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Abstract. We prove that every mixing Zd-action by automor-
phisms of a compact, connected, abelian group is mixing of all
orders.

1. Introduction

If α is a mixing automorphism of a compact, abelian group X, then α
is Bernoulli and hence mixing of all orders ([6], [8]). However, if d > 1,
and if α is a mixing Zd-action by automorphismsms of a compact,
abelian group X, then α need not be mixing of every order ([5]), and
the intricate way in which higher order mixing can break down may
be used to construct measurable isomorphism invariants for α ([3]).
In [11] the question was raised whether higher order mixing can fail
only if X is disconnected, and a partial result in this direction was
obtained (the absence of nonmixing shapes for Zd-actions on connected
groups). In this paper we answer this question by proving that every
mixing Zd-action α by automorphisms of a compact, connected, abelian
group is mixing of all orders. Even for commuting toral automorphisms
this statement is far from obvious, and its proof depends on a highly
nontrivial estimate by H.P. Schlickewei ([9]) of the maximal number of
solutions (v1, . . . , vr) of equations of the form a1v1 + · · · + arvr = 1,
subject to certain constraints, where the ai and vi lie in an algebraic
number field K.

2. Multiple mixing and prime ideals

Let (X, S, µ) be a standard (or Lebesgue) probability space, d ≥ 1,
and let T : n → Tn be a measure preserving Zd-action on (X, S, µ).
The action T is mixing of order r (or r-mixing, or mixing on r sets) if,
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for all sets B1, . . . , Br in S,

(1) lim
nl∈Zd and nl−nl′→∞ for 1≤l′<l≤r

µ

(
r⋂

l=1

T−nl
(Bl)

)
=

r∏
l=1

µ(Bl).

In (1) we may obviously assume that n1 = 0. Now assume that X is a
compact, abelian group (always assumed to be metrizable), S = BX is
the Borel field of X, and that µ = λX is the normalized Haar measure
of X. We write X̂ for the dual group of X, denote by 〈x, χ〉 = χ(x) the

value at x ∈ X of a character χ ∈ X̂, and write η̂ for the automorphism
η̂(χ) = χ · η, χ ∈ X̂, of X̂ dual to a continuous automorphism η of X.
A homomorphism α : n → αn from Zd into the group Aut(X) of
continuous automorphisms of X is a Zd-action by automorphisms of
X. From (2.1) it is clear that a Zd-action α by automorphisms of a
compact, abelian group X is r-mixing if and only if, for all characters
χ1, . . . , χr in X̂ with χi 6= 1 for some i ∈ {1, . . . , r},

(2) lim
nl∈Zd and nl−nl′→∞ for 1≤l′<l≤r

∫
(χ1 · αn1) · · · (χr · αnr) dλX = 0.

Again we may assume that n1 = 0 in (2). The equivalence of (1) and
(2) is seen by expanding the indicator functions of the sets Bi as Fourier
series.

Before we discuss the higher order mixing properties of Zd-actions
by automorphisms of compact, abelian groups we recall the algebraic
description of such actions in [2] and [10]. Let Rd = Z[u±1

1 , . . . , u±1
d ]

be the ring of Laurent polynomials with integral coefficients in the
commuting variables u1, . . . , ud. If α is a Zd-action by automorphisms
of a compact, abelian group X, then the dual group M = X̂ of X
becomes an Rd-module under the Rd-action defined by

(3) f · a =
∑
m∈Zd

cf (m)βm(a)

for all a ∈ M and f =
∑

m∈Zd cf (m)um ∈ Rd, where un = un1
1 · · ·und

d

for every n = (n1, . . . , nd) ∈ Zd, and where βn = α̂n is the automor-

phism of M = X̂ dual to αn. In particular,

(4) α̂n(a) = βn(a) = un · a
for all n ∈ Zd and a ∈ M. Conversely, if M is an Rd-module, and if

(5) βM
n (a) = un · a

for every n ∈ Zd and a ∈ M, then we obtain a Zd-action

(6) αM : n → αM
n = β̂M

n
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on the compact, abelian group

(7) XM = M̂

dual to the Zd-action βM : n → βM
n on M. In this notation the

r-mixing condition (2.2) is equivalent to the condition that, for all
nonzero elements (a1, . . . , ar) ∈ Mr,

(8) um1 · a1 + · · ·+ umr · ar 6= 0

whenever ml ∈ Zd and ml − ml′ lies outside some sufficiently large
finite subset of Zd for all 1 ≤ l′ < l ≤ r.

If M is an Rd-module, then a prime ideal p ⊂ Rd is associated
with M if p = {f ∈ Rd : f · a = 0} for some a ∈ M, and M is
associated with a prime ideal p ⊂ Rd if p is the only prime ideal in Rd

which is associated with M. A nonzero Laurent polynomial f ∈ Rd

is a generalized cyclotomic polynomial if there exist m,n ∈ Zd and
a cyclotomic polynomial c in a single variable such that n 6= 0 and
f = umc(un). The following theorem was proved in [10].

Theorem 2.1. Let α be a Zd-action by automorphisms of a compact,
abelian group X, and let M = X̂ be the Rd-module arising from α via
(2.3)–(2.4). The following conditions are equivalent.

(1) α is mixing (i.e. 2-mixing);
(2) αm is ergodic for every 0 6= m ∈ Zd;
(3) None of the prime ideals associated with M contains a general-

ized cyclotomic polynomial.

If the Zd-action α in Theorem 2.1 is mixing, then the higher order
mixing behaviour of α is again determined by the prime ideals associ-
ated with M = X̂.

Theorem 2.2. Let α be a Zd-action by automorphisms of a compact,
abelian group X, and let M = X̂ be the Rd-module arising from α via
(2.3)–(2.4). The following conditions are equivalent for every r ≥ 2.

(1) α is r-mixing;
(2) For every prime ideal p ⊂ Rd associated with M, the Zd-action

αRd/p defined in (2.5)–(2.7) is r-mixing.

Proof. Suppose that α is r-mixing. If p ⊂ Rd is a prime ideal associated
with M, then there exists an element a ∈ M such that p = {f ∈ Rd :
f · a = 0}, and we set Y = Rd · a ⊂ M. Then Y ∼= Rd/p and

Y = Ŷ = X/Y⊥, where Y⊥ = {x ∈ X : 〈x, a〉 = 1 for all a ∈ Y} is
the annihilator of Y. Since Y is invariant under the Zd-action β : n →
βn = α̂n dual to α, Y⊥ is a closed, α-invariant subgroup of X, and the
Zd-action αY induced by α on Y is a factor of α and hence r-mixing.
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Since the Rd-module arising from αY is equal to Ŷ = Y ∼= Rd/p we
conclude that αRd/p must be r-mixing.

Conversely, if α is not r-mixing, then (2.8) shows that there ex-
ists a nonzero element (a1, . . . , ar) ∈ Mr and a sequence (n(m) =

(n
(m)
1 , . . . ,n

(m)
r ), m ≥ 1) in (Zd)r such that limm→∞ n

(m)
l −n

(m)
l′ = ∞ for

1 ≤ l′ < l ≤ r and un
(m)
1 ·a1 + · · ·+un

(m)
r ·ar = 0 for every m ≥ 1. There

exists a Noetherian submodule N ⊂ M such that {a1, . . . , ar} ⊂ N,
and (2.8) implies that the Zd-action αN, which is a quotient of α, is
not r-mixing.

Since N is Noetherian, the set of (distinct) prime ideals associated
with N is finite and equal to {p1, . . . , pm}, say. By Theorem VI.5.3
in [4] there exist submodules W1, . . . ,Wm of N such that N/Wi is
associated with pi for i = 1, . . . ,m,

⋂m
i=1 Wi = {0}, and

⋂
i∈S Wi 6=

{0} for every subset S ( {1, . . . ,m}. In particular, the map a →
(a + W1, . . . , a + Wm) from N into K =

⊕m
i=1 N/Wi is injective, and

the dual homomorphism from X̄ = K̂ to N̂ = XN is surjective. Hence
αN is a factor of αK, so that αK cannot be r-mixing. By applying (2.8)
to the Rd-module K we see that there exists a j ∈ {1, . . . ,m} such that
αN/Wj is not r-mixing.

Put V = N/Wj, p = pj, and use Lemma 3.4 in [3] to find inte-
gers 1 ≤ t ≤ s and submodules V = Ns ⊃ · · · ⊃ N0 = {0} such
that, for every k = 1, . . . , s, Nk/Nk−1

∼= Rd/qk for some prime ideal
p ⊂ qk ⊂ Rd, qk = p for k = 1, . . . , t, and qk ) p for i = t + 1, . . . , s.
We choose Laurent polynomials gk ∈ qk r p, k = t + 1, . . . , s, and
set g = gt+1 · · · gs. Since αV is not r-mixing, (2.8) implies the exis-
tence of a nonzero element (a1, . . . , ar) ∈ Vr and a sequence (n(m) =

(n
(m)
1 , . . . ,n

(m)
r ), m ≥ 1) in (Zd)r such that limm→∞ n

(m)
l − n

(m)
l′ = ∞

whenever 1 ≤ l′ < l ≤ r, and un
(m)
1 · a1 + · · · + un

(m)
r · ar = 0 for every

m ≥ 1. Put bi = g · ai, and note that 0 6= (b1, . . . , br) ∈ (Nt)
r, since

g ·a 6= 0 for every nonzero element a ∈ V. There exists a unique integer
p ∈ {1, . . . , t} such that (b1, . . . , br) ∈ (Np)

r r (Np−1)
r, and by setting

b′i = bi + Np−1 ∈ Np/Np−1
∼= Rd/p we obtain that 0 6= (b′1, . . . , b

′
r) ∈

(Np/Np−1)
r ∼= (Rd/p)r and un

(m)
1 · b′1 + · · · + un

(m)
r · b′r = 0 for every

m ≥ 1, so that αRd/p is not r-mixing by (2.8). Since the prime ideal p
is associated with the submodule N ⊂ M, p is also associated with M,
and the theorem is proved. �

3. Schlickewei’s theorem and mixing

Theorem 2.2 shows that a Zd-action α by automorphisms of a com-
pact, abelian group X is mixing of order r ≥ 2 if and only if the
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Zd-actions αRd/p are r-mixing for all prime ideals p ⊂ Rd associated
with the Rd-module M = X̂ defined by α (cf. (2.3)–(2.8)). In order
to be able to apply this result we shall characterize those prime ideals
p ⊂ Rd for which αRd/p is r-mixing for every r ≥ 2.

We identify Z with the set of constant polynomials in Rd and note
that, for every prime ideal p ⊂ Rd, p∩Z is either equal to pZ for some
rational prime p = p(p), or to {0}, in which case we set p(p) = 0.

Theorem 3.1. Let d ≥ 1, and let p ⊂ Rd be a prime ideal such that
αRd/p is mixing (cf. Theorem 2.1).

(1) If p(p) > 0 then αRd/p is r-mixing for every r ≥ 2 if and only
if p = (p(p)) = p(p)Rd;

(2) If p(p) = 0 then αRd/p is r-mixing for every r ≥ 2.

Theorem 3.1 (1) follows from Theorem 3.3 (2) of [Sc2]. We postpone
the proof of Theorem 3.1 (2) for the moment and look instead at some of
the consequences of that theorem. If α is a Zd-action by automorphisms
of a compact, abelian group X with completely positive entropy, then
it is mixing of all orders by Theorem 6.5 and Corollary 6.7 in [7]. If
the group X is zero-dimensional, the reverse implication is also true.

Corollary 3.2. Let α be a Zd-action by automorphisms of a compact,
abelian, zero-dimensional group X. The following conditions are equiv-
alent.

(1) α has completely positive entropy;
(2) α is r-mixing for every r ≥ 2.

Proof. Since X is zero-dimensional, every prime ideal p associated
with the Rd-module M = X̂ arising from α via (2.3)–(2.4) contains
a nonzero constant, so that p(p) > 0. According to Theorem 6.5 in
[7], this implies that α has completely positive entropy if and only
if p = p(p) · Rd for every prime ideal p associated with M, and the
equivalence of (1) and (2) follows from Theorem 2.2 and Theorem 3.1
(1). �

The next corollary shows that the higher order mixing behaviour of
Zd-actions by automorphisms of compact, connected, abelian groups
is quite different from the zero-dimensional case, and requires no as-
sumptions concerning entropy.

Corollary 3.3. Let d ≥ 1, and let α be a mixing Zd-action on a
compact, connected, abelian group X. Then α is r-mixing for every
r ≥ 2.
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Proof. The group X is connected if and only if the dual group X̂ is
torsion-free, i.e. if and only if na 6= 0 whenever 0 6= a ∈ X̂ and 0 6=
n ∈ Z. We write M = X̂ for the Rd-module defined by α via (2.3)–
(2.4), note that the connectedness of X implies that p(p) = 0 for every
prime ideal p ⊂ Rd associated with M, and apply Theorems 2.2 and
3.1 (2). �

Corollary 3.4. Let A1, . . . , Ad be commuting automorphism of the n-
torus Tn = Rn/Zn with the property that the Zd-action α : (m1, . . . ,md) →
α(m1,...,md) = Am1

1 · · ·Amd
d is mixing. Then α is r-mixing for every r ≥ 2.

The proof of Theorem 3.1 (2) depends on a result by Schlickewei [9].
Let K be an algebraic number field of degree D, and let P (K) be the
set of places and P∞(K) the set of infinite (or archimedean) places of
K. For every v ∈ P (K), | · |v denotes the associated absolute value,
normalized so that |a|v is equal to the standard absolute value |a| if
v ∈ P∞(K) and a ∈ Q, and |p|v = p−1 if v lies above the rational prime
p. Let S, P∞(K) ⊂ S ⊂ P (K), be a finite set of cardinality s. An
element a ∈ K is an S-unit if |a|v = 1 for every v ∈ P (K) r S.

Theorem 3.5. (Schlickewei) Let a1, . . . , an be nonzero elements of
K. Then the equation

(9) a1v1 + · · ·+ anvn = 1

has not more than

(4sD!)236nD!s6

solutions (v1, . . . , vn) in S-units such that no proper subsum ai1vi1 +
· · ·+ aikvik vanishes.

Proof. Proof of Theorem 3.1 (2) For every field F we set F× = F r
{0}. Let Q ⊂ C be the algebraic closure of Q, and let V (p) = {c =

(c1, . . . , cd) ∈ (Q×
)d : f(c) = 0 for every f ∈ p} and VC(p) = {c =

(c1, . . . , cd) ∈ (C×)d : f(c) = 0 for every f ∈ p}.
Suppose that αRd/p is not r-mixing for some r ≥ 3, and that r

is the smallest integer with this property. According to (2.8) there
exists a nonzero element (a1, . . . , ar) ∈ (Rd/p)r and a sequence (n(m) =

(n
(m)
1 , . . . ,n

(m)
r ), m ≥ 1) in (Zd)r such that limm→∞ n

(m)
l − n

(m)
l′ = ∞

whenever 1 ≤ l′ < l ≤ r, and un
(m)
1 · a1 + · · · + un

(m)
r · ar = 0 for

every m ≥ 1. For simplicity we assume that n(m) 6= n(n) whenever

1 ≤ m < n, and that n
(m)
1 = 0 for all m ≥ 1. The minimality

of r is easily seen to imply that ai 6= 0 for i = 1, . . . , r. Choose
fi ∈ Rd such that ai = fi + p, i = 1, . . . , r, set, for every c ∈ VC(p) and
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m = (m1, . . . ,md) ∈ Zd, cm = cm1
1 · · · cmd

d , and note that

(10) f1(c) + f2(c)c
n

(m)
2 + · · ·+ fr(c)c

n
(m)
r = 0

for all c ∈ VC(p) and m ≥ 1.
If V (p) is finite, then V (p) = VC(p) consists of the orbit of a single

point c = (c1, . . . , cd) under the Galois group Gal[Q : Q], and the
assumption that αRd/p is mixing is equivalent to saying that cm 6= 1
whenever 0 6= m ∈ Zd. The evaluation map f → f(c), f ∈ Rd, has
kernel p, and may thus be regarded as an injective homomorphism
from Rd/p into C; in particular, f1(c) · · · fr(c) 6= 0. We denote by K
the algebraic number field Q(c) = Q(c1, . . . , cd) and set S = P∞(K) ∪
{v ∈ P (K) : |ci|v 6= 1 for some i ∈ {1, . . . , d}}. Then S is finite, and
Schlickewei’s Theorem 3.5 implies that the equation

−f2(c)

f1(c)
v2 − · · · −

fr(c)

f1(c)
vr = 1

has only finitely many solutions (v2, . . . , vr) in S-units such that fi1(c)vi1+
· · ·+ fik(c)vik 6= 0 whenever 1 < i1 < · · · < ik ≤ r. However, the prop-

erties of c and S imply that the vectors (cn
(m)
2 , . . . , cn

(m)
r ), m ≥ 1, are all

distinct, and that cn
(m)
i is an S-unit for every i = 2, . . . , r and m ≥ 1.

From (10) we conclude that, for all but finitely many m ≥ 1, one of

the subsums fi1(c)c
n

(m)
i1 + · · ·+fik(c)c

n
(m)
ik vanishes. For some choice of

1 < i1 < · · · < ik ≤ r we obtain an infinite set M of positive integers

such that fi1(c)c
n

(m)
i1 + · · ·+ fik(c)c

n
(m)
ik = 0 for every m ∈ M , and this

is easily seen to imply that αRd/p fails to be k-mixing, where k < r,
contrary to the minimality of r.

A moment’s reflection shows that we have now proved enough to
obtain Corollary 3.4. For Theorem 3.1 (2) and Corollary 3.3, however,
we have to deal with the case where V (p) is infinite. Since p(p) = 0,
the natural homomorphism ι : N = Rd/p 7−→ N = Q⊗Z N, defined by
a → 1⊗ a for every a ∈ N, is injective, and we put zi = ι(ui + p) and
zd+i = ι(u−1

i +p) for i = 1, . . . , d. Noether’s normalization lemma ([1]),
applied to the Q-algebra N , allows us to find an integer t ∈ {1, . . . , 2d}
and Q-linear functions w1, . . . , wt of the elements z1, . . . , z2d such that
{w1, . . . , wt} is algebraically independent over Q and each z1, . . . , z2d

is integral over Q[w1, . . . , wt]. We choose and fix monic polynomials
Qi ∈ Q[w1, . . . , wt][y] = Q[w1, . . . , wt, y] such that Qi(w1, . . . , wt, zi) =
0 for i = 1, . . . , 2d and regard each Qi either as a polynomial in y with
coefficients in Q[w1, . . . , wt], or as an element of Q[w1, . . . , wt, y].

Put WC(p) = {(c1, . . . , cd, c
−1
1 , . . . , c−1

d ) : (c1, . . . , cd) ∈ VC(p)} ⊂ C2d,
define a surjective map ω : WC(p) 7−→ Ct by ω(c) = (w1(c), . . . , wt(c))
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for every c ∈ WC(p), and note that VC(p) = π(WC(p)) ⊂ (C×)d ⊂ Cd,
where π : C2d 7−→ Cd is the projection onto the first d coordinates.
We write R ⊂ Q for the set of rational numbers which occur as one
of the coefficients of one of the linear maps wi (regarded as a rational
linear map in 2d variables), or of one of the polynomials Qi (regarded
as a polynomial in t + 1 variables with rational coefficients), and let P
denote a nonempty, finite set of rational primes which contains every
prime divisor appearing in any element of R (either in the numerator or
the denominator). Put K = {a+ b

√
−1 : a, b ∈ Q} and denote by S ′ ⊂

P (K) the (finite) set of all places of K which are either infinite, or which
lie above one of the primes in P . There exists an integer D ≥ 1 such
that, for every β = (β1, . . . , βt) ∈ Kt and γ = (γ1, . . . , γ2d) ∈ ω−1(β),
the algebraic number field K(γ) generated by K and (γ1, . . . , γ2d) has
degree (K(γ) : K) ≤ D. Then K(γ) has at most D distinct places
above every place of K, and it follows that the cardinality |S(γ)| of the
set S(γ) of places of K(γ) which lie above one of the elements of S ′ is
bounded by D · |S ′|, where |S ′| is the cardinality of S ′.

Let Σ ⊂ K be the set of S ′-units, and let β = (β1, . . . , βt) ∈ Σt ⊂ Kt.
We claim that every coordinate of every γ = (γ1, . . . , γ2d) ∈ ω−1(β)
is an S(γ)-unit. Indeed, if v′ ∈ P (K) r S ′, and if v ∈ P (K(γ)) lies
above v′, then γi is a root of the monic polynomial Qi(β, y) ∈ K[y], and
each coefficient ζ of Qi satisfies that |ζ|v′ ≤ 1. It follows that |γi|v ≤ 1
for i = 1, . . . 2d. In particular, since γ−1

i = γi+d for i ∈ {1, . . . , d},
we obtain that |γ−1

i |v = (|γi|v)−1 ≤ 1, so that |γi|v = |γi+d|v = 1, as
claimed.

Since Σ is dense in C, the set Ω = π(ω−1(Σt)) ⊂ V (p) is dense in
VC(p), and for every c = (c1, . . . , cd) ∈ Ω we either have that f1(c) = 0

and f2(c)c
n

(m)
2 + · · ·+fr(c)c

n
(m)
r = 0 for every m ≥ 1, or that f1(c) 6= 0,

in which case case Schlickewei’s theorem implies that the equation

−f2(c)

f1(c)
v2 − · · · −

fr(c)

f1(c)
vr = 1

has at most C = (4D|S ′|D!)236(r−1)D!(D|S′|)6 distinct solutions (v2, . . . , vr)
in S-units for which no subsum fi1(c)vi1 + · · ·+ fik(c)vik vanishes. For
all 1 ≤ m < n, k < r, and {i1, . . . , ik} ( {1, . . . , r} with 1 ≤ i1 < · · · <
ik ≤ r, we set Φ(m,n) = {c ∈ VC(p) : cn

(m)
i = cn

(n)
i for i = 2, . . . , r} and

Ψ(i1, . . . , ik)
(m) = {c ∈ VC(p) : fi1(c)c

n
(m)
i1 + · · · + fik(c)c

n
(m)
ik = 0}. As

we have just seen,

(11) Ω ⊂
⋃

s≤m<n≤C+s+2

⋃
{i1,...,ik}({1,...,r}

Ψ(i1, . . . , ik)
(m) ∪ Φ(m,n)
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for every s ≥ 1. Since the sets appearing in the right hand side of (11)
are all closed subsets of the perfect set VC(p), we obtain that

VC(p) =
⋃

s≤m<n≤C+s+2

⋃
{i1,...,ik}({1,...,r}

Ψ(i1, . . . , ik)
(m) ∪ Φ(m,n)

for every s ≥ 1. As the ideal p ⊂ Rd is prime, the variety VC(p)
must, for every s ≥ 1, be contained in one of the sets Ψ(i1, . . . , ik)

(m)

or Φ(m,n) with s ≤ m < n ≤ C + s + 2 and {i1, . . . , ik} ( {1, . . . , r}.
The second possibility is excluded by our assumption that αRd/p is
mixing, and we conclude that there exists, for infinitely many m ≥ 1,
a subset {i1, . . . , ik} ( {1, . . . , r} (depending on m) such that VC(p) ⊂
Ψ(i1, . . . , ik)

(m). Since there are only finitely many such subsets we
obtain that αRd/p fails to be k-mixing for some k < r, contrary to
the minimality of r, exactly as in the case where V (p) is finite. This
contradiction implies that αRd/p is r-mixing for every r ≥ 2. �
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