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Abstract 

Studies of human and rodent navigation often reveal a remarkable cross-species similarity 

between the cognitive and neural mechanisms of navigation.  Such cross-species 

resemblance often overshadows some critical differences between how humans and 

nonhuman animals navigate.  In this review, I propose that a navigation system requires 

both a storage system (i.e., representing spatial information) and a positioning system (i.e., 

sensing spatial information) to operate.  I then argue that the way humans represent spatial 

information is different from that inferred from the cellular activity observed during rodent 

navigation.  Such difference spans the whole hierarchy of spatial representation, from 

representing the structure of an environment to the representation of sub-regions of an 

environment, routes and paths, and the distance and direction relative to a goal location.  

These cross-species inconsistencies suggest that what we learned from rodent navigation 

does not always transfer to human navigation.   Finally, I argue for closing the loop for the 

dominant, unidirectional animal-to-human approach in navigation research, so that insights 

from behavioral studies of human navigation may also flow back to shed light on the 

cellular mechanisms of navigation for both humans and other mammals (i.e., a human-to-

animal approach).    
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1. Introduction  

Since Tolman’s (1948) original concept of a “cognitive map”, research on nonhuman 

animal navigation has long inspired studies of how the human navigation system functions 

(Lee, 2017; Wang & Spelke, 2002).  This animal-to-human approach has revealed remarkable 

similarities between human and nonhuman animal navigation.  Specifically, humans and 

nonhuman animals share the way they form a cognitive map (Ekstrom et al., 2003; Gallistel, 

1990; McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; O'Keefe & Nadel, 1978; Shine, 

Valdés-Herrera, Hegarty, & Wolbers, 2016; Wang, 2016), reorient using the geometric 

structure of an environment (Cheng, 1986; Cheng & Newcombe, 2005; Hermer & Spelke, 

1996; Lee, 2017; Lee & Spelke, 2010), code the sense of direction in the brain (Ekstrom et al., 

2003; Jacobs, Kahana, Ekstrom, Mollison, & Fried, 2010; Taube, 2007; Taube, Muller, & 

Ranck, 1990), represent environmental boundaries (Barry et al., 2006; Julian, Ryan, Hamilton, 

& Epstein, 2016; Lee, 2017; Solstad, Boccara, Kropff, Moser, & Moser, 2008), and map a 

navigable space with a grid-like representation (Chen, He, Kelly, Fiete, & McNamara, 2015; 

Hafting, Fyhn, Molden, Moser, & Moser, 2005; Horner, Bisby, Zotow, Bush, & Burgess, 2016; 

Jacobs et al., 2013).  While such cross-species resemblance underscores the evolutional 

continuity of neural systems supporting navigation, it also makes us overlook some crucial 

differences between human and nonhuman animal navigation.  It tends to foster an over-

optimistic, sometimes illusory, view that the properties of cellular network(s) underlying 

rodent navigation will effectively predict how humans navigate.  

Electrophysiological findings of rodent navigation have often been generalized to 

human navigation as foundational principles.  Such cross-species generalization, however, 

should be made with caution.  To make a cross-species comparison, we need to understand 
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how neural activity is translated into navigation behavior and vice versa.  Nonetheless, it 

remains unsettled how firing properties of cellular networks in the rodent brain are actually 

transformed into navigation behavior and how human navigation behavior can be causally 

attributed to brain activity (Ekstrom, Huffman, & Starrett, 2017; Geva-Sagiv, Las, Yovel, & 

Ulanovsky, 2015; Rowland, Roudi, Moser, & Moser, 2016; Spiers & Barry, 2015; Wolbers & 

Wiener, 2014).  The cross-species generalization becomes challenging when we take the 

substantial differences between human and rodent navigation into consideration.  For 

instance, the rodent visual system is extremely poor and less complex on numerous levels 

compared to that of humans, necessitating that the navigational system must function in a 

substantially different manner in humans and rodents (see Ekstrom, 2015, for an elegant 

review on why vision is important for human navigation).  Different methodologies used to 

investigate human and rodent navigation also make cross-species comparisons difficult.  

Besides, humans and rodents live and navigate in spaces that are different in nature and 

scale (e.g., structured vs. wild); they learn space differently (e.g., indirect map learning vs. 

direct exploration); and they communicate about space differently (e.g., with or without the 

use of language).  

To set a tangible way to contrast navigational mechanisms across different species, I 

borrowed Marr’s (1982) influential framework to categorize navigation research into three 

levels: computational, algorithmic, and implementational.  At the computational or functional 

level, researchers investigate the principles of how a navigation system works.  For instance, 

to address what makes homing possible after a complicated outbound journey, one can 

propose a view-based system (by zeroing the difference between current view and stored 

home view), a self-motion-based path integration system (by zeroing direction and distance 
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of a homing vector that connects current position and home), or any other mechanisms as 

long as they enable navigators to return home.  At the algorithmic or representational level, 

researchers study what kinds of spatial information support navigation and how they do 

this.  Following the above example, if a path integration system is proposed to support 

homing, one needs to address how the path integration system encodes information about 

the outbound path to enable successful homing (e.g., does it continually update a homing 

vector or does it store the path trajectory and then compute the homing vector only when 

needed?).  Finally, at the implementational or neurophysiological level, researchers aim to 

reveal how the mind and brain build up spatial representations and make navigational 

decisions.  Continuing with the previous example, to unravel how path integration supports 

homing, one needs to elucidate how the brain senses a navigator’s current location and 

orientation relative to the immediate surrounding, and how the brain tracks goal locations 

that may lie out of sight (e.g., McNaughton et al., 2006; Wolbers, Hegarty, Buchel, & Loomis, 

2008).  

This framework allows the electrophysiological studies of rodent navigation and the 

behavioral research on human navigation to communicate using the same language: spatial 

representation (i.e., at the algorithmic level).  Studies of rodent navigation aim to identify the 

firing properties of neurons that are sensitive to orientation, location, distance, speed, and 

the border of an environment (i.e., at the implementational level).  However, to elucidate 

how a navigation system works, the information sensed by these neurons needs to be 

translated into a spatial representation, such as representation of homing vector, local space, 

home view, self-position, and so on (Acharya, Aghajan, Vuong, Moore, & Mehta, 2016; Bush, 

Barry, Manson, & Burgess, 2015).  Merely knowing that Place and the Heading Direction 
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cells are sensitive to the orientation of landmarks is insufficient to explain why rats often 

home towards a misplaced landmark (e.g., Shettleworth, & Sutton, 2005). To form a 

theoretical account of such “visual capture”, we often rely on the spatial representations 

inferred from neural activity rather than the neural activity per se. (e.g., a view-matching 

hypothesis or a resetting hypothesis, Valerio & Taube, 2012). 

Similarly, to pinpoint what underlies human navigation behavior (e.g., how we take 

a detour when a familiar route is blocked), the functional principles of our navigation 

system also need to be decomposed into cognitive or neural representations (e.g., goals, 

routes, the structure of explored environment, etc.; Chrastil & Warren, 2015; Ekstrom, & 

Isham, 2017; McNamara, Rump, & Werner, 2003; Viard, Doeller, Hartley, Bird, & Burgess, 

2011).  By translating both neural firing and navigation behavior into spatial representations 

and their computations, we may bridge the gap between the functional-level analysis of 

human navigation behavior and the implementational-level analysis of rodent brain activity 

during navigation.  This translation process, as suggested by Ekstrom et al. (2017), may 

involve non-obvious neural coding schemes like those emerged in the hidden layers of 

neural networks. 

This review focuses on how spatial information is represented in memory, in 

particular, how spatial representations inferred from the behavioral characteristics of human 

navigation are different from those suggested by the firing properties of cells in rodents’ 

brain.  I argue that a navigation system requires a storage system (i.e., spatial representation) 

in addition to a positioning system (i.e., spatial perception) in order to operate (Section 2).  

Then I review the fundamental differences between spatial representation revealed by 

cellular activity recorded in rodent brain and spatial representation informed by human 
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navigation behavior.  I argue that the difference spans the whole hierarchy of spatial 

representation; representation of environmental structure (Section 3), representation of sub-

regions of an environment (Section 4), representation of paths and routes (Section 5), and 

representation of distance, direction, and location (Section 6).  Finally, the review highlights 

that behavioral research on human navigation may also shed light on the cellular 

mechanism of mammal navigation (Section 7).    

 

2. A Positioning System versus a Navigation System  

Electrophysiological studies of rodent navigation have revealed an inner positioning 

system in the brain (for recent reviews, see Grieves & Jeffery, 2017; Moser, Kropff, & Moser, 

2008; Moser et al., 2014; Rowland et al., 2016; Taube, 2007; Cullen & Taube, 2017).  This 

neural positioning system consists of different types of cells that are sensitive to various 

aspects of spatial information, such as location (i.e., place cells, O'Keefe & Dostrovsky,1971; 

O'Keefe & Nadel, 1978), orientation (i.e., Heading Direction cells, Ranck, 1984; Taube et al., 

1990a, 1990b; see also Jacobs et al., 2017; Olson, Tongprasearth, & Nitz, 2017), distance and 

scale of space (i.e., grid cells, Hafting et al., 2005; Kjelstrup et al., 2008; Sargolini et al., 2006), 

velocity of movement (i.e., speed cells, McNaughton, Barnes, & O’Keefe, 1983; Hinman, 

Brandon, Climer, Chapman, & Hasselmo, 2016; Kropff, Carmichael, Moser, & Moser, 2015), 

and spatial boundary (i.e., border cells, Solstad et al., 2008; or boundary vector cells, Barry et 

al., 2006).  A similar neural positioning system has also been found in the human brain 

(Ekstrom et al., 2003; Jacobs et al., 2013; see also Doeller, Barry, & Burgess, 2010, for indirect 

evidence from an fMRI study).  In theory, these cells could serve as a cellular odometer and 

a neural compass, allowing a navigator to localize oneself within the immediate 
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environment, remain orientated, and reach a goal (Barry & Burgess, 2014; Epstein, Patai, 

Julian, & Spiers, 2017; Valerio & Taube, 2012).   

However, a positioning system that merely specifies one’s current location and 

orientation cannot completely support navigation—getting from here to there (see also Geva-

Sagiv et al., 2015; Rowland et al., 2016; Wang, 2016).  A functioning navigation system 

requires both a “compass” (i.e., an orienting and positioning system) and a “map” (i.e., a 

storage system), so that it can denote both “here” and “there” as well as specify the way to 

get there from here.  The “map” could store all learned spatial information in a globally 

coherent way (i.e., a cognitive map or survey knowledge).  It could also be a graph-node 

representation of all traveled routes and visited places without them being knitted together 

consistently (i.e., route knowledge; Chrastil, 2013; Siegel & White, 1975).  It may also be a 

collection of stimulus-response associations based on visual, odor, or geomagnetic senses 

(Frost & Mouritsen, 2006).  The “map” can be internal (e.g., spatial memory), external (e.g., 

navigational aid), or a mixture of both.  Without such a storage component in a navigation 

system, a rat would be unable to find an unseen feeding site it visited before, and a bird 

could not migrate thousands of kilometers to the same place year after year (except 

following a leader).  Thus, to unravel how a navigation system works, we need to 

understand not only how and what kind of spatial information is sensed, but also how and 

what kind of sensed information is stored.  

A sensing-and-storage system for navigation has many advantages over a positioning 

system alone.  With both sensing and storage components, a navigation system can fulfill 

the three elementary functions of navigation: self-localization and reorientation, goal 

monitoring, and path planning.  The sensing component can support the spatial perception 
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that is occurring now and mostly within the immediate visual boundary, whereas the 

storage component can extend it temporally to the past/future and spatially beyond the 

visible boundary (e.g., Byrne, Becker, & Burgess, 2007).  A storage component also allows a 

navigation system to build up high-order spatial knowledge, such as the sequence of visited 

places, the connection and relationship between walked trajectories, the topographical 

network of learned paths and areas, or even the geometric structure of a known 

environment.  Such spatial knowledge enables a navigation system to guide complex 

navigation behavior (e.g., to take a detour or a shortcut).  This sensing-and-storage system 

for navigation is consistent with the intertwining role of the hippocampus in spatial 

cognition and episodic memory (Burgess, Maguire, & O'Keefe, 2002; Eichenbaum, 2000, 

2017b; Eichenbaum & Cohen, 2014; Ekstrom & Ranganath, 2017; Howard, Fotedar, Datey, & 

Hasselmo, 2005; Knierim, 2015; Miller et al., 2013; Olton, Becker, & Handelmann, 1979).  It is 

also in line with the primary approach used to implement an artificial navigation system 

(e.g., Llofriu et al., 2015; Milford, 2008; Milford & Schulz, 2014; Thrun, 2008).   

A sensing-and-storage system also helps address the challenging questions a 

positioning system faces.  For instance, a positioning system that continuously tracks 

location and orientation is computationally expensive and error-prone, whereas a sensing-

and-storage system is not.  The storage component would allow insects and rodents to use 

visual memory to navigate without continuously monitoring self-motion and orientation 

(Collett, 2010; Schwarz, Mangan, Zeil, Webb, & Wystrach, 2017; Shettleworth, & Sutton, 

2005; Sturzl, Zeil, Boeddeker, & Hemmi, 2016; Valerio & Taube, 2012).  Note that a complete 

reliance on visual memory for navigation would be less resilient against environmental 

perturbations than a continuous tracking system.  Another challenge is how a positioning 
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system maps a large-scale space. It has been shown that place and grid cells along the 

dorsal-ventral axis of the hippocampus and the medial entorhinal cortex (MEC) are sensitive 

to the scale of space (Brun et al., 2008; Hafting et al., 2005; Kjelstrup et al., 2008). However, 

how these cells map large-scale environments remains to be elucidated (Geva-Sagiv et al., 

2015; Mouritsen, Heyers, & Gunturkun, 2016; see also ).  Sensing and mapping the space 

around hundreds to thousands of kilometers is even more challenging (e.g., long-distance 

migration of birds or sea turtles; Lohmann, Hester, & Lohmann, 1999; Mouritsen et al., 2016; 

Vardanis, Klaassen, Strandberg, & Alerstam, 2011).  By enabling various navigation 

strategies (e.g., memory of a series of navigational decisions and actions along the journey), 

a storage component can make such continuous mapping unnecessary for long-distance 

navigation in insects (Menzel & Greggers, 2015; Sturzl et al., 2016), birds (Mouritsen et al., 

2016), and mammals (Tsoar et al., 2011).   

While human navigation studies have long investigated how spatial information is 

stored in memory, research on rodent navigation often focuses on the mechanistic system of 

how spatial information is sensed by a positioning system (Eichenbaum, 2017b; Epstein, 

Patai, Julian, & Spiers, 2017; McNamara, 1986; Siegel & White, 1975).  These two lines of 

research seem to paint different pictures about the way the sensed spatial information is 

represented in memory.  In the following sections, I review different hypotheses about how 

humans and rodents may represent the structure of an environment, sub-regions of an 

environment, traversed routes, and distance and direction.  
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3 Representation of an Environment: Metrical or Topological?  

How are the geometrical properties of an environment stored in memory?  One 

prevailing hypothesis postulates that spatial information about an environment is 

represented in a metric way (McNaughton et al., 2006; Moser & Moser, 2008; Rowland et al., 

2016).  Both the original concept of a “cognitive map” and the recent discovery of grid cells 

suggest a metric representation of environmental space, in which the Euclidean distance and 

angle between places are specified with a globally consistent coordinate system.  An 

alternative hypothesis proposes that environmental space is represented in a topological 

manner (Chrastil & Warren, 2014b; Dabaghian, Brandt, & Frank, 2014; Ekstrom et al., 2017; 

Ekstrom & Ranganath, 2017; Muller, Stead, & Pach, 1996; Montello, 1998; Remolina & 

Kuipers, 2004).  Like a subway map, a topological representation registers an environmental 

space as a network of nodes (i.e., unique places) and edges (i.e., paths connecting nodes).  It 

stores the topological relations between places, such as continuity and connectivity, but does 

not necessarily maintain veridical metric information in a globally consistent way.   

Arguments for a metric cognitive map are based primarily on two lines of findings.  

At the functional level, a variety of animal species can directly return to its nest (i.e., 

homing) after a complex outbound journey and can navigate between two places that have 

not been traversed before (Menzel & Greggers, 2015; Menzel et al., 2005; Collett & Collett, 

2000; Mittelstaedt & Mittelstaedt, 1980; Tsoar et al., 2011).  Ants, bees, pigeons, and bats all 

show this homing ability after being displaced to a new location that has no visual access to 

its nest (Cheeseman et al., 2014; Etienne & Jeffery, 2004; Gallistel, 1990).  Such remarkable 

homing ability is consistent with Tolman’s (1948) original view of a “comprehensive map” 

and with the theory of a “locale system” in a cognitive map (O’Keefe & Nadel, 1978).  The 
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near-perfect calculation of a homing direction indicates that the metric information of an 

environment is recorded in, and can be read out from, a “mental map” (e.g., McNaughton et 

al., 2006).   

At the implementational level, the discovery of grid cells uncovers a potential neural 

metric for an environmental space, providing another support for a metric representation 

(Hafting et al., 2005; Kjelstrup et al., 2008; Sargolini et al., 2006; see also Doeller et al., 2010; 

Jacobs et al., 2013).  The grid cells in the MEC show a spatially periodic firing pattern 

consisting of a hexagonal array (Hafting et al., 2005; Jacobs et al., 2013).  Such spatially 

regular firing patterns tile the entire space available to the navigator (i.e., forming grids), 

thereby providing a universal and intrinsic neural metric for space.  Furthermore, the grid 

cells situated along the dorsal-ventral axis of MEC tune to space of increasing scale.  The 

further away the grid cells are located from the anatomical border of the dorsal MEC, the 

larger the size of the grids (Brun et al., 2008; Hafting et al., 2005; Kjelstrup et al., 2008).  These 

findings strongly advocate the view that a mental map built with information sensed via 

grid cells is metric (Bush et al., 2015; McNaughton et al., 2006; Moser & Moser, 2008). 

Nonetheless, none of the evidence that supports a metric spatial representation is 

conclusive.  At the functional level, while a metric map entitles direct homing, the direct 

homing (or the ability to take a shortcut) does not necessarily prove a metric representation 

(Gallistel, 1990).  Navigation behavior that is consistent with a metric representation can be 

achieved without actually storing a metric cognitive map (e.g., using guidance strategies 

based on familiar visual landmarks, Bennett, 1996; Cheung et al., 2014; Collett, Chittka, & 

Collett, 2013; Srinivasan, 2015).  Non-metric spatial representation also allows for homing or 

taking a shortcut.  For instance, a topological representation with local metric information 
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(i.e., a labeled graph) also enables a navigator to take a shortcut or a detour, despite the 

potential for local metric information to be noisy and geometrically inconsistent (Babichev, 

Cheng, & Dabaghian, 2016; Chrastil & Warren, 2014b, 2015; Ekstrom, Arnold, & Iaria, 2014; 

Remolina & Kuipers, 2004). 

At the implementation level, the firing pattern of grid cells is modulated by the 

geometry, novelty, and visual accessibility of an environment, which undermines its role as 

a universal, environment-independent metric of space (Figure 1; Barry, Ginzberg, O'Keefe, & 

Burgess, 2012; Barry, Hayman, Burgess, & Jeffery, 2007; Chen, Manson, Cacucci, & Wills, 

2016; Krupic, Bauza, Burton, Barry, & O'Keefe, 2015; but see Carpenter & Barry, 2016).  For 

instance, the same set of grid cells can yield different firing patterns for a square and a 

trapezoid environment (Krupic et al., 2015).  The essential geometric properties of the grid 

pattern observed with a square environment —the orientation, scale, symmetry, and 

homogeneity of the hexagonal structure — were disrupted in a trapezoid environment 

(Figure 1A).  When the visual input is blocked by exploring a familiar square environment in 

complete darkness, the firing pattern of grid cells is also significantly disrupted (Figure 1B 

Chen et al., 2016).  The grid cells also showed expanded firing grids when exploring a novel 

environment in comparison with navigating in a familiar space (Figure 1C, Barry et al., 

2012). Moreover, when a square environment was parametrically changed into a horizontal 

rectangle, a vertical rectangle, or a smaller square, the grid patterns stretched and shrank 

accordingly (Figure 1D, Barry et al., 2007).  These findings indicate that the visual 

environment determines the firing pattern of grid cells.  That is, the ruler and protractor 

used to measure the metrics of an environment vary with the environment it measures.  

Hence, grid cells may function as a neural metric for a local space at a given moment 



Page 14 of 45 
 

(Carpenter & Barry, 2016; Rowland et al., 2016), but may not serve as a universal metric 

across different environments and the change of the same environment across time. 

                   -------------------[ Insert Figure 1 about Here] ------------------- 

How, then, is an environment represented in memory? An alternative possibility is 

that the locally metric but globally nonmetric spatial relations are stored with a topological 

representation, such as a cognitive graph (Chrastil & Warren, 2014b; Ekstrom et al., 2014; 

Muller, Stead, & Pach, 1996; Montello, 1998; Remolina & Kuipers, 2004).  In a cognitive 

graph, places are represented as nodes and the path connecting places are represented as 

edges between nodes.  In addition, approximate distance information between places can be 

represented as a label to the edges (i.e., edge weights), whereas angular relations between 

edges can be represented as a label to the node.  Note that although this labeled graph 

metaphor still implies some form of metric representation, it does not have to (Babichev, et 

al., 2016; Ekstrom et al. 2014).  More importantly, the approximate metric information 

labeled to the graph is only limited to the local space and does not necessarily require a 

global frame of reference (Chrastil & Warren, 2014b, 2015; Ekstrom et al. 2014; Remolina & 

Kuipers, 2004).   

A cognitive graph representation is superior to a cognitive map representation in many 

aspects.  Firstly, it is computationally economic and energetically less demanding.  If a graph 

representation can approximate multiple spaces with small adjustments and heuristics, 

storing a representation for every traversed area will be unnecessary (see also Ekstrom et al. 

2017).  This addresses the concern of mapping large-scale space (Geva-Sagiv et al., 2015; 

Mouritsen, Heyers, & Gunturkun, 2016).  Secondly, it incorporates imprecise and 
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inconsistent geometric relations in the representation of both local space and the global 

environment (Friedman, 2009; Moar & Bower 1983; Tversky, 1981; for a review, see Ekstrom 

et al., 2014). Thirdly, it readily accounts for the influence of space stretching (which does not 

change topological geometry) and darkness (i.e., which may disrupt topological properties 

of spatial enclosure) on the firing of grid cells (Barry et al., 2007; Chen et al., 2016).  Finally, it 

allows map-like guidance (e.g., taking a shortcut or detour) for both a biological and an 

artificial navigation system (Babichev, et al., 2016; Hübner & Mallot, 2007; Mair et al., 2014; 

Remolina & Kuipers, 2004). 

The cognitive graph hypothesis gains support from studies of human navigation 

behavior (Chrastil & Warren, 2014b, 2015; Moar & Bower 1983; Warren, Rothman, Schnapp, 

& Ericson, 2017; Tversky, 1981; for reviews, see Ekstrom et al., 2014, 2017) and neural 

activity of hippocampal place cells (Dabaghian et al., 2014; OKeefe & Burgess, 1996).  For 

instance, Warren et al. (2017) asked human participants to learn a virtual environment 

containing “wormholes”, which could covertly teleport participants from one place to 

another, thereby creating a non-Euclidean environment where the same place is situated in 

two different parts of the same environment.  They found that spatial knowledge acquired 

in such an environment violates metric postulates (e.g., the path connecting three locations 

did not form a closed triangle; human participants went to entirely different places when 

aiming at the same goal location).  However, the relative length and rough orientation 

between places were preserved in memory (see also Chrastil & Warren, 2014b).  Consistent 

with this observation, Vass et al (2016) also found that human hippocampal low-frequency 

oscillations carry information about the teleported distance even without visual and 

idiothetic input.  Dabaghian et al. (2014) demonstrated the topological encoding of space in 
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the rodent brain. They used a morphable running track to dissociate geometric from 

topological properties of space and found that place cells represent the topological 

properties of a walking path (e.g., connectivity between places) more than the geometric 

properties (distances and angles).   

 

4 Representation of Sub-regions of an Environment: Integrated or Separated? 

 Environmental spaces are often nested and consist of different sub-regions (e.g., 

different areas in a city, various buildings in an area; or different stories/rooms in a 

building).  How does a navigation system stitch together the local maps of these separated 

compartments in memory?  This question has been investigated by both behavioral studies 

of human navigation (Foo, Warren, Duchon, & Tarr, 2005; Han & Becker, 2014; Ishikawa & 

Montello, 2006; Meilinger, Strickrodt, & Bülthoff, 2016; Moeser, 1988; Wang & Brockmole, 

2003a, 2003b; Zhang, Mou, McNamara, & Wang, 2014) and electrophysiological studies of 

rodent navigation (Alme et al., 2014; Derdikman et al., 2009; Spiers, Hayman, Jovalekic, 

Marozzi, & Jeffery, 2015; Wernle, Waaga, Morreaunet, Treves, Moser, & Moser, 2018).  Both 

lines of research share the view that newly-learned environments are represented 

separately.  However, they differ in whether the separated representations are integrated 

into a coherent global representation or not.   

 Recent studies of rodent navigation suggested that newly-learned compartmental 

space is represented separately.  When a square-shape environment was fragmented into 

multiple hairpin-like compartments, the grid cells no longer showed a continuous grid 

representation of the entire environment.  Instead, it showed repeated grid representations 
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across different compartments with the same running direction (Derdikman et al., 2009).  

This finding demonstrates that the grid cells in the entorhinal cortex create independent 

local maps for individual local regions, even these regions are physically next to each other.  

The hippocampal place cells also show repeated firing at the same locations across alleys of 

the fragmented space (see also Grieves, Jenkins, et al., 2016; Spiers et al., 2015).  Moreover, 

Alme et al. (2014) showed that hippocampal place cells could form independent maps for 

multiple local environments, even when these local environments share nearly identical 

geometrical properties of global space (i.e., rooms of same shape and size) and local space 

(i.e., square-shape recording arena).  These results indicate that the development of a neural 

code for a newly learned environment does not substantially change the existing neural 

representation of a known place (see also Muller & Kubie, 1987; Wilson & McNaughton, 

1993). Therefore, both the grid cells and the place cells initially form discrete representations 

for different compartments of an environment.   

Humans also represent different regions of a newly learned space separately.  When 

the space in a hall is fragmented into interconnected parallel corridors, human spatial 

memory is organized with a local coordinate system that is specific to the corridor 

(Meilinger et al., 2016, see also McNamara, 1986; McNamara et al., 2003).  When the walls 

that formed the corridors were removed, the memory of the same space was represented 

within a global frame of reference.  These findings show a remarkable resemblance to the 

fragmented grid-cell representation of compartmental space (Derdikman et al., 2009; Wernle 

et al., 2018).  Kyle et al. (2015) demonstrated that the human hippocampal spatial code is also 

environment-specific, consistent with the view that local spaces are independently 

represented.  Recently, Marchette, Vass, Ryan, and Epstein (2014) found that human 
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retrosplenial cortex encodes self-location and orientation concerning a local space (i.e., 

different museums in a park) but not a global space (i.e., the park).  Such location and 

orientation encoding can be generalized to other local spaces of the same geometry (i.e., 

repetitive across compartmental spaces).  This finding mimics the repetitive hippocampal 

place cell maps for fragmented spaces of identical geometry in rodents (Derdikman et al., 

2009; Grieves, Jenkins, et al., 2016; Spiers et al., 2015), indicating that newly learned regions 

of an environment are represented independently in human memory.  

Are newly-learned compartments integrated into a unified and coherent 

environment in memory? The electrophysiological studies of rodent navigation suggest that 

the answer is yes (Figure 2).  For instance, Carpenter, Manson, Jeffery, Burgess, and Barry 

(2015) showed that a prolonged experience with multi-compartment space leads the grid 

cells to form a unified and coherent global representation for the whole space.  Similar to 

Derdikman et al. (2009), they found repetitive grid patterns for adjacent compartments 

during early recording sessions (Figure 2A-B, upper row).  However, after two to three 

weeks of experience with the setting, the firing pattern of grid cells transitioned from 

representing individual local compartments to representing the whole space, tiling over the 

two adjacent compartments without a discontinuity (Figure 2A-B, lower row).  Recently, 

Wernle et al. (2018) found that the merging of two local grid maps into a coherent one occurs 

almost immediately when the wall that separates two adjacent compartments was removed 

(Figure 2C). They showed that individual grid fields nearby the location of the partition wall 

rapidly shifted their positions after wall removal, forming a continuous grid map that 

covered the newly merged space (Figure 2D; see Spiers et al., 2015, for different remapping 

of hippocampal place cells).  These results suggest that rodents can rapidly combine the 
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representation of different sub-regions, either by extensive experience or by the removal of 

physical boundaries.  

                    -------------------[ Insert Figure 2 about Here] ------------------- 

In contrast, representation of local space in human memory is not integrated in the 

same manner shown by the remapping of grid cells.  Humans are often unable to accurately 

extract the geometric relations between locations learned from different regions of an 

environment, suggesting that each area is independently represented and is not integrated 

into a coherent global representation (Foo et al., 2005; Han & Becker, 2014; Ishikawa & 

Montello, 2006; Schinazi, Nardi, Newcombe, Shipley, & Epstein, 2013; Weisberg, Schinazi, 

Newcombe, Shipley, & Epstein, 2014; but see Mou, McNamara, & Zhang, 2013).  Moreover, 

extensive navigation experience with a multi-region environment does not necessarily lead 

to a merging of local maps.  This even includes environmental spaces that people have 

learned or lived in for weeks, months, or even years (e.g., different rooms within a complex 

building, or different regions within a campus or large neighborhood area), humans often 

do not integrate fragmented space into a coherent global space in memory (Ishikawa & 

Montello, 2006; Meilinger et al., 2016; Moeser, 1988; Weisberg et al., 2014).  It has also been 

shown that humans may acquire global spatial knowledge in parallel to route knowledge, 

rather than building it stage by stage (Ishikawa & Montello, 2006; Montello, 1998; Zhang, 

Zherdeva, & Ekstrom, 2014).  These findings cast doubt on the view that local grid maps are 

integrated into a global grid map to support large-scale navigation (see also Geva-Sagiv et 

al., 2015; Wolbers & Wiener, 2014).   



Page 20 of 45 
 

Therefore, concerning the representation of compartmental space, what we have 

inferred from the remapping of grid or place cells (i.e., implementation-level analysis) is 

different from that indicated by the studies of human spatial memory (i.e., functional-level 

observation).  The former suggests that memory of sub-regions is organized with a globally 

consistent metrical system (i.e., consistent with the cognitive map hypothesis), whereas the 

latter suggests that the representations of local spaces are stored with independent and often 

inconsistent frames of reference (i.e., in line with the topological representation hypothesis).   

 

5 Representation of Routes Traveled: Path-Dependent or Path-Irrelevant? 

Directly exploring an environment facilitates humans to acquire spatial knowledge 

and offers probably the only way for nonhuman animals to build up spatial representations.  

How does a navigation system represent the route information sensed during such 

exploration?  One mechanism that processes the route information during navigation is path 

integration, a process that keeps tracking one’s position and orientation by integrating 

translational and rotational components of self-motion (Etienne & Jeffery, 2004; Loomis et 

al., 1993; Müller and Wehner, 1988).  Spatial and self-motion information sensed during 

navigation can be used to form a mental map of an environment via path integration 

(McNaughton et al., 2006; Moser and Moser, 2008; Wang, 2018).  Both human and rodent 

navigation studies have attempted to unveil how the brain implements the function of path 

integration (e.g., Chrastil et al., 2015; 2016; Gil et al., 2018; McNaughton et al., 2006; Wolbers, 

Wiener, Mallot, & Büchel, 2007).  Whereas many studies have investigated how humans 

represent the routes they traveled, little is known about whether rodents store information 

about their traveled paths and, if so, what aspects of path information are stored in memory.   
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Studies of rodent navigation often focus on path-independent encoding of location 

and orientation.  The firing properties of place cells, head direction cells, grids cells, and 

boundary cells, by definition, are determined by where an animal is located (i.e., place, grid, 

and boundary cells) or which direction it faces (i.e., head direction cells), regardless of which 

path leads them there and which path they will take next.  Thus, the cellular positioning 

system is assumed to function in a path-irrelevant way.  Similarly, behavioral studies often 

investigate the process of path integration using path-irrelevant indexes, such as whether a 

navigator accurately reaches a goal, returns to home, or senses self-location or orientation 

(for a review, see Etienne & Jeffery, 2004).  Although such path-independent neural codes 

are capable of integrating path information (Bush et al., 2015; McNaughton et al., 2006), they 

cannot tell us how the route information is represented in memory.  That is, much path 

integration research has investigated how path information is integrated without 

questioning how the path information is represented.  

In contrast, studies of human navigation suggest a path-dependent encoding of 

space.  One such example is the orientation-dependent representation of space.  Humans 

often use the walking direction of routes as a reference direction (i.e., a cognitive “north”) to 

represent spatial relations of places, landmarks, and objects (McNamara et al., 2003; 

Meilinger, Riecke, & Bülthoff, 2014; Meilinger et al., 2016; Mou & McNamara, 2002; Mou et 

al., 2013; Shelton & McNamara, 2001, 2004).  It means that spatial information (e.g., a goal 

location) is not equally accessible from different orientations (see also McNamara & 

Diwadkar, 1997).  This orientation-specific encoding of space cannot be easily explained by a 

path-independent positioning system.  Another support for a path-dependent 

representation comes from the findings of neurons that are sensitive to the direction of 
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walking routes (Ekstrom et al., 2003; Jacobs et al., 2010; Page, Sato, Froehler, Vaughn, & 

Duffy, 2015).  For instance, Ekstrom and colleagues (2003) found that the firing fields of 

human place cells changed when the navigation trajectories led to different goals (i.e., 

remapping; Figure 3A).  Similarly, Jacobs et al. (2010) showed that neurons in the human 

entorhinal cortex are activated only when the walking direction is clockwise or is 

counterclockwise around a square route (Figure 3B).  Therefore, humans represent more 

than just the location and orientation information during navigation; how we experience an 

environment also shapes how we represent it in memory.  

                -------------------[ Insert Figure 3 about Here] ------------------- 

The challenge to the path-independent encoding also comes from studies of rodent 

navigation (Frank, Brown, & Wilson, 2000; Nitz, 2006; Pfeiffer & Foster, 2013; Wood, 

Dudchenko, Robitsek, & Eichenbaum, 2000).  The brain networks supporting rodent 

navigation may also encode certain aspects of path information.  For instance, the place cells 

in the CA1 region of rat hippocampus fire differently depending on the turning direction of 

the trajectory, suggesting that these cells encode information specific to individual routes 

(Frank et al., 2000; Wood et al., 2000).  Nitz (2006) elegantly demonstrated that parietal 

neurons and hippocampal CA1 neurons might encode a specific type of route (e.g., the first 

segment, or the segment start with a left turn and then followed by a right turn). Moreover, 

the route-specific firing of CA1 places cells is not due to the encoding of goal locations (i.e., 

reward sites).  When rats learned two different routes that shared the same starting path and 

led to an identical goal location, these place cells still fire on one trajectory but not both, 

suggesting that they encode information about the trajectories but not the goal (Figure 3C; 

Grieves, Wood, et al., 2016; see also Ito, Zhang, Witter, Moser, & Moser, 2015).  Pfeiffer and 
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Foster (2013) showed that CA1 place cells could encode future path information ahead of 

locomotion.  They found that ensembles of place cells can generate a temporal sequence of 

firing fields, which may be used to plan a route between a rat’s current location and a 

known goal location (see also Davidson, Kloosterman, & Wilson, 2009; Johnson & Redish, 

2007).  These results suggest that the firing of place cells may carry information about 

individual routes, rather than being entirely determined by the local spatial information.  

In comparison with whether or not route information is encoded in memory, it is 

more challenging to address what aspects of route information are represented.  One critical 

element of route information is its geometric shape or path configuration.  Humans seem to 

be able to encode path configuration of the routes travelled (He & McNamara, 2017; 

McNamara et al., 2003; Wiener, Berthoz, & Wolbers, 2011), though the encoding of path 

configuration may require attention (Chrastil et al., 2015; Zhao & Warren, 2015a).  For 

nonhuman animals, it is hard to draw a decisive conclusion.  Humans can demonstrate 

whether the geometric properties of traveled trajectories are encoded in memory by 

describing, illustrating, or reproducing the routes they have traversed.  However, none of 

these apply to nonhuman animals.  Therefore, while the different firing of place cells 

indicates that different neural representations between left- and right-turn routes (Frank et 

al., 2000; Wood et al., 2000), precisely what information leads to these different neural 

responses remains unknown (e.g., it could be the decision to turn left or right, the episodic 

memory of a left or right turn, or the planning of path to the goal, etc.). 

Whereas studies of human navigation highlight the importance of route-based 

information in spatial representation, research on animal path integration often focuses on 

the processes of integration rather than the representation of paths.  A path-independent 
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encoding of space faces challenges from accumulating research on both human and 

nonhuman animal navigation.  It is also worth noting that although human and other 

mammals are assumed to share the same cognitive and neural mechanism of path 

integration, damage to the hippocampal structure tends to have different influences on 

navigation behavior (Shrager, Kirwan, & Squire, 2008; Kim, Sapiurka, Clark, & Squire, 2013). 

 

6 Representation of Distance and Direction: Continuous or Categorical? 

How well do humans and nonhuman animals sense the distance and direction 

between two places?  Accurate sensing of distance and direction is vital for the survival of 

nonhuman animals.  They need it to precisely calculate the location of a pray or a predator 

and to head back to their resting place after a feeding excursion (Galistel, 1990).  The 

positioning system discovered in the rodent and primate brain not only provides a 

mechanism of self-localization but also offers an intrinsic metric for measuring the distance 

and relative direction between different locations (Bush et al., 2015; McNaughton et al., 

2006).  As mentioned in previous sections, rodents seem to represent distance and direction 

in a reasonably precise way.  The firing fields of grid cells regularly tile the space enclosed 

by the visual boundaries, providing a biological odometer and protractor for an accurate 

measurement of distance and direction.  Accurate representation of distance and direction is 

even more evident in navigation behavior.  For a local small-scale space, they were able to 

home directly after a complex outbound feeding journey (Collett & Collett, 2000; Etienne & 

Jeffery, 2004). For long migration journeys, they can swim or fly for thousands of miles to 

arrive at the same place they visited before (Lohmann et al., 1999; Mouritsen et al., 2016; 

Vardanis et al., 2011).   
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Human estimation of distance and direction is often biased and inconsistent 

(Ishikawa & Montello, 2006; Loomis et al., 1993; McNamara & Diwadkar, 1997).  Even after a 

short outbound path, our estimation of homing direction can be as bad as chance level 

(Chrastil & Warren, 2013; Zhao & Warren, 2015a, 2015b).  When asked to point to the 

direction of a known place, we often exhibit angular errors greater than 20° (Ishikawa & 

Montello, 2006; Meilinger et al., 2014; Meilinger et al., 2016; Mou et al., 2013; Mou, Zhao, & 

McNamara, 2007).  Without rich environmental cues (e.g., walking in a desert), we even 

struggle to maintain a straightforward direction of walking (Souman, Frissen, Sreenivasa, & 

Ernst, 2009).  When vision is blocked, we cannot keep our walking direction in an open field 

after five to ten minutes of walking (Souman et al., 2009).  Such distortion is not limited to 

spatial representation acquired via direct learning (i.e., exploration).  Humans also show 

significant errors in representing the relative direction of geographic places (e.g., cities in 

North America) —spatial knowledge obtained from map learning (Friedman, 2009; Zhang et 

al., 2014).   

The neural mechanism of human direction representation appears to differ from that 

in rodents as well.  For rodents, since each heading direction cell is tuned to a different 

direction, the population of heading direction cells are thought to encode a continuous 

direction of 360° range (Cullen & Taube, 2017; Taube, 2007).  Such continuous representation 

of heading direction has not yet been found in the human brain.  Human brain imaging 

studies suggest that the retrosplenial cortex and subiculum are involved in encoding the 

facing direction (Chadwick, Jolly, Amos, Hassabis, & Spiers, 2015; Chrastil, Sherrill, 

Hasselmo, & Stern, 2016; Shine et al., 2016; Vass & Epstein, 2013).  Specifically, the subicular 

region encodes geocentric orientation relative to the environment (Chadwick et al., 2015; 
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Vass & Epstein, 2013, but see Spiers & Maguire, 2007), whereas the retrosplenial cortex may 

represent both geocentric orientation (Chadwick et al., 2015; Shine et al., 2016) and 

egocentric orientation relative to oneself (Chrastil et al., 2016; Marchette, et al., 2014).  

Nonetheless, these brain areas are often sensitive to the categorical shift of facing direction 

(e.g., from facing north to facing west or from facing one street to facing another), suggesting 

that human representation of heading direction may be regularized and categorical.   

Human distance representation also shows poor correspondence with physical 

distance.  Although distance estimation is relatively accurate in local space (e.g., Wu, Ooi, & 

He, 2004), it is often distorted in large-scale space.  Many factors can cause such distortion, 

such as the presence and the number of junctions and turns (Kuipers, 1983), spatial 

boundaries (Friedman & Montello, 2006; Sinai, Ooi, & He, 1998), and even the perceived 

salience of places (McNamara & Diwadkar, 1997).  Moreover, how we sense the distance 

(e.g., walking vs. galloping; or walking vs. sitting in a car) also affects how we represent and 

reproduce it (Arnold, Iaria, & Ekstrom, 2016; Brunec, Javadi, Zisch, & Spiers, 2017; Chrastil 

& Warren, 2014a; Waller, Loomis, & Haun, 2004).  Together, these results indicate that 

human distance representation does not always correspond to the extrinsic physical metrics.  

Thus, the accurate sensing of distance at the cellular level, as observed in rodent navigation, 

may not apply to the distance representation in human memory.   

The neural network supporting human navigation (e.g., hippocampus, 

parahippocampus, and retrosplenial cortex) can encode both egocentric distance toward a 

goal and allocentric distance between familiar places (Balaguer, Spiers, Hassabis, & 

Summerfield, 2016; Chrastil, Sherrill, Hasselmo, & Stern, 2015; Chrastil et al., 2016; Howard 

et al., 2014; Morgan, MacEvoy, Aguirre, & Epstein, 2011; Spiers & Barry, 2015; Vass et al., 
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2016; Viard et al., 2011).  For instance, Morgan et al. (2011) showed that the human left 

hippocampus encodes the relative distance between real-world familiar locations.  It exhibits 

more similar neural activities to familiar landmarks that are close to each other as opposed 

to landmarks far apart.  Howard et al. (2014) found that the neural activity in the posterior 

part of hippocampus significantly correlates with the length of a route to a goal, whereas 

neural activity in the entorhinal cortex correlates with the Euclidean distance between 

current and goal locations.  This finding is consistent with Spiers, Olafsdottir, and Lever 

(2017), who found a significant correlation between rat hippocampal activity and the 

distance to a goal; the firing of CA1 place cells decreased with increased proximity to a goal.  

Chrastil and colleagues (2015) also showed that the hippocampus and retrosplenial cortex 

can represent the Euclidean distance between the start and current locations.  These 

correlations imply that humans may encode distance with a continuous metric, as suggested 

by the grid system used to measure distance by rodents.  

The correlations between neural activity and physical distance are open to alternative 

explanations.  For instance, although Howard et al. (2014) demonstrated that human 

hippocampal activity is related to the route and the Euclidean distance to a goal, it is hard to 

discern whether such distance representation was based on sensory odometer or 

visuospatial memory of a map (because participants learned the layout by both studying 

maps and walking tours).  Furthermore, given that hippocampal neurons encode both space 

and time (Eichenbaum, 2017a; Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013), it 

remains to be elucidated whether the tracking of distance is supported by the neural coding 

of spatial metrics or temporal metrics.  As for the hippocampal encoding of short versus 
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long distance between familiar locations (Morgan et al., 2011), it remains unknown whether 

such distance encoding is continuous, ordinal, or categorical.  

 

7 Summary 

To understand the cognitive and neural mechanisms of navigation, knowing how 

spatial information is represented in memory is as important as knowing how a neural 

positioning system senses spatial information.  While many studies have demonstrated the 

remarkable resemblance between how human and nonhuman animals represent space, this 

review highlights some of the critical cross-species inconsistencies.  Such inconsistency 

spans the whole hierarchy of spatial representation, from the encoding of distance and 

direction (continuous vs. categorical) to the representation of routes (path-relevant vs. path-

independent encoding), sub-regions of an environment (separated vs. integrated), and the 

geometric structure of environmental space (metric vs. topological).  Although navigation is 

one of the most primitive skills found across animal species, these inconsistencies 

demonstrate that what we learned from the electrophysiological studies of rodent 

navigation does not necessarily apply to human navigation.  These inconsistencies also 

highlight the importance of closing the loop for the dominant animal-to-human approach in 

navigation research, so that insights from behavioral studies of human navigation may also 

flow back to shed light on the cellular mechanism of navigation for humans and other 

mammals (i.e., a human-to-animal approach).    
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Figure Captions 

 

Figure 1. Grid patterns are sensitive to environment geometry, novelty, and visual input.  

(A). Grid pattern observed in square arena was distorted in trapezoids (adapted with 

permission from Krupic et al., 2015).  Rows 1 and 3 are example of rate maps of two 

representative grid cells; rows 2 and 4 show corresponding spatial autocorrelograms.   

(B). Grid patterns observed in light condition were disrupted in complete darkness (adapted 

with permission from Chen et al., 2016 under the CC BY License 4.0).  Columns 1 and 3 are 

example of rate maps of three representative grid cells; columns 2 and 4 show 

corresponding spatial autocorrelograms.  

(C). Grid patterns observed in familiar environments expand in novel environments 

(adapted with permission from Barry et al., 2012).  Rows 1 to 3 show the raw data (locations 

of firing in green and animal’s path in black), rate maps, and spatial autocorrelograms, 

respectively. Data were from one grid cell in five different trials, trials 1 and 5 were recorded 

in a familiar arena whereas trials 2 to 4 were recorded in a novel arena (shown with red 

outline).  

 (D). Grid patterns observed in a square arena stretched and shrank with environmental 

deformation (adapted with permission from Barry et al., 2007).  The upper panel shows raw 

data (locations of firing in green and animal’s path in black) when a square arena was 

changed to a vertical rectangle, horizontal rectangle, and a smaller square arena. The lower 

panels show corresponding rate maps (left) and spatial autocorrelograms (right).  

 

Figure 2. Integration of grid patterns for local compartments.  

(A-B) Integration of adjacent compartmental space into a coherent global space following 

extensive experience (adapted with permission from Carpenter et al., 2015 under the CC BY 

License 4.0). The similarity between grid patterns for the two compartments was high 

during early exposure (Panel A, upper row), which was reduced by weeks of exploration 

experience during later exposure (Panel A, lower row).  Similarly, during early exposure, a 

local model with repetitive grid patterns showed a better fit to the rate maps than a global 
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model, in which grid patterns tile across the compartments (Panel B, upper row). The 

opposite fitting results were obtained during late exposure (Panel B, lower row).    

(C-D) Combination of adjacent compartmental space into a coherent global space following 

the removal of the partition wall (adapted with permission from Wernle et al., 2018). (C) 

Examples of grid patterns before (left) and after (right) the removal of partition wall from 

two representative grid cells (one in each row).  (D)  Grid patterns for two compartments 

were integrated rapidly into a global one during the first trial after wall removal.  Column 1 

show grid maps of two grid cells (one in each row) before the removal of the partition wall; 

columns 2 to 4 show grid maps observed 5, 10, 20, and about 40 minutes after the wall 

removal, respectively.   

 

Figure 3. Path-specific encoding of spatial information.  

(A). Path-specific encoding of spatial information by a right hippocampal cell in the human 

brain (adapted with permission from Ekstrom et al., 2003).  The firing-rate map of this cell 

showed significant place selectivity when the participant looked for one goal location (i.e., 

shop SC, left panel) in a virtual navigation task, but not when the participant searched for 

other shops (right panel). Red lines denote the participant’s navigation trajectory; black 

squares indicate areas where the cell fired with high rate.   

(B). Route-direction-dependent firing of hippocampal place cells in the human brain 

(reproduced with permission from Jacobs et al., 2010).  Each row shows the firing-rate map 

of one place cell when participants navigated the virtual town in a clockwise direction (left 

column) and in a counterclockwise direction (middle column).  Gray lines indicate 

participants’ trajectory.  The right column shows the computed place field of the place cell in 

each row.  Red and blue place fields indicate the cell fired specifically during clockwise and 

counterclockwise movements, respectively.    

(C). Trajectory-dependent firing of place cells is not due to the encoding of goal location 

(adapted with permission from Grieves, Wood, et al., 2016 under the CC BY License 4.0).  

The left most panel shows a schematic illustration of the four trained routes through the 

maze. Note that some of the segments were shared by either four or two trained routes.  The 
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right four panels show firing-rate maps of four representative cells, which demonstrate 

differential firing in the start arena, the lower central segments shared by all four routes, the 

left and the right arms shared by two routes.  Note that one cell shows different firing at the 

central shared segments even though two inner routes lead to the same goal location.  
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