MIXING AUTOMORPHISMS OF COMPACT
GROUPS AND A THEOREM OF SCHLICKEWEI

KLAUS SCHMIDT AND TOM WARD

ABSTRACT. We prove that every mixing Z%action by automor-
phisms of a compact, connected, abelian group is mixing of all
orders.

1. INTRODUCTION

If v is a mixing automorphism of a compact, abelian group X, then «
is Bernoulli and hence mixing of all orders ([6], [8]). However, if d > 1,
and if o is a mixing Z%action by automorphismsms of a compact,
abelian group X, then a need not be mixing of every order ([5]), and
the intricate way in which higher order mixing can break down may
be used to construct measurable isomorphism invariants for a ([3]).
In [11] the question was raised whether higher order mixing can fail
only if X is disconnected, and a partial result in this direction was
obtained (the absence of nonmixing shapes for Z?-actions on connected
groups). In this paper we answer this question by proving that every
mixing Z%-action a by automorphisms of a compact, connected, abelian
group is mixing of all orders. Even for commuting toral automorphisms
this statement is far from obvious, and its proof depends on a highly
nontrivial estimate by H.P. Schlickewei ([9]) of the maximal number of
solutions (vy,...,v,) of equations of the form ayv; + -+ + a,v, = 1,
subject to certain constraints, where the a; and v; lie in an algebraic
number field K.

2. MULTIPLE MIXING AND PRIME IDEALS

Let (X, &, i) be a standard (or Lebesgue) probability space, d > 1,
and let T : n — T, be a measure preserving Z?-action on (X, &, ).
The action T' is mixing of order r (or r-mixing, or mixing on r sets) if,
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for all sets By,..., B, in G,

(1) n;€Z%¢ and nl—r}lllrﬁoo for 1<lU/<I<r a <QTHZ<BZ)> N EM(Bl)

In (1) we may obviously assume that n; = 0. Now assume that X is a
compact, abelian group (always assumed to be metrizable), & = B is
the Borel field of X, and that © = Ax is the normalized Haar measure
of X. We write X for the dual group of X, denote by (x,x) = x(x) the
value at x € X of a character y € X, and write 7 for the automorphism
ilx) = x -1, x € X, of X dual to a continuous automorphism 7 of X
A homomorphism a : n — a, from Z? into the group Aut(X) of
continuous automorphisms of X is a Z%-action by automorphisms of
X. From (2.1) it is clear that a Z?-action o by automorphisms of a
compact, abelian group X is r-mixing if and only if, for all characters
Xi,. .., Xr in X with x; # 1 for some i € {1,...,r},

(2) n; €74 and nlfr}ll/IEoo for 1<U<I<r /<X1 ‘ anl) o (XT ' Ofnr) d)\X =0
Again we may assume that n; = 0 in (2). The equivalence of (1) and
(2) is seen by expanding the indicator functions of the sets B; as Fourier
series.

Before we discuss the higher order mixing properties of Z?-actions
by automorphisms of compact, abelian groups we recall the algebraic
description of such actions in [2] and [10]. Let Ry = Z[ui', ... ul']
be the ring of Laurent polynomials with integral coefficients in the
commuting variables ui, ..., uq. If o is a Z%action by automorphisms
of a compact, abelian group X, then the dual group 9 = X of X
becomes an Rz-module under the R -action defined by

(3) fra=">" c;(m)Bm(a)

meZzad
foralla € Mand f =3 ,acr(m)u™ € Ry, where u™ = uf" - - u)*
for every n = (nq,...,ny) € Z%, and where 3, = @, is the automor-
phism of 91 = X dual to ay,. In particular,
(4) an(a) = fn(a) =u™-a
for all n € Z% and a € 9. Conversely, if 9 is an Ry-module, and if
() Ba'a) =u" - a

for every n € Z¢ and a € M, then we obtain a Z?-action

—

©) o™i n = ol = 7
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on the compact, abelian group
(7) XM=

dual to the Z-action 3™ : n — B2 on M. In this notation the
r-mixing condition (2.2) is equivalent to the condition that, for all
nonzero elements (ay,...,a,) € M,

(8) u™ cap+ -+ u™ a, #0

whenever m; € Z% and m; — my lies outside some sufficiently large
finite subset of Z¢ forall 1 <1’ <[ < r.

If 91 is an PRz-module, then a prime ideal p C R, is associated
with M if p = {f € Ry : f-a = 0} for some a € M, and M is
associated with a prime ideal p C Ry if p is the only prime ideal in Ry
which is associated with 9. A nonzero Laurent polynomial f € R,
is a generalized cyclotomic polynomial if there exist m,n € Z¢ and
a cyclotomic polynomial ¢ in a single variable such that n # 0 and
f =u™c(u™). The following theorem was proved in [10].

Theorem 2.1. Let o be a Z%-action by automorphisms of a compact,
abelian group X, and let M = X be the Ry-module arising from a via
(2.3)—(2.4). The following conditions are equivalent.

(1) « is mizing (i.e. 2-mizing);

(2) am is ergodic for every 0 # m € Z¢;

(3) None of the prime ideals associated with M contains a general-

1zed cyclotomic polynomial.

If the Z%action a in Theorem 2.1 is mixing, then the higher order
mixing behaviour of « is again determined by the prime ideals associ-
ated with 9t = X.

Theorem 2.2. Let o be a Z%-action by automorphisms of a compact,
abelian group X, and let MM = X be the Ry-module arising from o via
(2.3)—(2.4). The following conditions are equivalent for every r > 2.
(1) « is r-mizing;
(2) For every prime ideal p C Ry associated with I, the Z%-action
o™/ defined in (2.5)—(2.7) is r-mizing.

Proof. Suppose that a is r-mixing. If p C Ry is a prime ideal associated
with 91, then there exists an element a € 9 such that p = {f € Ry :
f-a =0}, and we set P = Ry-a C M. Then P = R,/p and
Y =9 = X/9, where 9+ = {z € X : (z,a) = 1 forall a € D} is
the annihilator of ). Since ) is invariant under the Z%action §: n —
Bn = 0y dual to a, P~ is a closed, a-invariant subgroup of X, and the
Z%-action o induced by o on Y is a factor of a and hence r-mixing.
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Since the My-module arising from o is equal to Y = Y = Ry/p we
conclude that a™/? must be r-mixing.

Conversely, if « is not r-mixing, then (2.8) shows that there ex-
ists a nonzero element (a;,...,a,) € 9M" and a sequence (n™ =
(n&m), . ,n&m)), m > 1) in (Z%)" such that lim,, . nl(m)—nl(,m) = oo for
1<l <l<rand u“gm ~ap+- - -+u“£m) -a, = 0 for every m > 1. There
exists a Noetherian submodule 9t C 9 such that {ay,...,a.} C M,
and (2.8) implies that the Z?-action o', which is a quotient of «, is
not r-mixing.

Since N is Noetherian, the set of (distinct) prime ideals associated
with 9t is finite and equal to {pi,...,pm}, say. By Theorem VI.5.3
in [4] there exist submodules 20y, ...,20,, of 9 such that 91/20; is
associated with p; for i = 1,...,m, (", 20; = {0}, and (), 2W; #
{0} for every subset S C {1,...,m}. In particular, the map a —
(a+21,...,a+20,,) from N into K = P, M/, is injective, and
the dual homomorphism from X = RtoN=X"is surjective. Hence
a™is a factor of a®, so that a® cannot be r-mixing. By applying (2.8)
to the \Ry-module K we see that there exists a j € {1,..., m} such that
™% is not r-mixing.

Put U = MN/W;, p = p;, and use Lemma 3.4 in [3] to find inte-
gers 1 < ¢t < s and submodules ¥ = N, D --- D Ny = {0} such
that, for every k = 1,...,s, Mp/Me_1 = Ry/qx for some prime ideal
PpCqr CRy,qp=pfork=1....;t,and gy D2pfori=¢t+1,...,s.
We choose Laurent polynomials g, € qr ~p, & =t +1,...,s, and
set g = giy1-+-gs. Since ¥ is not r-mixing, (2.8) implies the exis-
tence of a nonzero element (ai,...,a,) € U" and a sequence (n™ =
(ngm), . ,n,(nm)), m > 1) in (Z%)" such that lim,, . nl(m) - nl(,m) = 00

(m) (m)
whenever 1 <!’ <l <r,and v™ " -ay;+---+u™ -a, =0 for every

m > 1. Put b; = ¢g - a;, and note that 0 # (by,...,b,) € ()", since
g-a # 0 for every nonzero element a € . There exists a unique integer
p € {1,...,t} such that (by,...,b,) € (M,)" ~ (M,_1)", and by setting
b, = b + MNy_1 € MN,/M,_1 = Ry/p we obtain that 0 # (b),...,¥) €
(M,/M,_1)" = (Ry/p)" and wi” by + -+ w bl = 0 for every
m > 1, so that o”™/? is not r-mixing by (2.8). Since the prime ideal p
is associated with the submodule 9T C 91, p is also associated with 91,
and the theorem is proved. 0

3. SCHLICKEWEI’'S THEOREM AND MIXING

Theorem 2.2 shows that a Z%action o by automorphisms of a com-
pact, abelian group X is mixing of order » > 2 if and only if the
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Z%actions a™/? are r-mixing for all prime ideals p C PRy associated
with the :M4-module 9 = X defined by o (cf. (2.3)-(2.8)). In order
to be able to apply this result we shall characterize those prime ideals
p C Ry for which a™/? is r-mixing for every r > 2.

We identify Z with the set of constant polynomials in $R; and note
that, for every prime ideal p C Ry, pNZ is either equal to pZ for some
rational prime p = p(p), or to {0}, in which case we set p(p) = 0.

Theorem 3.1. Let d > 1, and let p C Ry be a prime ideal such that
a¥/? s mizing (cf. Theorem 2.1).

(1) If p(p) > 0 then a™4/* is r-mizing for every r > 2 if and only

if p=(p(p)) = p(p)Ra;
(2) If p(p) = 0 then a™4/* is r-mizing for every r > 2.

Theorem 3.1 (1) follows from Theorem 3.3 (2) of [Sc2]. We postpone
the proof of Theorem 3.1 (2) for the moment and look instead at some of
the consequences of that theorem. If o is a Z-action by automorphisms
of a compact, abelian group X with completely positive entropy, then
it is mixing of all orders by Theorem 6.5 and Corollary 6.7 in [7]. If
the group X is zero-dimensional, the reverse implication is also true.

Corollary 3.2. Let a be a Z%*-action by automorphisms of a compact,
abelian, zero-dimensional group X. The following conditions are equiv-
alent.

(1) « has completely positive entropy;
(2) « is r-mizing for every r > 2.

Proof. Since X is zero-dimensional, every prime ideal p associated
with the Rg-module MM = X arising from a via (2.3)(2.4) contains
a nonzero constant, so that p(p) > 0. According to Theorem 6.5 in
(7], this implies that « has completely positive entropy if and only
if p = p(p) - Ry for every prime ideal p associated with 91, and the
equivalence of (1) and (2) follows from Theorem 2.2 and Theorem 3.1

(1). O

The next corollary shows that the higher order mixing behaviour of
Z%-actions by automorphisms of compact, connected, abelian groups
is quite different from the zero-dimensional case, and requires no as-
sumptions concerning entropy.

Corollary 3.3. Let d > 1, and let a be a mizing Z%-action on a

compact, connected, abelian group X. Then « s r-mixing for every
r > 2.
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Proof. The group X is connected if and only if the dual group X is
torsion-free, i.e. if and only if na # 0 whenever 0 # @ € X and 0 #
n € Z. We write M = X for the Ry-module defined by a via (2.3)-
(2.4), note that the connectedness of X implies that p(p) = 0 for every
prime ideal p C R, associated with 9, and apply Theorems 2.2 and
3.1 (2). 0

Corollary 3.4. Let Ay, ..., Ay be commuting automorphism of the n-
torus T = R™/Z™ with the property that the Z%-action o : (my, ..., mq)
Qmy,myg) = AT - A is mazing. Then o is r-mizing for every r > 2.

The proof of Theorem 3.1 (2) depends on a result by Schlickewei [9].
Let K be an algebraic number field of degree D, and let P(K) be the
set of places and P, (K) the set of infinite (or archimedean) places of
K. For every v € P(K), | - |, denotes the associated absolute value,
normalized so that |a|, is equal to the standard absolute value |a| if
v € Py(K) and a € Q, and |p|, = p~! if v lies above the rational prime
p. Let S, Po(K) € S C P(K), be a finite set of cardinality s. An
element a € K is an S-unit if |a|, = 1 for every v € P(K) \ S.

Theorem 3.5. (SCHLICKEWEI) Let ay, ..., a, be nonzero elements of
K. Then the equation
(9) &1U1+"'+6ann:1
has not more than
(48D!)236nD!S6
solutions (vy,...,v,) in S-units such that no proper subsum a;v;, +

o+ a;,v;, vanishes.

Proof. Proof of Theorem 3.1 (2) For every field F we set F* = F
{0}. Let @ C C be the algebraic closure of Q, and let V(p) = {c =
(c1,-...ca) € (@) : f(c) = 0 for every f € p} and Ve(p) = {c =
(c1,...,cq) € (C)%: f(c) =0 for every f € p}.

Suppose that a™/? is not r-mixing for some r > 3, and that r
is the smallest integer with this property. According to (2.8) there
exists a nonzero element (ay, ..., a,) € (Ry/p)” and a sequence (n(™ =
@™ .. n™), m > 1) in (Z%)" such that lim,, .o n\™ —n{™ = oo
whenever 1 < I’ < [ < r, and ungm) cap + -+ u“yw -a, = 0 for
every m > 1. For simplicity we assume that n(™ # n( whenever
1 < m < n, and that ngm) = 0 for all m > 1. The minimality
of r is easily seen to imply that a; # 0 for ¢ = 1,...,r. Choose
fi € Ry such that a; = fi+p, i =1,...,7, set, for every c € V(p) and
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m = (my,...,mg) € Z% c™ =" ---'?, and note that
(10) file) + fale)e™” 4+ fi(e)e™™ =0
for all c € Vi(p) and m > 1.

If V(p) is finite, then V(p) = Vi(p) consists of the orbit of a single
point ¢ = (cy,...,¢cq) under the Galois group GalQ : Q], and the
assumption that a™/? is mixing is equivalent to saying that ¢™ # 1
whenever 0 # m € Z?. The evaluation map f — f(c), f € Ry, has
kernel p, and may thus be regarded as an injective homomorphism
from MR,/p into C; in particular, fi(c)--- f,(c) # 0. We denote by K
the algebraic number field Q(c) = Q(cy,...,¢q) and set S = P (K) U
{v e P(K) : |¢i], # 1 for some i € {1,...,d}}. Then S is finite, and
Schlickewei’s Theorem 3.5 implies that the equation

B, b,
file) file)
has only finitely many solutions (ve, ..., v,) in S-units such that f;, (c)v;, +

-+ fi,(c)v;, # 0 whenever 1 <4y < --- < i, <r. However, the prop-

e

erties of ¢ and .S imply that the vectors (cném), c.,e™ ), m > 1, areall

distinct, and that ™™ is an S-unit for every i = 2,...,r and m > 1.
From (10) we conclude that, for all but finitely many m > 1, one of

(m) (m)
the subsums f;, (c)c™ +---+ f;, (¢)c™ vanishes. For some choice of
1 <11 <--- <1 <r we obtain an infinite set M of positive integers

such that fil(c)cng;ﬂ> +- 4 fi (c)cn’(';n) = 0 for every m € M, and this
is easily seen to imply that o™/ fails to be k-mixing, where k < 7,
contrary to the minimality of r.

A moment’s reflection shows that we have now proved enough to
obtain Corollary 3.4. For Theorem 3.1 (2) and Corollary 3.3, however,
we have to deal with the case where V(p) is infinite. Since p(p) = 0,
the natural homomorphism ¢ : 91 = R, /p — N = Q®2 N, defined by
a — 1 ® a for every a € M, is injective, and we put z; = ¢(u; + p) and
Zari = t(u; ' +p) fori = 1,...,d. Noether’s normalization lemma ([1]),
applied to the Q-algebra AV, allows us to find an integer t € {1,...,2d}
and Q-linear functions wy, ..., w; of the elements z1, ..., 294 such that
{wq,...,w;} is algebraically independent over @Q and each zi, ..., 224
is integral over Q[wy,...,w;]. We choose and fix monic polynomials
Q; € Qwy, ..., wy]ly] = Qwy, ..., wy,y] such that Q;(wy, ..., wy, z) =
0 fore=1,...,2d and regard each @); either as a polynomial in y with
coefficients in Q[wy, ..., wy], or as an element of Qwy, ..., wy,y].

Put We(p) = {(c1,. .- ca ety oicyt) (e, ..oy ca) € Ve(p)} € C
define a surjective map w : We(p) — C' by w(c) = (wi(c),. .., wi(c))
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for every ¢ € We(p), and note that Ve(p) = m(We(p)) € (C¥)¢ c C,
where 7 : C?*? —— C? is the projection onto the first d coordinates.
We write R C Q for the set of rational numbers which occur as one
of the coefficients of one of the linear maps w; (regarded as a rational
linear map in 2d variables), or of one of the polynomials @Q; (regarded
as a polynomial in ¢ + 1 variables with rational coefficients), and let P
denote a nonempty, finite set of rational primes which contains every
prime divisor appearing in any element of R (either in the numerator or
the denominator). Put K = {a+bv/—1:a,b € Q} and denote by S’ C
P(K) the (finite) set of all places of K which are either infinite, or which
lie above one of the primes in P. There exists an integer D > 1 such
that, for every B8 = (31,...,8;) € Kl and v = (71,...,724) € w 1(B),
the algebraic number field K(v) generated by K and (7, ..., 724) has
degree (K(v) : K) < D. Then K(v) has at most D distinct places
above every place of K, and it follows that the cardinality |S()]| of the
set S(y) of places of K(+) which lie above one of the elements of S’ is
bounded by D - |S’|, where |S’| is the cardinality of 5"

Let ¥ C K be the set of S’-units, and let 3 = (3y,..., ) € &' C K"
We claim that every coordinate of every v = (71,...,%4) € w 1(B)
is an S(7y)-unit. Indeed, if v € P(K) \ ', and if v € P(K(7y)) lies
above v, then ~; is a root of the monic polynomial Q;(3,y) € K|y|, and
each coefficient ¢ of @); satisfies that ||, < 1. It follows that |y;|, < 1
for i = 1,...2d. In particular, since v, ' = 7,4 for i € {1,...,d},
we obtain that |v; ', = (|v],)™" < 1, so that |vil, = |Virals = 1, as
claimed.

Since ¥ is dense in C, the set Q = 7w(w™1(3%)) C V(p) is dense in
Ve(p), and for every ¢ = (cq, ..., cq) € 2 we either have that fi(c) =0

and fg(c)cném) +-- -+fr(C)C“£‘m) = 0 for every m > 1, or that fi(c) # 0,
in which case case Schlickewei’s theorem implies that the equation

I
7©” T )

has at most C' = (4D|S'| D12~ @IS'D® distinct solutions (vs, . . . , v,)

in S-units for which no subsum f; (c)v;, +-- -+ fi (c)v;, vanishes. For

all 1 <m <mn, k<r,and {iy,...,ix} C{1,...,r}with1 <i; <--- <

ir <, we set ™" = {c € Vi(p) : e = e for i = 2,...,r} and
n(m) n(m)

\I](ila B aZk)(m) = {C € VC(p) : fi1(c)c e fik(c)c ko= O} As

we have just seen,

(11) Qc U U iy, ... i)™ U e

s<m<n<C+s+2  {i1,...,i } S{1,...,7}

v =1
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for every s > 1. Since the sets appearing in the right hand side of (11)
are all closed subsets of the perfect set Vi(p), we obtain that

Ve(p) = U U Ui, ..., i)™ UM

s<m<n<C+s+2  {i1,...,ix }T{1,...,7}

for every s > 1. As the ideal p C R, is prime, the variety Vi(p)
must, for every s > 1, be contained in one of the sets W(iy, ..., ;)™
or ®mm with s <m <n < C+s+2and {i,...,i,} € {1,...,r}
The second possibility is excluded by our assumption that a™/? is
mixing, and we conclude that there exists, for infinitely many m > 1,
a subset {i1,...,14} € {1,...,7} (depending on m) such that Vi(p) C
W(iy,...,it)"). Since there are only finitely many such subsets we
obtain that a™/P fails to be k-mixing for some k < 7, contrary to
the minimality of 7, exactly as in the case where V(p) is finite. This
contradiction implies that o™*/? is r-mixing for every r > 2. 0
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