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ABSTRACT 

We develop a hyperbolic cash management model based on the Pearson Type IV probability 

density which minimises extreme variations in firm cash balances.  Since the moments for the 

Type IV probability density are in general undefined and maximum likelihood estimation is 

compromised by the non-algebraic nature of the Type IV normalising constant, parameter 

estimation is implemented using the 2  minimum method.  Empirical analysis shows that the 

Type IV density is highly compatible with the quarterly cash flow data of a randomly 

selected sample of 100 large U.S. corporations.  In contrast, around sixty per cent of the 100 

corporations return Jarque-Bera test statistics which are incompatible with the Gaussian 

probability density.     
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1.  Introduction 

Much has been written on the issue of determining optimal cash holdings by firms.  The 

seminal work is that of Miller and Orr (1966) and is based on the assumption that firm cash 

balances evolve in terms of a pure random walk (Karlin and Taylor 1981, 342).  Doubts about 

the empirical validity of the random walk assumption have been expressed by a number of 

authors (Tapiero and Zuckerman 1980; Higson et al. 2010; da Costa Moraes et al. 2015; 

Wang et al. 2018), including Miller and Orr (1966, 430) themselves.  Hence, our purpose 

here is to propose and then empirically validate a more general cash management model 

based on hyperbolic cash flows and probabilities.2   

 

We commence our analysis in the next section with a brief summary of the prior literature.  In 

section 3 we follow Miller and Orr (1966) in assuming firms implement cash management 

policies which minimise the likelihood of their productive processes being disrupted by 

extreme variations in their cash balances.3  Here, cash injections and withdrawals are used to 

minimise the expected integral sum of the discounted squared cash balances held by the firm 

over time.  The optimal control for cash injections and withdrawals is then determined using 

the Hamilton-Jacobi-Bellman fundamental equation of optimality based on Bartlett’s general 

polynomial representation of a diffusion process (Cox and Miller 1965, 218).  We show in 

particular that in unconditional form, a truncated interpretation of Bartlett’s representation 

leads to cash flows that evolve in terms of the Pearson Type IV probability density 

(Leonenko and Phillips 2012, 2866; Grigelionis 2013, 67; Shaw and Schofield 2015, 983-

984).  In section 4 we address the issue of parameter estimation - something which Kendall 

and Stuart (1977, 163) note is a particular difficulty with the empirical implementation of the 

                                                 
2 Jones and Pewsey (2009, 761-762) refer to the particular functional forms employed in our analysis as the sinh-

arcsinh class of transformations. 

 
3 The European sovereign debt crisis under which the European Central Bank provided loans of more than one 

trillion euro to maintain money flows between European banks, demonstrates the devastating effect that extreme 

variations in the availability of cash can have on commercial and industrial activities.  
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Pearson Type IV probability density.  Here we show that the moments for the Type IV 

probability density are in general undefined (that is, non-convergent).  Moreover, we also 

note how the non-algebraic nature of the Type IV normalising constant compromises 

parameter estimation based on the maximum likelihood procedure (Heinrich 2004, 5).  Given 

this, parameter estimation is implemented using the 2“  minimum method” based on the 

Cramér-von Mises goodness of fit statistic as summarised by Cramér (1946, 426-427).4  

Section 5 illustrates parameter estimation for the Type IV probability density based on the 

2  minimum method and the quarterly cash and cash equivalent balances of 100 randomly 

selected U.S. corporations covering the period from 2006 until 2017.  Chi-square goodness of 

fit test statistics based on these parameter estimates demonstrate that that the Type IV 

probability density is strongly compatible with the quarterly cash and cash equivalent balance 

data of all but four of the 100 corporations on which our empirical analysis is based.  In 

contrast, around sixty per cent of the 100 corporations return statistically significant Jarque 

and Bera (1980) test statistics - thereby signifying that it is highly unlikely the quarterly cash 

and cash equivalent balance data are compatible with the random walk assumptions on which 

the Miller and Orr (1966) and many subsequent cash management models, have been based. 5  

Section 6 provides our summary conclusions. 

 

 

 

                                                 
4 Mood, Graybill and Boes (1974, 286-287) refer to this procedure as the “minimum distance method”.  Avni 

(1976) and Berkson (1980) develop its major mathematical properties and in particular, compare its efficiency 

with maximum likelihood parameter estimation procedures.  Guo et al. (2016) and Chen et al. (2016) give a 

detailed exposition of how the 
2  minimum method may be empirically implemented. 

 
5 The Jarque and Bera (1980, 256) test is based on the null hypothesis of Gaussian distributed data against the 

alternative hypothesis that the data are generated by one of the Pearson family of probability densities.  This 

means the Jarque-Bera test will have maximum asymptotic power in discriminating between the random walk 

(that is, Gaussian) distributional assumptions on which the Miller and Orr (1966) cash management model is 

based (Karlin and Taylor 1981, 342) and the Pearson Type IV probability density on which the cash management 

model developed here is based. 

http://en.wikipedia.org/wiki/Pearson_distribution
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2.  Literature Review 

The literature describes a multitude of potential approaches to the modelling of optimal cash 

balances held by firms; namely, deterministic models (including linear and dynamic 

programming techniques), stochastic models, mixed deterministic-stochastic models, 

simulation models and evolutionary models, to name some of the more important approaches 

which appear in the literature (da Costa Moraes et al. 2015).  This literature review, however, 

focuses on stochastic cash management models only and more particularly, on continuous-

time variants of these models. 

 

Undoubtedly the seminal work by Miller and Orr (1966) is the key paper in the area of 

stochastic cash balance modelling (Karlin and Taylor 1981, 211-212). These authors are the 

first to develop the hitherto deterministic cash models into a truly stochastic model that 

determines optimal cash management policies for the firm.  Their approach imposes upper 

and lower control limits on the cash balance which are determined by minimising the 

expected annual cost of maintaining the firm’s cash balances.  Cash balances are assumed to 

evolve in terms of a pure random walk.  Here, however, Miller and Orr (1966, 430) 

acknowledge that modelling cash flow behaviour in terms of a pure random walk is 

seemingly at odds with empirical observation in the sense that management invariably has at 

least partial control over the cash balances maintained by the firm.  Given this, the Miller and 

Orr (1966) model has subsequently been refined and expanded to include features such as the 

admission of negative cash flows, variable and fixed transaction costs and, importantly, 

continuous-time probability distributions.  Amongst the papers that have contributed to these 

improvements are Eppen and Fama (1969), Daellenbach (1971), Hinderer and Waldmann 

(2001), Gormley and Meade (2007) and Yao, Chen, and Lu (2006) and Wang et al. (2018).  

For a more detailed overview of these and other papers, one may refer to Mallaris (1989) and, 

more recently, da Costa Moraes et al. (2015). 
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Vial (1970) and Constantinides (1976) are early publications that show the importance of the 

Wiener process in the modelling of cash balances.  Numerous authors have followed in their 

footsteps, and tried and tested a variety of stochastic specifications derived from the general 

Itô specification.  Premachandra (2004), for example, assumes that cash balances are 

governed by a diffusion process with upper and lower control limits; he then relaxes the strict 

random walk assumptions behind the Miller and Orr (1966) model by allowing the time it 

takes for cash to be withdrawn or deposited into the firm’s bank account to be described by 

an exponential random variable with given mean and variance.  Baccarin (2009) describes 

fluctuating cash balances as a homogeneous diffusion process in a multidimensional n  

Wiener probability space.  Frenkel and Jovanovic (1978) and Smith (1986) examine the 

suitability of the Uhlenbeck and Ornstein (1930) diffusion process for the modelling of cash 

balance processes.  Wang et al. (2018) invoke the neoclassical tradition of assuming 

economic agents (that is, firm managers) maximise the utility from holding cash (Patinkin 

1965) but where the cash balance is constrained to evolve in terms of a “safe area” which 

insures that specific levels of liquidity are maintained.  The Wang et al. (2018) analysis 

assumes in particular that cash earns a known risk free rate of return whilst the risky assets in 

which the firm invests have values which evolve in terms of a Geometric Brownian Motion.  

Basing their analysis on Merton (1969) they then determine the “safe area” liquidity strategy 

which maximises the expected utility from holding cash.  Based on the expectation that the 

demand for cash grows if the size of the organisation expands, Higson et al. (2010) propose a 

(non-stationary) square root process for the modelling cash balances - an approach that 

results in optimal cash management policies that are fundamentally different to those 

obtained under the Miller and Orr (1966) specification.  Other stochastic processes have also 

been advanced as, for example, the compound Poisson process implemented by Tapiero and 

Zuckerman (1980). 
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We now follow Miller and Orr (1966) in developing a model in which firms implement cash 

management policies that minimise the likelihood of their productive processes being 

disrupted by extreme variations in their cash balances.  However, we avoid the pure random 

walk assumptions on which the Miller and Orr (1966) cash management model is based by 

using the hyperbolic cash flows and probabilities which lead to the Pearson Type IV 

probability density.  This will mean that firm cash flows are comprised of deterministic fixed 

and variable components and a stochastic element that grows in volatility as the cash flow 

itself grows in absolute magnitude (Black 1995, Cox, Ingersoll and Ross, 1985).  

 

3.  Hyperbolic Cash Balance Model 

Let x(t) be the balance on a firm’s bank account (that is, its cash balance) at time t.  It then 

follows )()()( txdttxtdx   will be the cash flow that accrues to the firm’s bank account 

over the infinitesimal period from t until ).( dtt    Moreover, one can use Bartlett’s general 

polynomial representation of a diffusion process (Cox and Miller 1965, 218) in conjunction 

with the hyperbolic transformations of Jones and Pewsey (2009, 761-762) to provide a 

general description of the infinitesimal cash flow earned by a firm using the following 

stochastic differential equation: 6 

 

                           )(}
2

)(
{1)}()({)( 22

0 tdq
txk

kdttDtxtdx                   (1) 

                                                 
6  Bartlett (1955, 83) considers the class of stochastic  differential equations of the following general form: 
 

)()()()( tdqxdtxtdx    

 

where (x) and (x) are analytic functions and dq(t) is a white noise process with unit variance parameter.  

Bartlett (1955) then applies Taylor expansions to (x) and (x) which can be truncated at any given order of 

approximation.  Our analysis is based on a linear approximation for (x) and a quadratic approximation for (x).  

However, the quadratic approximation for (x) is stated in such a way as to permit the use of the inverse sinh 

transformations of Jones and Pewsey (2009) to simplify the Fokker-Planck equation and thereby facilitate the 

determination of the  probability density associated with the truncated interpretation of the stochastic differential 

equation.  The inverse sinh transformation applied in our analysis is in fact a parsimonious interpretation of the 

Lamperti Transform of Møller, and Madsen (2010, 11). 
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Here 
0,, k  and 2k  are parameters and dq(t) is a white noise process with unit variance 

parameter.  Moreover, D(t) represents infinitesimal cash withdrawals and injections into the 

firm’s bank account (borrowing, the liquidation of assets held by the firm, the purchase of 

available for sale securities, etc.) and is configured so as to minimise the likelihood of the 

firm’s productive processes being disrupted by extreme variations in its cash balances over 

time.7  The magnitude of time series variations in the firm’s cash balances is modelled by the 

integral sum of the discounted squared cash balances held by the firm, in which case D(t) is 

determined so as to satisfy the following criterion:   

                                            })]()([{),( 2




 
t

s

D

dssDsxeEtxGMin                       (2) 

 

and where  is the interest (or discount) rate applied to future cash balances and E(·) is the 

expectation operator.  Here, one can use the differential equation (1) describing the evolution 

of the firm’s infinitesimal cash flows in conjunction with equation (2) to specify the 

Hamilton-Jacobi-Bellman fundamental equation of optimality; namely (Arnold 1974, 212-

213): 
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                                                                                                                                  (3)                                                                                                 

 

Differentiating through the above expression will then lead to the following inter-temporal 

envelope condition:8 

                                                 
7 See Keynes (1936, 194-199) for a detailed summary of the factors which influence the determination of D.  

These include what Keynes broadly defined as the transactions, precautionary and the speculative demand for 

money. 

 
8  The envelope condition is determined from the requirement: 
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One can then substitute the envelope condition back into equation (3) and thereby show that 

the optimised interpretation of the Hamilton-Jacobi-Bellman equation is given by: 
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                                                                                                                                   (5)  

 

Moreover, one can simplify the above expression by letting )(),( xJetxG t  in which case 

it follows )(xJe
x

G t 


   and )(
2

2

xJe
x

G t 


 
.  Substitution will then show that the 

optimised Hamilton-Jacobi-Bellman equation assumes the following canonical form: 
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4
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0 22

0

2 xJxJ
xk

kxJxxJ             

                                                                                                                                 (6) 

 

To solve the above differential equation we take as a trial solution (Merton 1969, 250): 

 

                                                         2)()( bxacxJ                                          (7) 

 

where a, b and c are chosen so as to insure that (7) satisfies the differential equation (6) for 

the given (that is, known) values of ,0k  ,2k   and  as given in equation (1).  Substitution 

will then show that 
c

b 2

  and: 

 

                                                                                                                                                        
Moreover, since ,02)(   teD   the envelope condition represents the abscissa of a minimum. 
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Furthermore, substituting )(2)( bxabexJe
x

G tt 


    into the envelope condition (4) 

will then mean that the optimal control for cash withdrawals and injections will take the 

form: 

  

                                                      )( bxabxD                                                  (9) 

 

Hence, using this result in conjunction with equation (1) will then show that the balance on 

the firm’s bank account, x, will evolve in terms of the following differential equation: 
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where )( baA    and ).1( 2bB     Equipped with these results, we now determine 

the distributional properties of the firm’s cash balances by invoking the Fokker-Planck 

equation based on the differential equation (10).   

 

4.  Distributional Properties and Parameter Estimation 

 

We begin our analysis in this section by making the substitution (Jones and Pewsey 2009): 
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into the differential equation (10).  Now, here it will be noted: 
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Using these results in conjunction with Itô’s formula will then show: 
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or equivalently: 
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Moreover, simple algebraic manipulation will demonstrate that the above expression is 

equivalent to: 
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Now, here it will be recalled from equation (11) that )
2

sinh()(
2

2

0

2 zk
ktx

k
  in which case 

we have: 
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One can then substitute equation (11) and equation (14) into equation (13) and thereby show 

that the transformed bank balance will evolve in accordance with the following differential 

equation: 
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It then follows that infinitesimal increments in the transformed bank balance will have a 

mean (per unit time) of: 
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whilst its variance (again on a per unit time basis) has been stabilised to: 
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a result which streamlines much of our subsequent analysis.  Moreover, when 
4

2

2k
B   and 

22

20kk
A   the firm’s transformed bank balance, z, will evolve in terms of a pure white noise 

process.  Thus, integrating through equation (15) using the given parameter values will mean 

that the simple canonical interpretation of the hyperbolic cash balance model given here 

implies (Cox and Miller 1965, 209-210): 
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 will evolve in terms of the standard normal probability density.   

 

For the more general case, the Fokker-Planck (that is, forward Kolmogorov) equation shows 

that the conditional probability density for the transformed bank balance, g(z,t), is related to 

the mean and variance of infinitesimal increments in the transformed bank balance through 

the following result (Cox and Miller 1965, 213-215):  
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Substituting equation (16a) for the infinitesimal mean and equation (16b) for the infinitesimal 

variance of the transformed bank balance into equation (18) will then show that the Fokker-

Planck equation becomes: 
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Now, let us suppose that the transformed bank balance has an unconditional probability 

density which is independent of the bank account’s opening balance – that is, is independent 

of the initial condition, x(0).  It then follows (Karlin and Taylor 1981, 220-222):  
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in which case the Fokker-Planck equation reduces to the following ordinary differential 

equation: 
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Moreover, integrating through this equation will then show: 
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where 1c  is a constant of integration.  One can then multiply through this latter equation by 

the integrating factor (Boyce and DiPrima 2005, 36):  
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and thereby show that the Fokker-Planck equation has the following equivalent 

representation: 
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Integrating across the above equation and setting 01 c 9 will then show that the stationary 

(that is, unconditional) probability density for the transformed bank balance will take the 

form: 
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9 Without this condition the differential equation will lead to a non-convergent distribution function and a 

stationary probability density will not exist (Karlin and Taylor 1981, 221). 
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or, upon substitution: 
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where, as previously, ),( baA    0)1( 2  bB  and 2c  is a second constant of 

integration determined so as to ensure a unit probability mass.  An exact parametric 

expression for the normalising constant is given by (Heinrich 2004, 5): 
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where )(  is the gamma function, 1i  is the pure imaginary number and  denotes 

the complex norm.  Moreover, Heinrich (2004, 5) shows how the normalising constant can be 

evaluated in terms of the hypergeometric function (Abramowitz and Stegun 1964, 556) – 

although “convergence is slow” and “CPU-intensive even when only moderate precision is 

required.”  These factors combined with the non-algebraic nature of the normalising constant 

will mean that it is difficult to obtain reliable estimates of parameters using the Maximum 
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Likelihood procedure (Kendall and Stuart 1977, 163; Nagahara 1999; Jones and Pewsey 

2009, 768).   

 

A commonly employed alternative, however, involves estimating parameters using the 

(Generalised) Method of Moments (Hall 2005).  For this one must apply logarithmic 

differentiation to the density function, g(x), in which case it follows: 
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Moreover, multiplying through the above equation by jk
xk

)
2

( 0

2   for integral values of j and 

integrating over the real line, will show: 
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On applying integration by parts to the left hand side of the above expression we end up with: 
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or equivalently: 
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and where, as previously, E(·) is the expectation operator.  Thus, setting j = 0 in this formula 

will show:  
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Furthermore, setting j = 1 and substituting equation (28) into equation (29) will also show: 
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Similar calculations will show that the third (j = 2) and fourth (j = 3) moments are, 

respectively: 
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and: 
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Expressions for the central moments are easily determined from the above results, as for 

example, the mean of the firm’s cash balance which is given by: 
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Similarly, the variance of the firm’s cash balance will be given by: 
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or, upon substitution: 
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where, as previously, )(Var  is the variance operator.  Similar calculations may be used to 

determine the third, fourth and all higher central moments for the balance on the firm’s bank 
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account.  More important, however, is the observation that the moments will in general be 

undefined (as, for example, with the variance when 1
4

2

2


k

B
 or ).2

4
2

2


k

B 10  The potential 

absence of convergent moments will mean parameter estimation based on the (Generalised) 

Method of Moments may be both inconsistent and inefficient.  Hence, given the limitations of 

the Maximum Likelihood and (Generalised) Method of Moments techniques in the present 

context, parameter estimation is conducted using the 2“  minimum method” based on the 

Cramér-von Mises goodness of fit statistic as summarised by Cramér (1946, 426-427).  

 

5.  Data and Empirical Analysis 

 

Our data are comprised of the quarterly cash and cash equivalent balances (Compustat item 

74) for 100 randomly selected North American corporations covering the period from 2006 

until 2017 as summarised in the first three columns of Table 1.11   Thus, for Canam Group 

Inc. our analysis is based on 41N  quarterly cash and cash equivalent balance observations 

covering the period from 31 March, 2006 until 31 March, 2017.  To calculate the Cramér-von 

Mises goodness of fit statistic one must first order these cash balance figures from the lowest 

cash balance up to the highest cash balance.  For Canam Group Inc., we then have 

498.2$1 w  to be the lowest quarterly cash balance, 641.3$2 w  to be the second lowest 

cash balance, 690.4$3 w  to be the third lowest cash balance and so on, right up to the 

largest cash balance figure which is .393.67$41 w   The Cramér-von Mises goodness of fit 

statistic, T3, is then determined from the following formula (Kendall and Stuart 1979, 476):  
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                           (35)                               

                                                 
10 See Heinrich (2004, 4) for a more detailed discussion of this issue. 

 
11 With a few exceptions, 2006 is the earliest date from which quarterly cash and cash equivalent balances data are 

available on the Compustat file. 
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estimated so as to minimise the Cramér-von Mises goodness of fit statistic (35). 12  Thus, in 

the case of Canam Group Inc., Table 1 shows that the 41N  quarterly cash and cash 

equivalent balance observations covering the period from 31 March, 2007 until 31 March, 

2017 lead to a minimised Cramér-von Mises goodness of fit statistic of  0.02253 T  as 

summarised in the seventh column of Table 1.  Moreover, the minimised Cramér-von Mises  

________________________________________________ 

 

INSERT TABLE ONE ABOUT HERE 

_________________________________________________ 

 

goodness of fit statistic is based on the estimated parameter values 0.1132,1   -4.34242   

and  1.40833   as summarised in the fourth, fifth and sixth columns of Table 1.   

 

The 41N  ordered quarterly cash and cash equivalent balances comprising our Canam 

Group Inc. sample data were then divided into seven groups containing 6 or 7 observations 

                                                 
12 Note how equation (35) shows that the Cramér-von Mises goodness of fit statistic, T3, is based purely on the 

vertical distance between the hypothesised distribution function and the empirical distribution function as derived 

from the ordered random sample of cash and cash equivalent balance observations, w1, w2, w3,____, wN (Mood, 

Graybill and Boes (1974, 286-287).  Thus, the determination of the test statistic, T3, does not require 

differentiation of the likelihood function (as in maximum likelihood) or the estimation of possibly non-convergent 

moments (as with the Generalised Method of Moments).  
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each and the Chi-square goodness of fit test applied on the assumption that the cash and cash 

equivalent balances are drawn from the probability density (25) with the above parameter 

values.  Since our analysis is based on the estimation of three composite parameters, the 

computed Chi-square goodness of fit statistic summarised in the penultimate column of Table 

1 - namely, 1.58062   - will possess 3)47(   degrees of freedom (Walker 1940, 263; 

Conover 1980, 191).  This in turn shows that the Canam Group Inc. cash and cash equivalent 

balance data are strongly compatible with the probability density (25).  Here, the first panel 

of Figure 1 provides a graphical representation of the difference between the Pearson Type 

IV probability distribution function for the Canam Group Inc. based on the above parameter  

________________________________________________ 

 

INSERT FIGURE ONE ABOUT HERE 

_________________________________________________ 

 

values and the actual (that is, empirical) probability distribution function.  The second panel 

of Figure 1 is a graph of the probability density for the Canam Group Inc. normalised cash 

and cash equivalent balance data with the above parameter values.  This latter graph depicts 

the normalised Canam Group Inc. cash and cash equivalent balances in terms of a highly 

skewed and highly leptokurtic probability density.  These results are in direct contrast to the 

Jarque-Bera statistic for the Canam Group Inc. sample cash and cash equivalent balance data 

which amounts to 82.0678JB  as summarised in the final column of Table 1.  Since the 

Jarque-Bera statistic is asymptotically distributed as a Chi-square variate with two degrees of 

freedom it necessarily follows that a test statistic of this magnitude is highly incompatible 

with the hypothesis that the Canam Group Inc. cash and cash equivalent balances evolve in 

terms of the Gaussian probability density.13   

                                                 
13 Simulation results summarised by Jones and Pewsey (2009, 772-774) show that the Jarque-Bera test “has the 

best overall performance” in comparison with six other widely used tests of compatibility with the Gaussian 

probability density. 
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Data and empirical results for the other corporations summarised in Table 1 are to be 

similarly interpreted.  Note in particular how all but four of the 100 corporations return Chi-

square goodness of fit test statistics that are generally well below the upper 5% tail of the 

Chi-square density with three degrees of freedom (the exceptions being Akorn Inc., Alliant 

Energy Corp., Oshkosh Corp. and Span-America Medical Systems).  This indicates that the 

cash and cash equivalent balances for the corporations summarised in Table 1 are strongly 

compatible with the probability density (25).  In contrast, 59 (that is, nearly 60%) of the 100 

corporations comprising our sample have Jarque-Bera test statistics which fall above the 

upper 5% tail of the Chi-square density with two degrees of freedom.  This in turn shows it is 

highly unlikely the cash and cash equivalent balances for the sampled corporations are 

compatible with the pure random walk assumption on which the Miller and Orr (1966) and 

many subsequent cash management models have been based.  

 

6.  Summary Conclusions 
 

Miller and Orr (1966) determine optimal cash balance policies under the assumption that cash 

balances evolve in terms of a pure random walk.  The present paper develops a hyperbolic 

model under which cash balances evolve in terms of the Pearson Type IV probability density.  

The moments for the Type IV are in general undefined.  Moreover, maximum likelihood 

parameter estimation is compromised by the non-algebraic nature of the Type IV normalising 

constant.  We thus implement parameter estimation using the 2  minimum method as 

summarised by Cramér (1946, 426-427).  Our empirical analysis shows that the Type IV 

probability density is strongly compatible with the quarterly cash flow data of a randomly 

selected sample of 100 large U.S. corporations.  In contrast, 60% of the corporations return 

Jarque-Bera test statistics which are not consistent with the pure random walk assumption on 
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which the Miller and Orr (1966) and many subsequent cash management models have been 

based. 



Table 1. Parameter estimates for 100 randomly selected U.S. corporations based on the hyperbolic cash balance model 
 

CORPORATION TIME PERIOD N 1  2  3  

CRAMER 

3T  
CHI-

SQ(3) J-B(2) 

         

ACADIA PHARMACEUTICALS 03/2007-09/2017 43 0.0277 -6.1855 1.3498 0.1709 4.1180 11.5942 

ACETO CORP 09/2006-09/2017 45 0.0540 -34.0643 2.9299 0.0325 3.3853 8.5604 

AEROJET ROCKETDYNE  02/2007-09/2017 43 0.3998 -0.4779 1.4833 0.0275 1.3670 15.6684 

AGILYSYS INC. 06/2007-09/2017 42 0.0461 -1.5214 1.6201 0.0449 2.3400 962.4622 

AKORN INC. 06/2007-09/2017 43 0.0979 -13.8725 1.8250 0.1179 8.9431 12.8276 

ALLIANT ENERGY CORP. 03/2007-09/2017 43 0.0755 -13.5335 1.6815 0.1193 11.0718 75.9117 

ALTRIA GROUP INC. 03/2006-09/2017 47 0.0298 -14.3202 6.4552 0.0231 2.0228 4.3408 

AMGEN INC. 03/2007-09/2017 43 0.3547 -0.2540 1.3199 0.0216 1.2178 15.2959 

AMERICAN VANGUARD CORP. 03/2007-09/217 43 0.2197 -1.1175 1.3291 0.0470 0.9529 87.1017 

ANALOGIC CORP. 10/2006-10/2017 45 0.0860 -27.6530 14.8278 0.0933 2.5190 14.8278 

ANDREA ELECTRONICS CORP. 03/2007-09/2017 43 0.6225 -5.0205 2.5259 0.0703 4.0552 41.9010 

APPLE INC. 12/2006-09/2017 44 0.0057 -139.82 14.7779 0.0244 2.2703 2.1376 

APPLIED MATERIALS INC. 01/2007-09/2017 44 0.0661 -29.0350 2.2432 0.0753 1.8366 12.9630 

ARK RESTAURANTS CORP. 12/2006-09/2017 44 0.0488 -315.033 64.6422 0.0212 0.8033 2.2079 

ASTRONOVA INC. 12/2006-09/2017 44 0.0558 -147.715 22.0870 0.0401 1.5747 64.6788 

BERKSHIRE HATH ENERGY  03/2009-09/2017 35 0.0049 -113.501 12.1684 0.0598 3.4859 3.0235 

BIG LOTS INC. 04/2007-10/2017 43 0.0552 -0.3255 1.0587 0.0599 1.5834 69.8294 

BRINKER INTERNATIONAL 09/2006-09/2017 45 0.0857 -0.4335 1.2238 0.0301 2.0263 354.1603 

CSP INC. 12/2006-09/2017 44 -0.0470 185.4054 65.8848 0.0241 0.8464 0.9154 

CANAM GROUP INC. 03/2007-03/2017 41 0.1132 -4.3424 1.4083 0.0225 1.5806 82.0678 

CASEYS GENERAL STORES  01/2009-10/2017 36 0.0053 -82.4807 9.1315 0.0573 2.0413 2.8163 

CINTAS CORP. 08/2007-11/2017 42 0.0997 -151.311 53.6387 0.0375 1.1153 14.3631 

COCA-COLA BTLNG CONS. 03/2007-09/2017 43 0.0233 -25.9754 4.0426 0.0308 1.0990 11.5381 

CORCEPT THERAPEUTICS INC. 03/2007-09/2017 43 0.0199 -110.915 7.9684 0.0443 2.4728 15.6975 

CRACKER BARREL OLD 10/2006-10/2017 45 0.5587 -27.6000 6.8594 0.1054 0.7024 2.1760 

DAIMLER AG 03/2007-09/2017 43 0.4947 -0.0426 1.1365 0.0410 2.7943 66.0517 

DATA I/O CORP. 03/2007-09/2017 43 0.1141 -33.47 8.4670 0.0889 4.9746 8.4670 
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DGSE COMPANIES INC. 03/2007-09/2017 43 0.8769 -3.8177 2.0924 0.0187 0.9726 37.4748 

EASTERN COMPANY 03/2007-09/2017 43 -0.1169 18.2228 38.9423 0.0553 1.8300 2.5407 

EMC INSURANCE GROUP INC. 03/2007-09/2017 43 1.2428 -102.86 36.7871 0.0165 0.7657 0.1454 

EMERSON RADIO CORP. 06/2007-09/2017 42 0.0352 -19.8554 14.1693 0.0591 1.5816 0.8951 

EW SCRIPPS-CL A 03/2007-09/2017 43 -0.0496 0.5968 2.4488 0.0675 2.1520 2.5767 

FINNING INTERNATIONAL INC. 03/2007-09/2017 43 0.0658 -4.2306 2.3311 0.0684 1.7801 6.4167 

FLANIGANS ENTERPRISES INC. 12/2006-09/2017 44 0.2212 -16.3417 20.7128 0.0253 0.7583 1.2491 

FOOT LOCKER INC. 04/2007-10/2017 43 -0.1692 44.9040 4.3248 0.0430 2.2867 3.5754 

FOSTER (LB) CO. 03/2007-09/2017 43 -0.1869 11.6691 25.8374 0.0690 1.6944 2.3934 

FRANKLIN ELECTRIC CO INC. 03/2007-09/2017 43 -0.1091 81.5089 163.5250 0.0422 2.0594 2.0515 

FUJITSU LTD 03/2008-09/2017 39 0.2082 -2.4295 1.9612 0.0184 2.8022 25.6981 

GENERAL DYNAMICS CORP. 03/2007-09/2017 43 0.0622 -11.3943 3.8971 0.0397 2.5626 4.6642 

GENESCO INC. 04/2007-10/2017 43 0.0175 -26.7257 8.9822 0.0641 3.7291 25.1982 

GENUINE PARTS CO. 03/2006-09/2017 47 0.0539 -34.9415 2.4520 0.0496 3.0124 29.1638 

GIGA-TRONICS INC. 06/2007-09/2017 42 0.2063 -1.6336 2.2516 0.0273 2.2736 3.2086 

GOODYEAR TIRE & RUBBER  03/2007-09/2017 43 -2.1750 0.1800 2.1697 0.0262 2.4084 0.1403 

GULF POWER CO. 03/2007-09/2017 43 0.0534 -1.7370 1.7137 0.0307 1.8776 220.9687 

HEALTHCARE SERVICES GR. 03/2007-09/2017 43 0.0161 -32.816 8.1832 0.0262 3.5993 2.0205 

HALLIBURTON CO. 03/2007-12/2017 44 0.4043 -0.0520 1.0290 0.0353 0.6378 448.6742 

HEICO CORP. 01/2007-10/2017 44 0.0439 -26.4516 4.0932 0.0406 1.7089 7.7347 

HENRY (JACK) & ASSOCIATES 09/2006-09/2017 45 0.0145 -35.336 2.6035 0.0405 1.3560 6.5445 

HUTCHINSON TECH INC. 12/2006-06/2016 39 0.0335 -9.1025 1.7381 0.0471 1.1018 42.9192 

IKONICS CORP. 03/2007-09/2017 43 0.8030 -33.0607 2.3802 0.0370 2.8896 17.3923 

INTEGRATED DEVICE TECH 06/2007-09/2017 42 0.1392 -27.571 4.2365 0.0270 0.5888 6.2852 

INTERPUBLIC GROUP 03/2007-09/2017 43 -0.0318 274.3779 28.7399 0.0917 6.5550 1.0867 

KEY TRONIC CORP. 09/2006-09/2017 45 0.7686 -3.6344 1.7395 0.0289 0.4178 244.8249 

KIRIN HOLDINGS CO LTD 12/2008-09/2017 36 0.1125 -30.7298 4.5608 0.0339 2.1280 6.4996 

KLA-TENCOR CORP. 09/2007-09/2017 41 0.2069 -29.1773 7.2131 0.0380 1.5139 4.5939 

KONINKLIJKE PHILIPS NV. 03/2007-09/2017 43 0.1865 -34.4605 5.9129 0.0360 2.4982 17.5797 

LEE ENTERPRISES INC. 12/2006-06/2017 43 0.0288 -164.307 33.8190 0.0208 1.2827 0.0877 

LEGGETT & PLATT INC. 03/2007-12/2017 43 -0.0600 345.6526 13.8374 0.1387 3.4057 14.8331 

LOBLAW COMPANIES LTD 03/2007-09/2017 43 0.0450 -176.046 35.9884 0.0555 3.1320 21.5609 
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LSI INDUSTRIES INC. 06/2008-09/2017 38 0.1837 -1.5390 2.0614 0.0439 0.5132 3.2986 

LYDALL INC. 03/2007-09/2017 43 -0.0085 319.7804 12.7798 0.1455 6.7158 4.3910 

MCCORMICK & CO INC. 02/2007-08/2017 43 0.0124 -19.4440 5.3308 0.0366 2.1190 3.4995 

MCDONALD'S CORP. 03/2007-09/2017 43 0.0508 -50.0332 15.4377 0.1188 4.4792 799.1839 

MAXIM INTEGR PRODUCTS 09/2006-09/2017 45 0.1211 -16.9063 4.7375 0.0523 2.0351 3.8425 

MENTOR GRAPHICS CORP. 04/2007-01/2017 40 0.0101 -100.503 2.1369 0.0330 2.1388 9.6152 

MICROSOFT CORP. 09/2007-09/2017 41 0.0601 -2.4824 2.8711 0.0165 1.7322 4.0352 

NANOMETRICS INC. 03/2007-09/2017 43 0.0141 -60.7688 9.6792 0.0762 1.4255 3.7728 

NOBLE CORP. 03/2007-09/2017 43 0.3165 -9.1791 2.5255 0.0693 4.3311 7.4020 

NORTHWESTERN CORP. 03/2007-09/2017 43 0.1169 -12.8764 1.7410 0.0233 0.2723 744.8751 

OPPENHEIMER HOLDINGS INC. 03/2007-09/2017 43 0.0880 -193.545 20.1505 0.0728 3.7984 2.7030 

OSHKOSH CORP. 12/2006-09/2017 44 0.0189 -182.582 3.3674 0.2234 20.3553 1.6223 

OWENS CORNING 03/2007-09/2017 43 0.1580 -7.2833 1.3356 0.0465 1.0783 103.1805 

OXFORD INDUSTRIES INC. 07/2008-10/2017 38 0.1976 -3.5944 1.2317 0.0436 1.6146 64.7446 

PAYCHEX INC. 08/2006-11/2017 46 0.0501 -25.7508 4.0249 0.0451 2.6914 6.5155 

PEPSICO INC. 03/2007-09/2017 43 0.0890 -76.2034 153.0624 0.0726 7.1928 3.5141 

PPL CORP. 03/2007-09/2017 43 0.3094 -1.0944 1.4972 0.0214 1.6845 274.7501 

PRICE (T. ROWE) GROUP 03/2007-09/2017 43 0.0120 -15.9541 14.0663 0.0738 4.2193 3.0406 

PTC INC. 12/2004-12/2017 53 1.2944 -0.1496 1.2611 0.0317 0.8696 35.0366 

QUALITY SYSTEMS INC. 06/2007-09/2017 42 -0.0114 108.4728 4.5960 0.0500 2.1098 3.4608 

RADIAN GROUP INC. 03/2008-09/2017 39 0.0236 -29.1533 2.8095 0.0525 2.2214 79.1792 

RICHARDSON ELECTRONICS 08/2007-11/2017 42 0.0203 -46.2318 3.8291 0.0258 0.8309 38.8557 

ROCKY MOUNTAIN CHOC. 05/2007-11/2017 43 3.3289 -0.3278 2.4584 0.0192 1.3254 0.6397 

ROYAL HAWAIIAN ORCHARDS 03/2007-09/2017 43 0.9963 -14.7556 1.2903 0.0236 2.2708 275.7990 

ROYAL GOLD INC. 09/2008-09.2017 37 -0.1192 4.6093 11.2055 0.0400 3.0921 1.5443 

SCANA CORP. 03/2006-09/2017 47 0.1401 -1.9414 1.5970 0.0282 1.9633 1071.2437 

SCHULMAN (A.) INC. 11/2006-11/2017 45 0.0420 -135.361 36.8440 0.0744 5.0675 12.5609 

SEI INVESTMENTS CO. 03/2007-09/2017 43 0.0162 -169.328 25.0627 0.0335 4.1247 1.7470 

SKF AB 03/2007-09/2017 43 0.1250 -27.6063 11.4395 0.0405 1.6883 1.3254 

SPAN-AMERICA MEDICAL SYS. 12/2006-03/2017 42 0.4193 -19.1215 1.9954 0.1062 15.1206 7.2900 

SPX CORP. 03/2007-09/2017 43 -5.8932 0.0863 1.1857 0.0611 1.7746 6.8533 

STEPAN CO. 03/2007-09/2017 43 0.0490 -42.0673 12.2181 0.0792 4.1552 3.2691 
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TAT TECHNOLOGIES LTD 09/2008-09/2017 37 0.4781 -4.8228 29.4054 0.0269 2.1137 0.2613 

TECH DATA CORP. 03/2007-09/2017 43 0.0297 -9.5448 2.7851 0.0279 4.2645 196.7889 

TELUS CORP. 03/2007-09/2017 43 0.0076 -388.745 1.1258 0.1081 7.6082 366.6738 

TRANSCONTINEN RLTY INVS. 03/2007-09/2017 43 0.1229 -2.7021 1.6853 0.0304 1.6351 121.1284 

VALUE LINE INC. 04/2008-10/2017 39 0.1295 -5.3450 1.3385 0.0403 0.4653 55.6108 

WD-40 CO. 11/2006-11/2017 45 0.0147 -256.582 37.3762 0.0417 2.2625 0.7255 

WEC ENERGY GROUP INC. 03/2007-09/2017 43 0.0452 -0.9232 1.1368 0.0402 2.8656 949.6568 

WHITE MTNS INS GROUP LTD 03/2007-09/2017 43 0.5352 -19.3912 5.4107 0.0556 1.9821 3.7828 

WORLDS INC. 03/2006-09/2017 47 0.1017 -23.0799 2.0823 0.0566 4.2054 30.1483 

         

MEDIAN  43 0.0555 -14.5379 3.8631 0.0414 2.1118 8.1009 
 

Notes: Column one provides the identities of the 100 U.S. corporations on which the empirical analysis is based.  Columns two and 

three summarise the period and number of quarterly cash and cash equivalent balance observations (Compustat item 74) over which 

the parameter estimation occurs.  Columns four, five and six summarise the composite parameter estimates, ,
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Figure 1. (a) Difference between the estimated Pearson Type IV distribution function for Canam 

Group Inc. quarterly cash and cash equivalent data with composite parameter values 
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actual (that is, empirical) distribution function for Canam Group Inc. (b)  Estimated Pearson 

Type IV probability density for Canam Group Inc. quarterly cash and cash equivalent data with 

the parameter values defined in panel (a). 
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