altered
reversal probabilities or outcome predictabilities (supplementary
Fig. 4), this effect can be attributed to overestimating reversal
probabilities such that the higher the assumed reversal probability,
the more difficult it is to reduce uncertainties especially later on
after reversals. This is also evident when inspecting beliefs after
reversals (Fig. 3C, belief estimate of the currently correct task state,
e.g., belief to be in summer state if it is summer). Older adults’ belief
estimates are overall closer to a uniform distribution and plateau at
a lower level when beliefs should be more consistent (Fig. 3C,
interaction age group � belief on first half vs. second half of trials
after reversals: F(1,42) ¼ 13.50, p < 0.01, rICC ¼ 0.49).

Effects of overestimating reversal probabilities in older adults
are also evident in feedback evaluation during learning. Surprise
(Fig. 3D) indicates how unexpected a feedback is given a current
belief, whereas model updating (Fig. 3E) indicates how much be-
liefs are changed after an outcome. For older adults, unexpected
feedback early after reversals seems less surprising (Fig. 3D,
F(1,42) ¼ 7.33, p < 0.05, rICC ¼ 0.39, interaction age group � sur-
prise on trials 1e6 vs. 7e12 after a reversal). This speaks to the fact



Fig. 4. Changes in pupil diameter to feedback on informative trials (choice of seasonal
items) and uninformative trials (choice of items not seasonally specific). Older adults
differentiate informative and uninformative feedback less, suggesting that they engage
less in model-based updating than younger adults. Changes in pupil diameter are z-
scored within individuals; lines indicate means within age groups. Shaded areas
indicate SEs of mean individual pupil diameters within age groups. Early peaks before
1 second are not included in statistical analyses and reflected lateral positions of gain
and loss feedback on the screen.
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that older adults are worse at evaluating the unexpectedness of
outcomes (especially when they are most unexpected), induced by
a higher overall uncertainty about the current season. In addition,
later after a reversal, older adults show a trend toward greater
model updating as compared with younger adults (Fig. 3E, main
effect age group for model updating trials 7e12 after reversals
t(1,42) ¼ �1.76, p ¼ 0.09, no reliable interaction age group � trials
after reversal). Older adults thus seem to modify task state beliefs
more than younger adults at times when beliefs should be more
consistent due to learning.

To summarize, a trialwise analysis of model estimates shows
how model-based inference in reversal learning in older adults is
affected by increased estimates of the volatility of the current
season (reversal probabilities). During choices, older adults are
more uncertain whether their current belief about the season is
correct. During feedback processing, older adults are more willing
to alter their beliefs about the current season. Of note, these effects
are particularly pronounced later in time after reversals, when
beliefs should be more consistent given accumulated evidence in
favor of 1 season. Overestimating reversal probabilities thus man-
ifests as an increased uncertainty in task representations and
increased readiness to alter beliefs in older adults (see also
supplementary Fig. 4 for a simulation of model-based reversal
learning under increased reversal probabilities).

3.4. Pupillometric assessment of age differences in belief updating

Computational modeling suggests that older adults are more
uncertain in their beliefs about the current state (season) and tend
to update their established beliefs more. This suggests older adults
are less able to incorporate beliefs about task states into the eval-
uation of action outcomes. As a validation of our modeling results,
we examined age groups differences in the extent to which pupil
diameters covary with the relevance of feedback for updating be-
liefs. As outlined previously, increases in pupil diameter indicate a
greater subjective saliency of events, given inferred hidden states.
Larger pupil diameters should thus be observed on trials that are
more relevant for altering beliefs about the current state. Hence, a
difference in the extent to which pupil diameters covary with
model updating between age groups can be used to index a dif-
ference in the degree to which subjects incorporate task repre-
sentations when evaluating feedback.

We first examined whether participants differentiated between
outcomes that did or did not allow them to learn about the current
season, by examining mean pupil responses during feedback for
informative and uninformative trials. As outlined previously, un-
informative trials did not allow subjects to learn about the current
season and should therefore elicit smaller pupil dilations as
compared with informative trials. Note feedback on informative
trials was physically identical to feedback on uninformative trials
and similarly frequent in valence and expectedness. As predicted,
we found larger pupil diameters during feedback that was infor-
mative for learning about task representations (mean feedback
response on informative trials, cf. Fig. 1) compared with the feed-
back response on uninformative trials (cf. Fig. 4A). However, only in
younger adults were there stronger responses for informative
feedback (F(1,24) ¼ 39.11, p < 0.05, rICC ¼ 0.80, main effect infor-
mativeness in younger adults). Older adults instead reacted equally
to feedback that was informative and feedback that was uninfor-
mative (F(1,19) ¼ 2.49, p ¼ 0.14; no main effect informativeness in
older adults, F(1, 42) ¼ 9.01, p < 0.05, rICC ¼ 0.42, age group �
informativeness interaction). Post hoc power analysis showed that
our sample size allowed us to detect difference effects of at least d¼
0.60 and larger with a power of at least 80% in older adults. The
observed effect size in younger adults was d¼ 1.2. Older adults thus
seemed less able to suppress the subjective salience of feedback
which was uninformative for updating task representations.

In addition, across age groups, we observed a stronger response
to loss as compared with gain feedback (F(1, 42) ¼ 8.68, p < 0.05,
rICC ¼ 0.41), especially on informative trials (interaction
lossdgain � informativeduninformative trials F(1, 42) ¼ 9.01, p <

0.05, rICC ¼ 0.42). Negative events thus appear more salient, in-
dependent of the expectedness of negative events (as expected-
ness, informativeness and frequency of gains and losses was
balanced).

In a second set of analyses, we examined whether trialwise
changes in pupil dilation covaried with model updating on infor-
mative trials. A positive link between pupil dilation and the amount
of model updating would suggest an increased salience of feedback
that was more relevant for learning. Based on a reduced differen-
tiation of informative and uninformative feedback in older adults,
we would expect that they also differentiate trials of large or small
model updating less as compared with younger adults. To examine
trialwise relationships between model estimates and pupil di-
ameters, we used a regression which predicted pupil diameter on a
given trial. Regressions used a trialwise estimate of model updating
(cf. Fig. 3E, supplementary Fig. 2C), and surprise (cf. Fig. 3D,
supplementary Fig. 2D), as well as regressors of no interest (feed-
back valence, changing seasonal ratings) to predict pupil diameters.
As seen in Fig. 5A, pupil diameters were positively related to model
updating in both age groups, with larger pupil diameters seen on
trials with more model updating. Interestingly, this effect was
weaker in older adults (timewindow of significant age difference in
the size of the updating effect indicated by black line in Fig. 5A,
t(1,42) ¼ 3.55, p < 0.05). Inspecting pupil dilation as an indicator of
subjective salience thus suggests that older adults pay greater
attention to outcomes that do not provide for learning about task
states (uninformative trials) and modulate pupil dilation less with
trials that inform a change in model updating.

Finally, orthogonalizing informativeness and expectedness of
outcomes in our task allowed us to address whether pupil re-
sponses differentiate the mere unexpectedness of an event (sur-
prise) from its informativeness for learning about task
representations (model updating). Unlikemodel updating, trialwise
differences in surprise (unexpected outcomes without changes in
beliefs) were not reliably reflected in changes in pupil diameter
(Fig. 5B) in either age group. This clear separation of model
updating and surprise in pupil diameters is not unprecedented



Fig. 5. Regression results on trialwise changes in pupil diameter. (A) In both age
groups, positive betas of the trialwise pupil prediction show that pupil diameter is
larger on trials with more model updating (red and orange lines indicate time points of
a reliable [p < 0.05] positive effect for older and younger adults, respectively). This
effect is stronger in younger adults (time points of a reliable age differences indicated
by black line). (B) Trialwise changes in surprise were not related to changes in pupil
diameter. Regression lines indicate means of betas across individual regressions within
age groups; shaded areas indicate SEs across individuals within age groups. Re-
gressions calculate betas per sample point, time points of reliable effects are deter-
mined based on permutation tests in time window 1e2.5 seconds after feedback onset.
(For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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(Nassar et al., 2012; O’Reilly et al., 2013) but adds to an emerging
picture regarding the precise sensitivity of an arousal system. In the
context of the present study, we find that surprising events are not
as subjectively salient as events that allow for model updating. This
might be due to the fact that participants were instructed to learn
about the current season and hence focused on model updating.
However, at least in the case of the older adults, a reduced response
to surprising events is unlikely to be attributed to disengaging from
the task as they also showed increased pupil diameters on unin-
formative trials.

To summarize, at an interindividual level, we observe older
adults overestimate the changeability of task states and commit
less to a given task state belief. This means that, compared with
younger adults, older adults are consistently less certain in their
belief about the current season and are less able to converge on an
unequivocal task representation through learning. In line with this,
age differences in pupil dilations during feedback processing
suggest that older adults are less able to focus on feedback that is
informative for learning about task representations. Instead, un-
informative feedback appears to be similarly relevant for them and
they differentiate less between feedback that allows for more or
less model updating.

3.5. Trialwise ratings on task states

Finally, as an additional measure of individual task representa-
tions in both age groups, we asked participants at the end of every
trial whether they thought the current season was winter or
summer and how certain they were in this assessment (on a scale
from 1 to 4, see Fig. 1 andMethods). Interestingly, this revealed that
older adults’ accuracy and certainty in their ratings were less in line
with their actual choice performance thanwas the case for younger
adults. As shown previously, both age groups display lower choice
accuracy immediately after reversals (Fig. 6A). However, while
younger adults showed slowly increasing rating accuracy and rating
certainty after reversals, older adults showed higher levels of rating
accuracy and certainty already early on after reversals (Fig. 6B,
interaction age group � rating accuracy on first half vs. second half
of trials after reversals: F(1,42) ¼ 7.02, p< 0.05, rICC ¼ 0.38; Fig. 6D,
interaction age group � rating certainty on first half vs. second half
of trials after reversals: F(1,42)¼ 5.60, p< 0.05, rICC¼ 0.34). Indeed,
older adults’ overall indicated certainty in their beliefs about the
current season was higher than in younger adults (F(1,42) ¼ 4.70, p
< 0.05, rICC ¼ 0.32), although their choice behavior suggested that
they are less certain as compared with younger adults (see also
higher choice entropy in older adults in Fig. 3D). The correlation
between choice accuracy and rating certainty or rating acccuracy in
the first half after reversals (trials 1e6) was therefore overall
weaker in older adults than in younger adults (Fig. 6C and E, cor-
relation choice accuracy and rating accuracy: r¼ 0.52, p< 0.05, 95%
CI 0.49 to 0.65 in younger adults; r < 0.01, p ¼ 0.99, 95% CI �0.12 to
0.13 in older adults; correlation choice accuracy and rating cer-
tainty: r ¼ 0.36, p ¼ 0.07, 95% CI 0.30 to 0.49 in younger adults; r ¼
0.06, p ¼ 0.79, 95% CI �0.03 to 0.21 in older adults). This suggests
that older adults track their actual choice accuracy less in their
ratings of task state uncertainty. It should be noted that this does
not reflect a general inability of older adults to differentiate task
state certainty, as both younger and older adults indicated lower
certainty about the current task state on uninformative as
compared with informative trials (mean certainty [on a scale from
0 to 3] on uninformative trials 1.38 and 1.46 for younger and older
adults, respectively, and 2.03 and 2.30 on informative trials).
Instead, this provides further evidence that older adults are more
disposed to switch task state assumptions and hints at a meta-
cognitive deficit in older adults in evaluating current choice cer-
tainty precisely in conditions of updating task representations.

4. Discussion

We investigatedwhether younger and older adults differ in their
ability to form adequate task representations in decision-making
using a probabilistic reversal learning paradigm, and availing of
computational modeling and pupillometry. The computational
model based on a Bayesian learner captured the inherent un-
certainties of the task paradigm (estimates of reversal probability
and outcome predictability) and allowed us to compare younger
and older adults in their ability to form adequate representations of
uncertainties in decision-making. The data suggest that inconsis-
tent choice behavior in older adults is attributable to over-
estimating the reversal probability of task states. This means older
adults are less able to converge on an unequivocal and sustained
task representation (is it winter or summer), even if evidence that
favors 1 task state is available.

4.1. Consequences of overestimating reversal probabilities in older
adults

At a trial-by-trial level, overestimating reversal probabilities
manifests as higher levels of choice uncertainty (belief entropy),
which cannot be reduced through learning, as well as a greater
tendency to alter established beliefs about task states. Choice data
suggest that this increased readiness to switch beliefs about the
current season in older adults was strongly guided by negative
outcomes. Importantly, our task design enabled us to decouple the
valence of outcomes from outcome informativeness (for updating
task representations) or outcome expectedness. Our analysis shows
that older adults’ choice behavior is more driven by superficial
features of action outcomes as compared with their informative-
ness with respect to their internal representations. A greater ten-
dency in older adults to be guided by external cues has been
observed in many domains of higher cognitive functioning
(Lindenberger and Mayr, 2014). Here we show in model-based
reversal learning this can be understood as reflecting a reduced
ability to form precise internal representations of optimal choice
behavior.



Fig. 6. Rating data for currently assumed task states (B) and certainty about task state classification (D). Older adults are less able to capture their current choice accuracy (A) in
ratings about the current task state (C and E).
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The fact that older adults ratings of choice certainty and choice
accuracies were less in line with their actual choice behavior,
compared with younger adults, can be seen as further confirmation
of their inability to form or access precise internal representations
of task contingencies. Instead, older adults generally overestimated
the certainty of their current task state classification and seemed
less conflicted in task state ratings especially immediately after
reversals, as compared with younger adults. Interestingly, a similar
metacognitive deficit in older adults is observed in the memory
domain. Here, high certainty ratings for inaccurate responses are
observed in the form of high confidence memory errors (Shing
et al., 2009). However, unlike memory studies, reinforcement
learning studies which use computational models allow for a pre-
cise estimation of the possible confidence in the current response
and provide an interesting new avenue for further investigating
metacognitive deficits in older adults.

4.2. Specific deficit of evaluating outcomes based on internal task
representations in older adults

In addition to computational estimates of task representations
and metacognitive ratings, our study also assessed changes in pupil
diameter. Increased pupil diameter can be indicative of increased
noradrenergic modulation and is linked to greater subjective
relevance of events. Indeed, we observed larger pupil diameters for
informative outcomes and in particular those that allowed to up-
date beliefs about task states in younger adults. However, in line
with a reduced ability of older adults to assess the relevance of
events based on internal task representations, we found that older
adults responded strongly to feedback that allowed for updating
beliefs about task states, as well as to feedback that did not allow for
updating of beliefs. In addition, pupil diameters in older adults
varied less with how much learning about task states was possible,
if outcomes allowed for updating beliefs. This suggests that older
adults indeed show a specific deficit in evaluating outcomes based
on internal task representations. This altered outcome processing in
older adults cannot be attributed to a disengagement from the task
as mean accuracy levels, as well as ratings on task commitment,
were comparable between younger and older adults. Likewise,
pupil responses were not generally reduced in older adults.

Computational modeling as well as pupillometric results instead
point to an altered relevance of task representations during model-
based reversal learning in older adults. The precision of task rep-
resentations and the impact of model updating at outcome pre-
sentation depend on each other as learning unfolds. A common
problem in understanding age differences in model-based reversal
learning is to disentangle whether older adults’ ability to process
outcomes is impoverished because they are less able to develop
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precise task representations, or whether they struggle with a
reduced ability to develop task representations because their ability
to process feedback gainfully is reduced (a favored hypothesis in
many studies (de Boer et al., 2017; Hämmerer and Eppinger, 2012).
Our study is a step toward disentangling these 2 explanations. We
included a condition that assessed feedback evaluation when it
could not be used for learning about task state beliefs (uninfor-
mative trials), thereby breaking the link between feedback
response and updating beliefs about task representations. In this
condition, we observed notable age-group differences consistent
with older adults taking task representations less into account
when judging feedback. It is interesting to speculate that this age
effect may be in part a reaction to a reduced ability to form reliable
internal task representations because of, for example, increased
neuronal noise in older adults (Allen et al., 1998; Li et al., 2001).
Interestingly, our results showed that older adults rather react too
strongly to uninformative events, which refutes the notion that
older adults struggle to learn from outcomes as they cannot
respond physiologically to the degree that younger adults do
(Eppinger et al., 2013a; Hämmerer and Eppinger, 2012). Instead, it
suggests an inability to form precise expectations toward action
outcomes has to be at least also taken into account when comparing
age differences in learning from feedback and reacting to feedback
physiologically.

Unlike prior studies on age differences in reinforcement
learning, our study assessed age differences in task representations
independent of age differences in the expectation of gains or losses.
Age differences in assessing the relevance of gains and losses have
been reported previously (Eppinger et al., 2013a; Hämmerer et al.,
2011; Larkin et al., 2007) and might affect expectations toward
outcomes if these are not controlled for. Our paradigm kept gains
and losses independent from performance accuracy, such that age
groups did not differ in expected frequencies of gains in our task,
even in the presence of performance differences. This enabled us to
disentangle the expectancy of receiving a gain from the precision of
task representations (i.e., the certainty with which 1 can expect a
gain [or any] outcome) and allowed greater control in examining
age differences in task representations on the 1 hand and the
impact of positive or negative outcomes on the other hand. We
observed that both age groups showed stronger reaction to loss as
compared with gain outcomes, independent of the informativeness
of expectedness of outcomes. This confirms earlier suggestions that
negative outcomes indeed carry more subjective salience in
feedback-based learning task (Hämmerer and Eppinger, 2012).

4.3. Modulation of pupil diameters with model updating, but not
surprise

By orthogonalizing expectedness and informativeness of out-
comes, our novel reversal learning paradigm enabled us further to
address the relevance of model updating and surprise in feedback
processing. As a general principle, greater model updating can be
assumed during outcomes that are less expected but informative
for learning about task states. By contrast, more surprise can be
assumed during outcomes that are less expected but uninformative.
In both age groups, we observed larger pupil diameters with more
model updating, but no modulation of pupil diameters with
different degrees of surprise. Our study contributes to an unfolding
picture of the selectivity of pupil dilation (and possibly noradren-
ergic modulation), which however yielded inconsistent results,
with one study showing pupil dilation to reflect model updating
(Nassar et al., 2012) and another study finding that pupil dilation is
stronger for surprising events as compared to model updating
(O’Reilly et al., 2013). To understand these disparate results, a more
general approach to interpreting pupil diameters is needed which
identifies relevant events task by task. For instance, an unexpected
event that allows for model updating can be more relevant in a task
where performance ultimately depends on adjusting behavior
quickly (Nassar et al., 2012, and this study). By contrast, in other
tasks, an unexpected event which does not allow for learning, but
necessitates a specific response (as, e.g., in oddball tasks), might be
considered more relevant (Aston-Jones et al., 1994; O’Reilly et al.,
2013).

Finally, we note that postmortem evidence on neuronal loss in
the noradrenergic LC during aging suggests a reduced potential for
noradrenergic modulation in older adults (Mann, 1983; Mather
et al., 2015). In the context of this study, 1 might expect to see
overall reduced pupil dilation, reflecting an overall reduced LC
functionality in older adults. Indeed, a recent study observed
smaller pupil dilation to salient negative events in older adults
(Hämmerer et al., 2018). In the present study, we did not find lower
pupil dilation in older adults. However, this is not conclusive evi-
dence against reduced noradrenergic levels in older adults. As
outlined previously, if an event is salient given its relevance in a
particular task context, the strength of a functional response will
also depend on a given task focus. In addition to age differences in
biological substrates for processing salient events, age differences
in attentional focus on salient events need to be taken into account.
As processing salient events (outcomes) in our task happened
within a task context that required a focus on outcomes, we cannot
address these 2 aspects separately in this study. Indeed, pupillo-
metric responses of comparable strength in younger and older
adults are not unprecedented in feedback-based learning tasks
(Hämmerer et al., 2017). In the context of our task, this suggests that
the strength of attentional focus on outcome evaluation might have
been comparable in younger and older adults. However, adaptation
to evaluating outcomes in light of current task state representations
was reduced in older adults, evident in a reduced differentiation of
outcomes that allowed learning about task state representations.
5. Conclusion

To conclude, we show that older adults form less reliable beliefs
about task states and have more difficulties in updating task rep-
resentations through learning from choice outcomes. This reduced
ability to converge on unequivocal internal task representations in
older adults was accompanied by an inaccurate description of
choice accuracies and choice certainties in confidence ratings, an
increased tendency to guide choices by external cues as well as a
reduced ability to evaluate outcomes based on internal task rep-
resentations. A deficit in forming or maintaining precise task rep-
resentations has been proposed to underlie cognitive deficits in
several cognitive domains during aging. Our study sheds new light
on the consequences of inadequate task representations during
model-based reversal learning in older adults.
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