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Abstract  25 

Progress in remote sensing and robotic technologies decreases the hardware costs of 26 

phenotyping. Here, we first review cost-effective imaging devices and environmental sensors, 27 

and present a trade-off between investment and manpower costs. We then discuss the structure 28 

of costs in various real-world scenarios. Hand-held low-cost sensors are suitable for quick and 29 

infrequent plant diagnostic measurements. In experiments for genetic or agronomic analyses, (i) 30 

major costs arise from plant handling and manpower; (ii) the total costs per pot/microplot are 31 

similar in robotized platform or field experiments with drones, hand-held or robotized ground 32 

vehicles; (iii) the cost of vehicles carrying sensors represents only 5-26% of the total costs. These 33 

conclusions depend on the context, in particular for labor cost, the quantitative demand of 34 

phenotyping and the number of days available for phenotypic measurements due to climatic 35 

constraints. Data analysis represents 10-20% of total cost if pipelines have already been 36 

developed. A trade-off exists between the initial high cost of pipeline development and labor cost 37 

of manual operations. Overall, depending on the context and objectives, “cost-effective” 38 

phenotyping may involve either low investment (“affordable phenotyping”), or initial high 39 

investments in sensors, vehicles and pipelines that result in higher quality and lower operational 40 

costs. 41 

Highlights  42 

- New technologies considerably reduce the costs of sensors and automated vehicles 43 

- Low investment in sensors, vehicles or pipelines present trade-offs with labor costs 44 

- Plant/plot handling and labor costs represent the major proportion of costs in phenotyping 45 

experiments 46 

- The costs of high-throughput experiments in the field and in automated platforms is similar 47 

regardless of vehicles 48 

- The development of software applications (e.g. imaging, phenotypic analyses, models, 49 

information system) is a major part of costs 50 

Keywords Phenotyping; Phenomics; Cost; imaging; information system; affordable; 51 
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Introduction 77 

The observation of growing plants can involve operations of different nature. For instance, when 78 

a farmer visits fields to decide if and when an operation needs to be carried out, e.g. irrigation, 79 

fertilization or harvest, this is essentially based on direct observations that may be helped by low-80 

throughput tools. The same tools can be used in nurseries when a breeder rapidly inspects tens 81 

of thousands of plants of a population with the aim of identifying, for instance, plants of abnormal 82 

aspect or with high sensitivity to a disease. At the other extreme, genome wide association 83 

studies (GWAS) or genomic predictions require analysis of hundreds of lines to identify the 84 

genetic variability of traits associated with plant performance in diverse conditions. This 85 

translates into thousands of plants in greenhouse robotized platforms, or of microplots (i.e. a 86 

plot of typically 4-10 m2 with a single genotype) in field experiments. Such experiments involve 87 

(i) novel technologies for collecting relevant images of each plant or microplot, able to 88 

characterize the temporal and spatial variability of traits; (ii) the design and maintenance of 89 

pipelines of image analyses allowing one to extract quantitative traits from images; (iii) analyses 90 

of datasets originating from different installations at different scales (e.g. phenotyping platforms 91 

in greenhouses or in the field at organ, plant or canopy levels); and (iv) shared information 92 

systems able to manage and store data in such a way that data can be re-used or re-analyzed by 93 

the scientific community [1–3].  94 

The concept of “affordable phenotyping” or “cost-effective phenotyping” has developed rapidly 95 

in recent years due to decreasing cost of equipment such as low-cost environmental sensors [4] 96 

or smartphone-embedded and mobile imaging sensors [5]. Indeed, cost-effective phenotyping 97 

approaches have been utilized to capture image- and sensor-based crop performance datasets 98 

in greenhouses and in the field [6–8]. For example, ground-based portable devices [9,10] have 99 

been used to estimate canopy photosynthesis rate at key developmental stages; mobile phone 100 

cameras are also used to capture crop disease symptoms and plant morphology [11–15]; 101 

unmanned aerial vehicles (UAVs) equipped with relatively low-cost RGB (red-green-blue) 102 

cameras are employed to study crop performance and field variability under different growing 103 

conditions [16–18].  104 
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Depending on the number and complexity of operations associated with the observation of a 105 

given set of phenotypic traits, the cost of equipment can represent a variable fraction of the total 106 

cost of the phenotyping program. Hence, the cost of specific pieces of equipment should be 107 

considered as a part of the costs of the whole phenotyping process. For example, low-cost 108 

hardware can be appropriate for diagnostic or quick characterization of a few plants in a field 109 

experiment. If many plants or plots have to be sampled several times during the crop cycle, this 110 

may result in higher cost related to the additional human effort required for the analysis of poorly 111 

calibrated and documented data, in order to obtain interpretable and heritable variables.  112 

Plant breeding programs are also potential end-users of phenomics and need to analyze whether 113 

the investment in a particular phenotyping technology will achieve a justifiable increase in the 114 

rate of genetic gain. It is important to acknowledge here that, at this stage, the extent to which 115 

phenomics can substantially increase this rate is discussed. Breeders have been successful in 116 

increasing yield, e.g. in wheat [19,20] and maize [21], essentially based on direct selection for 117 

yield. The success of trait-based selection has been focused on visually observable traits such as 118 

anthesis-silking interval in maize, disease symptoms, growth phenotypes [22], and flowering [23], 119 

which do not require high investment. Novel breeding techniques such as genomic selection may 120 

reinforce the power of yield-based selection perhaps at the expense of trait-based selection 121 

[20,24], thereby decreasing the interest of phenotypic analyses to focus on increasing the 122 

average yield in a given region [20]. It has been proposed that the contribution of phenomics to 123 

pre-breeding may involve novel biological applications, for instance (i) where and when do 124 

genotypes or alleles present in the genetic diversity present comparative advantages, and (ii) 125 

whether one can make the best use of combinations of alleles controlling adaptive traits (e.g. the 126 

controls of stomatal conductance or growth) as a function of environmental conditions [25].  127 

These questions involve a combination of phenomics, modelling and genomic prediction to 128 

assess the genetic and environmental controls of plant adaptation [25]. Addressing the above 129 

questions may be essential for breeding in a context of climate change, but it is currently 130 

upstream of most breeding programs. Until clear contributions of phenomics to breeding have 131 

been demonstrated in particular contexts, it might be misleading to attempt to evaluate the 132 
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efficiency of phenomics techniques, either ‘envirotyping’ or plant measurements, in terms of cost 133 

per unit genetic gain.   134 

Hence, we hereby focus on the costs of all operations involved in phenomics, and not on the 135 

efficiency of their costs for breeding. We first review the current imaging techniques and vehicles 136 

carrying the corresponding sensors. We then present the structure of costs associated with 137 

phenomics based on case studies for different experiments in the field or in indoor controlled 138 

conditions and for different imaging systems.  139 

I Imaging techniques with a range of hardware costs 140 

1.1 Handheld phenotyping technologies  141 

Small, lightweight and reusable devices considerably reduce the hardware costs associated with 142 

handheld phenotyping at canopy or leaf level in field conditions, but also at plant level in indoor 143 

conditions. For example, using an advanced software approach and commercially available 144 

handheld digital cameras, 3D reconstructions at organ level can either be accomplished by 145 

combining tens of images of a single plant taken by hand with structure-from-motion and multi-146 

view stereo techniques [26] or by using stereo camera setups and stereo image processing [27]. 147 

A 3D reconstruction of a plant row has been performed using a bespoke hand-held sensor 148 

platform [28], while a standard RGB camera was used to record color information of scanned 149 

areas. A visual-inertia and 2D LiDAR (Light Detection and Ranging) sensor contributed to the 150 

reconstruction of colored 3D models of crop areas. Another device connects infrared 151 

temperature sensing, GPS positioning and a normalized difference vegetation index (NDVI) 152 

sensor, together with a standard laptop mounted to a hand-held pole [29]. A handheld device 153 

combines light-emitting diode (LED) lights with visible and infrared sensors in a package able to 154 

calculate light transmission through the surface of a leaf, fluorescence-based kinetics and 155 

photosynthesis-associated variables [30]. Standard RGB cameras have been widely used to 156 

characterize the canopy structure [31,32], with adaptation to smartphone cameras [15]. 157 

The phenotyping devices described above present several limitations. Lower investment costs 158 

are most often at the expense of labor-intensive manual control and analysis, otherwise they 159 

may lead to the production of non-repeatable datasets. Indeed, these approaches require human 160 
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decisions for the imaged area, the selection of regions of interest, and, finally, analytical software 161 

to standardize and analyze the captured data [5]. Furthermore, the scale of measurement is 162 

limited without costly and complex machinery. Hence, it can be considered that handheld devices 163 

are most appropriate for actions with limited throughput carried out by experienced plant 164 

specialists 165 

1.2 Aerial imaging for large-scale phenotyping 166 

Aerial imagery for field conditions provides a sufficient throughput to sample all the plots of a 167 

field experiment (typically thousands of microplots) within a short time interval. It is efficient 168 

when targeting canopy characteristics that may vary considerably within a short time interval 169 

such as canopy temperature [33,34] or changes in canopy structure due to leaf rolling [35]. 170 

Traditional manned helicopters are still used because of the heavy payload capacity [36]. 171 

Nevertheless, three factors have triggered the rapid development of UAVs for field phenotyping 172 

applications in the last five years: (i) the increasing autonomy reliability and payload capacity, (ii) 173 

the decrease of the corresponding cost, together with an increase in sensor performance, and 174 

(iii) the development of image processing software allowing to precisely compute the position of 175 

the UAV corresponding to each individual image and to create an orthomosaic image map of the 176 

field [17]. The high-resolution imagery provided by consumer grade RGB cameras has been used 177 

to count plants and organs [37] and to evaluate the cover fraction [38]. Using the same RGB 178 

cameras, the shape from motion algorithm creates the dense 3D point clouds from which plant 179 

height is derived with a very good accuracy [39–42]. Light-weight LiDAR was also tentatively 180 

mounted on UAVs to get a more direct estimation of plant height and canopy related traits [43]. 181 

Multispectral and hyperspectral images were used to assess canopy characteristics including the 182 

green area index [44] and canopy temperature [34]. 183 

The high-throughput of UAV-based observations and its relatively affordable cost makes it 184 

potentially very efficient for field phenotyping. However, it needs to operate under favorable 185 

conditions, i.e. with no rain, when the illumination is relatively stable and when the wind is not 186 

too strong (typically wind speed lower than 35km h-1). This limits the proportion of days during 187 

which this technique can be used, thereby increasing the cost per day (see Section II). 188 
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Furthermore, the massive number of images produced and the intensive computation required 189 

to accurately locate images and extract the corresponding microplots contributes to the 190 

significant increase of the cost of the traits analyses derived from this technique. Except for LiDAR 191 

techniques, the passive nature of UAV observations (the sun being the unique light source) makes 192 

the quantification of traits prone to biases due to the specific illumination conditions at the time 193 

of image acquisition [45,46]. Recently, UAV costs have increased due to legislation and training 194 

issues (see section II) 195 

1.3   Imaging with ground vehicles  196 

Low-cost mobile phenotyping systems have been developed by attaching imaging components 197 

to existing farm equipment. For example, a tractor can pull a trailer equipped with sensors 198 

including a color camera, multiple laser distance scanners, and a hyperspectral imaging sensor 199 

[6,46]. Simpler moveable carts have been designed to reduce costs by not requiring pre-existing 200 

agricultural equipment, but this is limited to crops with relatively low plant height [47,48]. 201 

Alternatively, a large sealed box has been placed around individual plots to capture multi-spectral 202 

measurements [49]. A standalone manned vehicle has been developed to carry a thermal 203 

infrared camera and a low-cost LiDAR together with light riggings and height adjustable 204 

mechanism [4]. Similarly, a mobile phenotyping platform has been developed, equipped with 205 

fully adjustable and swappable sensors [29].  206 

The hidden costs of using the phenotyping devices presented above are data calibration, data 207 

management and processing. Calibrating the data captured by sensors with manned vehicles in 208 

the field can be a time-consuming task due to wide variations in different sensor groups as well 209 

as field regions. It is not only costly but also technically complex to consistently store large 210 

quantities of images and sensor data throughout the growing season and associating important 211 

metadata (e.g. a time stamp and the corresponding spatial coordinates). Furthermore, well-212 

trained, thus expensive, specialists are needed to operate these manned phenotyping devices.  213 

As a result, more expensive autonomous robotic vehicles have been developed [50]. For example, 214 

a fully automatic unmanned robot was specifically designed for field phenotyping applications, 215 

controlled by an RTK-GPS positioning system with centimeter accuracy and equipped with 216 
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modular sensors including LiDAR, multispectral cameras and high resolution RGB cameras [47]. 217 

Other vehicles can collect images in a field, together with performing tasks such as seeding, 218 

weeding, and harvesting [51]. A robot system has been used to image and analyze berry structure 219 

and color in grapevine breeding [48]. Robots with specific phenotyping tasks have also been 220 

developed to work alongside a static tower system [52]. Such robotic solutions offer the capacity 221 

to use artificial illumination (active imaging), independent from natural illumination conditions 222 

(even during the night or cloudy days).  223 

1.4 Environmental characterization and envirotyping 224 

Weather stations with data loggers are now widely available for a much reasonable price, thereby 225 

making hourly environmental characterization a routine procedure. This can be extended to 226 

additional measurements such as soil water content/potential and soil temperature. For 227 

instance, electronic tensiometers have been deployed in a network of field experiments for a 228 

limited cost [53]. The same applies to installations in controlled conditions, for which 229 

measurements of local environmental conditions can be performed with a time step of minutes 230 

[54]. Using an "open hardware" design strategy, soil moisture data loggers have been produced 231 

using commercially available electronics and sensors [7]. Usability is increased by data 232 

transmission over General Packet Radio Service (GPRS), allowing results to be collated off-site 233 

without manual harvesting. In addition to GPRS, radio transmission can also be used for data 234 

communication within a more complicated network of modular devices [55].  235 

A specific sampling strategy is required to represent the spatial variability of environmental 236 

conditions in the field while using fixed sensors. Another problem is the software R&D costs to 237 

cross-reference different static devices in order to extract meaningful information from collected 238 

crop image series and climate datasets using advanced computer vision and data analytic 239 

packages [53]. Small workstations have been developed to provide plot level crop growth traits 240 

as well as micro-environment variables [56]. Multiple sensor types can be integrated into single-241 

board computers that can then form a scalable, multi-point in-field network to assist decision 242 

making processes such as crop management and line selection. Modelling is another efficient 243 

method for assessing the spatial variability of environmental conditions, in particular in 244 
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greenhouse platforms, thereby limiting the number of environmental sensors deployed in 245 

experiments [54].  246 

To our knowledge, the use of sensor networks is currently the main contribution of phenomics 247 

to plant breeding, via the development of ‘envirotyping’ [57–59]. It has been increasingly used 248 

by breeding companies for the identification of environmental scenarios in which combinations 249 

of alleles have positive effects on yield [24,53], the identification of target populations of 250 

environments associated with a breeding program [24,60], or even the definition of new criteria 251 

for developing commercial makes of  resilient genotypes [61]. 252 

II Costs associated with image capture represent a limited fraction of the overall 253 

cost of phenotyping 254 

2.1 A method for calculating costs in field and greenhouse platforms 255 

Calculating costs with a consistent method for field and platform phenotyping is a challenging 256 

task because it is associated with hypotheses and simplification that are debatable by nature. In 257 

Tables 1 and 2, examples for calculation of costs are shown in the field with either automated 258 

ground vehicle, a hand-driven ground vehicle (e.g. handcart or wheelbarrow style trolleys) or a 259 

UAV, or in controlled conditions with a robotized phenotyping platform. Table 1 presents costs 260 

associated with imaging for the typical number of plants or microplots in experiments for each 261 

technique, under two scenarios: (i) in the ‘offer limited’ scenario, the use of devices is limited by 262 

the availability of equipment or personnel; (ii) in the ‘demand limited’ scenario, it is limited by 263 

the number of applications for experiments by public or private users. Both scenarios can co-264 

exist, for example between years depending on the amount of available funding for Plant Science, 265 

or between installations depending on the demand at a given time. Table 2 presents all costs 266 

associated with a typical experiment using methods presented in Table 1 in the two above 267 

scenarios, including costs for infrastructure, data management and data storage. Both tables 268 

result from surveys performed in the French phenotyping infrastructure Phenome-EMPHASIS.fr 269 

project (www.phenome-EMPHASIS.fr), weighted with information generated from other 270 
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infrastructures in UK, USA and Germany. It is noteworthy that these costs correspond to 271 

countries where the labor cost is high. Hence, the conclusions of this study need to be 272 

contextualized.  273 

In field experiments, the cost for imaging (e.g. vector and sensors) was calculated over the whole 274 

lifetime of the considered device, taking into account the number of imaged plots per year 275 

(number of days of use per year x number of plots measured every day), and the expected 276 

lifetime of the considered device (in years). The investment cost is therefore expressed per 277 

plot.day per year. The number of days of use per year differs between techniques, and varies 278 

between sites with the frequency of weather limitations. For instance, this number is higher for 279 

automated ground vehicles with active imaging assisted with artificial light (which can be used 280 

even in very cloudy or night conditions) than for hand-held ground vehicles (limited by light 281 

intensity because of passive imaging) and UAVs (limited by weather constraints, in particular 282 

wind, rain, and light because of passive imaging). This results in costs relative to that of the 283 

automated ground vehicle of 1.00, 0.83 and 0.67, respectively for an automated ground vehicle, 284 

a hand-held ground vehicle and a UAV (Table 1). The costs also depend on the local demand for 285 

the selected device: the investment cost per plot.day per year was calculated as higher if the use 286 

of the device was limited due to low demand (scenario 2 in Table 1) than if the device was used 287 

at full capacity (scenario 1). Additionally, the calculations shown in Table 1 also depend on the 288 

expected lifetime of the considered device, which is higher for a ground vehicle than for a UAV. 289 

Sensors were considered as having a shorter expected duration than vehicles because of 290 

obsolescence. The labor cost was calculated by dividing the annual cost (220 working days per 291 

year) by the number of days required for the considered operation and the number of microplots 292 

to be sampled per year. The same calculations were considered for a robotized platform, 293 

expressed per plant.day. In the case presented in Table 1, the platform was considered as being 294 

used in three experiments per year, with a 90-day duration each. 295 

The above information was then used for calculating the cost of a typical experiment (Table 2), 296 

either in a field platform with 1,700 microplots (e.g. 284 genotypes, 2 treatments and 3 297 

replicates) and 10 days of measurement to monitor the crop cycle, or in a platform with 1,700 298 

plants over 90 days. The costs for plant handling, for image capture, image analysis, data analysis 299 
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itself and data storage considered in the analysis are presented in Table 2. Data in Tables 1 and 2 300 

are presented below.  301 

2.2 A high cost for plant management 302 

Phenotyping is, by definition, associated with a field, a greenhouse or a growth chamber in which 303 

experiments are carried out. Field phenotyping involves a cost of typically $30 to $50 USD per 304 

microplot for one experiment, resulting in $68K USD for a typical experiment involving 1,700 305 

microplots necessary for genetic analyses (Table 2). This price is used internally or externally by 306 

many breeding companies and includes the cost of hiring the field, plant management, irrigation 307 

and harvest. Greenhouse experiments are also expensive, with a typical investment of one 308 

million dollars for a greenhouse equipped with climatic control and surrounding facilities allowing 309 

compost management, potting and cleaning. Another million is required for the robots 310 

associated with the handling of the thousands of plants involved in genetic analyses, including 311 

imaging cabins, watering and weighing stations and conveyors.  With the hypothesis of a given 312 

equipment used for 15 years with three experiments per year, this investment results in a cost 313 

of $67K USD for an experiment handling 1,700 plants, to which one adds a cost of $5K USD for 314 

electricity and potting compost. The cost per unit sample (microplot or plant) is therefore similar 315 

to experiments either in the field or in a robotized platform (Table 2). Interestingly, some 316 

platforms are in open air [62], thereby avoiding the cost of a greenhouse. This considerably 317 

decreases experimental costs, provided that climatic conditions at the dedicated site allow 318 

several experiments per year in open air; otherwise this approach could result in a high cost per 319 

experiment if only one experiment can be accomplished per year. Overall, the high price per 320 

microplot in the field or per plant in the greenhouse suggests that phenotyping experiments are 321 

expensive per se before any phenotypic analyses are carried out.  322 

2.3 Investing in an appropriate environmental characterization results in comparatively low 323 

cost for a high return. 324 

The cost of environmental sensors has decreased rapidly (see section 1.4): climate sensors for 325 

temperature and humidity normally cost less than $5 USD per unit. Commercial devices can 326 

provide, for a few thousand dollars, hourly measurements of the main environmental variables 327 
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necessary to characterize an experiment site, including light, air temperature, relative humidity, 328 

rainfall, and wind speed. Soil water potential can also be characterized for a few hundred dollars 329 

with tensiometers, and soil water content for a few thousand dollars with capacitive sensors. In 330 

the calculations presented in Tables 1 and 2, this investment results in a cost of less than $10K 331 

USD per field, with an assumption that the installed devices can last for about four years. An 332 

appropriate environmental characterization is therefore a cheap investment compared with 333 

plant management. Importantly, it allows joint analyses of several experiments both in the field 334 

and greenhouse, thereby improving one’s ability to analyze datasets based on environmental 335 

scenarios or regression analyses [53,63]. Most breeding companies have now invested in this 336 

domain. Their feedback (personal communication), consistent with our perception, is that the 337 

major cost associated with environmental characterization is manpower because sensors have 338 

to be installed, then checked regularly and datasets need to be collected and then analyzed by 339 

semi-automated methods. In particular, for detection of outlier dates or sites, extra human costs 340 

are inevitable when many sensors are deployed under natural conditions.  341 

2.4 Imaging costs: a trade-off between investment and labor costs  342 

Imaging costs reported in Table 1 include the cost of the vector (e.g. manual measurements, UAV, 343 

ground vehicles), imaging hardware and associated software. These costs can range from a few 344 

dollars, in case of a person carrying a cell phone equipped with an imaging software, to hundreds 345 

of thousand dollars for a fully-equipped ground vehicle.  346 

2.4.1 The choice of a vehicle mostly depends on the demand for microplots per year. 347 

Portable devices have shown their ability to collect plant images in the field but their throughput 348 

is low and they require experienced specialists (see Section 1.1). This limits their application to 349 

relatively infrequent phenotyping for decision making or characterization of outlier genotypes. 350 

We have therefore not considered them in the calculations of Tables 1 and 2, because they 351 

respond to a different use in relation to the costs associated with high-throughput phenotyping. 352 

UAVs are relatively cheap (a few thousand dollars) and can cover typically 4,000 microplots per 353 

day in 2-3 flights, resulting in a low-cost investment per plot.day. However, their expected 354 

lifespan is typically two years and their use is limited by weather conditions such as rainfall, wind 355 
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and cloud coverage. Significant costs for insurance may occur in some countries. The manpower 356 

costs may be high in some countries due to civil aviation rules requiring authorizations and 357 

permits, leading to a cost of tens of thousands of dollars for training at least three persons per 358 

site. A calculation based on a throughput of 4,000 microplots per day, 40 available days per year, 359 

a lifetime of two years and personnel costs, still results in the lower cost compared with other 360 

vehicles ($0.29 USD per plot.day per year, scenario 1 Table 1). This cost is increased to $0.98 USD 361 

per plot.day per year in case of a lower demand of only 4,000 microplots per year (scenario 2, 362 

Table 1).  363 

Hand-held ground vehicles have a cost of a few ten thousand dollars, excluding sensors. They can 364 

reach a throughput of around 100 microplots per hour. However, this approach struggles if 365 

aiming at measuring thousands of plots with high frequency. Indeed, it requires well-trained 366 

personnel who can manage the device, but who also accepts to push it for weeks during key 367 

developmental stages, sometimes in bad weather conditions. This can cause difficulties in the 368 

management of the personnel. We have considered a throughput of 800 microplots per day over 369 

50 days per year, which is probably a maximum in many countries but can be extended in others. 370 

The corresponding cost in Table 1 is $0.98 USD per microplot.day per year. This cost is valid in 371 

the two hypotheses for demand in Table 1, because this method is associated with a lower 372 

throughput than UAVs. 373 

Automated ground vehicles can be used over a larger number of days than hand-held ground 374 

vehicles and UAVs, calculated as 60 days per year in Table 1 (5 months, 12 days per month). This 375 

can be increased in case of fully automated vehicles equipped with active imaging (with 376 

autonomous lighting), which allows their use in any conditions including during the night. Their 377 

investment cost is high and essentially depends on the plant species used in experiments. For 378 

instance, a vehicle allowing imaging cereal crops with 60 cm height grown in rows can lead to an 379 

investment of typically $300K USD, but the investment increases if the vehicle must also be used 380 

for phenotyping tall species such as sorghum or maize, and/or crops that are not grown in rows 381 

such as canola (typically $500K USD). Taking into account the total investment, a throughput of 382 

1,200 microplots per day, a lifetime of 20 years and the personnel costs, the cost is $1.02 USD 383 
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per microplot.day per year in scenario 1 with a fully occupied usage, but will increase to $1.67 384 

USD per microplot.day per year in scenario 2 with a limited demand. 385 

Hence, the investment cost corresponding to vectors largely depends on the use of the chosen 386 

vector. For instance, robotized and hand-held ground vehicles result in similar costs if they are 387 

used to their maximum potential (i.e. a high demand), whereas the robotized ground vehicle is 388 

the most expensive option in a scenario with a limited demand. Similarly, UAVs appear to be a 389 

low-cost option in the scenario with a high demand, whereas costs of UAVs and ground vehicles 390 

are higher with a lower demand. An alternative solution for UAVs might be to rely on specialized 391 

companies that carry out measurements. However, the economic models for such services in 392 

phenotyping experiments are not yet stabilized.  393 

 2.4.2 The cost of imaging devices is similar to those of vehicles that carry sensors 394 

The costs of cameras (several hundred dollars per unit), portable multi-spectral devices ($5-10K 395 

USD), and mobile LiDAR ($10-200K USD, depending on the resolution) are also high. The lifespan 396 

of multi-spectral sensors and LiDAR can be several years, but they have been limited to four years 397 

in Table 1 because of obsolescence. Personnel costs result in around $0.2-0.4 USD per 398 

microplot.day in European conditions, which can vary due to the frequency of phenotyping, 399 

selected imaging sensors, and associated training costs. On these bases, the cost of imaging was 400 

similar to ground vehicles, but much higher than UAVs.  401 

2.5 Costs of typical experiments  402 

The remaining costs need to be calculated for a typical experiment. We have considered 403 

experiments with 1,700 microplots in the field or with 1,700 plants in a robotized platform, 404 

together with the costs for plant handling as described in section 2.2, image capture in section 405 

2.4, plus the costs of image analysis, data analysis and data storage presented below. 406 

2.5.1 Image analysis: a tradeoff between investment in automated workflows and day-to-day 407 

labor costs. 408 

With the advances in computer vision algorithms and machine learning based classification 409 

methods [5,64,65], many image analysis tasks can be accomplished automatically in a high-410 
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throughput fashion. A tradeoff therefore exists between the time dedicated to the development 411 

of imaging pipelines and that dedicated to day-to-day image analysis. Several public packages are 412 

under development and will hopefully relieve the bottleneck of image analysis [66–68]. This is 413 

already largely the case in automated phenotyping platforms, in which routine traits (e.g. plant 414 

volume, area or height) are extracted automatically in real time [69–71]; however, sound 415 

automatic workflows remain to be required for image series acquired by UAVs or ground 416 

vehicles. In both cases, the design of a specific pipeline can result in a cost of nearly $250-500K 417 

USD, if the pipeline is aimed at being sufficiently flexible for different types of users. Much 418 

cheaper data acquisition tools are commercially available, designed by companies or plant 419 

research laboratories. However, they are often proprietary, designed for specific requests and 420 

hence not flexible enough for wider applications. An interesting alternative is that public 421 

consortia develop and release flexible analytic workflows, which can then be used and 422 

continuously developed by the scientific community through an ‘open science and open source’ 423 

approach. This is currently carried out by different consortia.  424 

A cost tradeoff also exists between the quality of images and the time for image analysis. For 425 

example, if a standard imaging protocol has not been properly conveyed to end-users (e.g. how 426 

to ensure lighting condition and image clarity, how to minimize color distortion, and how to select 427 

regions of interest), extra computational work is required to improve the quality of raw data 428 

captured by low-cost devices, different formats of raw data might require ongoing licensing or 429 

extra fees to carry out trait analysis as well as continued maintenance for future references.  430 

The costs in Table 2 are based on the hypothesis of existing workflows and therefore do not 431 

consider the cost of their development. With this hypothesis, they still represent 10-20% of the 432 

cost of image capture. As stated above, this cost increases by hundreds of thousands of dollars if 433 

the cost of developing workflows is taken into account. It is also considerably higher if image 434 

analysis is performed manually.     435 

 436 

2.5.2 High costs for data analysis resulting in the identification of traits  437 
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The datasets resulting from phenotyping projects are difficult to analyze because they are 438 

voluminous, complex, heterogeneous, plagued with errors and only can be handled with up-to-439 

date scientific and mathematical tools. For example, a recent project (EU DROPS) required four 440 

full-time PhD students, engineers or post-docs, three technicians and two permanent scientists 441 

for four years to conduct data analysis related tasks. This involved compiling and cleaning the 442 

datasets collected in fields and greenhouse experiments, designing novel tools for extracting 443 

traits from the raw data, and performing cross-scale analyses and genetic analysis. Overall, this 444 

procedure recorded a cost of about half a million dollars, i.e. about the same amount dedicated 445 

to image analysis in the hypotheses of Table 2. 446 

A tradeoff exists between the time dedicated for data capture and analysis. Currently, many 447 

phenotyping projects rely on analytic software solutions that are either customized for specific 448 

hardware or based on proprietary or specialized software solutions. Similarly, data collected with 449 

cost-effective phenotyping approaches are often analyzed manually, which is time consuming, 450 

prone to errors and expensive due to additional human costs. Developing workflows with a 451 

reproducible data analysis strategy therefore corresponds to a high extra-cost for individual 452 

experiments, but it can be considered as a good investment at the level of a broader scientific 453 

community, because, in this way, data can be shared, re-used and re-analyzed.  454 

Overall, the cost of data analysis is the most underestimated part of many phenotyping projects. 455 

In the same way as for image analysis, data analysis costs presented in Table 2 are based on the 456 

availability of existing workflows. They considerably increase if workflows need to be developed 457 

during the projects, or the whole analysis is performed manually. Based on these hypotheses, 458 

the costs required for estimating trait values are similar to those of image analysis. Together, 459 

costs of image and data analysis represent 30-200% of the cost of image capture, a factor that is 460 

rarely considered for the overall costs of phenotyping.    461 

 462 

2.5.3 Costs associated with data storage and organization ensure the possibility of reusing 463 

datasets 464 
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The datasets collected above carry more information than any group can handle alone. It is 465 

therefore vital for the plant science community to ensure that datasets can be managed in a way 466 

that they can be accessed and re-analyzed by scientists that have not been involved in the data 467 

collection. By doing that, researchers should be able to trace the history of plants, re-analyze 468 

sensor- and image-based datasets with existing or new methods and check sensors in case of 469 

inconsistencies. This requires information systems capable of collecting, managing, and 470 

presenting thousands of data points and images collected in multiple experiments, together with 471 

necessary metadata (FAIR standard: findable, accessible, interoperable and reusable). Such 472 

information systems are based on elaborate protocols to describe content and format of 473 

phenotypic information [56,72], as well as a standardized description of all involved objects (i.e. 474 

plants, organs, sensors, phenotyping facilities) via ontologies [73,74].  475 

The cost for elaborating such information systems involves tens of person-months of computer 476 

scientists. As stated in earlier paragraphs, this requires an effort at the level of international 477 

consortium. The costs in the hypotheses of Table 2 are based on a pre-existing information 478 

system and only consider the cost of data storage ($32 USD per terabyte per year). 479 

III An unexpected structure of costs has large consequences on conclusions about 480 

cost effectiveness  481 

An overall inspection of Table 2 results in a view of phenotyping costs that largely differs from an 482 

initial intuition that one might have. In the hypotheses considered in Table 2:  483 

- The cost for handling microplots or plants is by far the highest and is similar in the field and in 484 

robotized platforms. The former was based on current costs in most breeding companies; the 485 

latter was considered the cost of the greenhouse and of the robot. The cost of microplot or 486 

plant handling represents 65-77% of the total cost of phenotyping, across types of vehicles, 487 

hypotheses or location of experiments in a field or a robotized greenhouse.  488 

- The labor cost represents a large proportion of the total cost, from 30% to 100% of the cost of 489 

vehicles and sensors for data analysis, plus the costs associated with image capture itself. As 490 

stated above, these costs are under-estimated in Table 2, because they assume that pipelines 491 

already exist for image analysis, trait measurements and associated information systems. These 492 
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costs would considerably increase if the development of pipelines was taken into account, or if 493 

all the data processing was considered as manually accomplished.  494 

- Investment itself represents only 10-20% of the total of phenotyping costs, whereas most 495 

discussions on costs focus on investment.  496 

Hence, phenotyping may be one of the few cases in which intuition about cost-effectiveness is 497 

not appropriate because (i) it tends to considerably under-estimate personnel and structural 498 

costs, (ii) it may lead to choosing tools that are immediately usable and relatively affordable; 499 

however, the examples shown previously indicate that heavier investment could result in a more 500 

efficient chain for extracting meaningful information. 501 

Other non-intuitive facts also emerge from Table 2 through comparing experiments in robotized 502 

platforms in the greenhouse or in the field with imaging based on different vehicles. First, the 503 

costs of experiments in a robotized platform are similar to those in the field (Table 2). Second, 504 

the total costs of phenotyping do not greatly differ with the choice of vehicles in field 505 

experiments. As discussed above, the optimum choice in terms of cost depends on scenarios: for 506 

a high demand of phenotyping, the three vehicles result in similar costs, with a slightly lower cost 507 

for UAVs; costs increase with a lower demand for the three vehicles, with a slight cost advantage 508 

for hand-held ground vehicles. However, these differences are small and context dependent, so 509 

a pure cost analysis does not result in an obvious choice between field and platform experiments, 510 

or for one of the three considered vehicles.  511 

Overall, the above shows that the cost of phenotyping experiment is high if all related costs are 512 

considered (Table 2). However, this statement needs to be contextualized. In some cases, light 513 

phenotyping represents a small marginal cost of an operation or experiment that is carried out, 514 

for instance, when a farmer needs to take an adequate decision or a breeder needs to keep track 515 

of some simple operations, the cost of crop management is not considered and the need for data 516 

analysis and storage is limited. Mobile phones or inexpensive UAV flights for light phenotyping 517 

are therefore highly valuable in these cases. In the other extreme, a phenotyping project aiming 518 

to characterize hundreds of genotypes needs to take all costs into account, resulting in a high 519 

overall cost for plant handling together with a high manpower cost for data analysis and data 520 

storage. Investment in vehicles and imaging devices therefore represent a limited proportion of 521 
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the total cost. In this case, the choice of vehicle (UAV vs ground vehicle), location, and 522 

experiments (field vs platform) should be taken into consideration together with other factors, 523 

i.e. the nature and the precision of the desired traits as well as the constraints linked to the 524 

management of personnel.  525 

Numerous trade-offs have been presented here between investment and operational costs, for 526 

example, the choice of vehicles, imaging techniques, or image analysis workflows. Hence, 527 

‘affordable phenotyping’, considered as the way to obtain a maximum of images in a minimum 528 

time frame with low investment costs, may be counter-productive in many cases. Similarly, the 529 

development of analysis pipelines represents a large investment but often lead to cheaper and 530 

more reproducible datasets than manual or tailored analysis in the long term. These trade-offs 531 

depend on local conditions, such as the availability, the cost of manpower, and the number of 532 

days, during which a given device can be used per year due to climatic or other constraints. None 533 

of the devices or techniques discussed above can be considered as cost-effective or cost-534 

ineffective per se, as nearly all of them can be considered adequate for specific tasks under 535 

defined conditions and ineffective in other circumstances.  536 

It is therefore essential that costs are reasoned in relation to (i) the precision, repeatability and 537 

heritability required in a given phenotyping task (ii) local personnel costs (training, data transfer, 538 

data calibration, data analysis and data management) that greatly vary between projects and 539 

countries, (iii) the cost per unit plot or trait, which can largely differ between methods depending 540 

on local climatic and economic conditions. If all of these elements are taken into account, ‘cost 541 

effective’ phenotyping may in some cases involve low investment (‘affordable phenotyping’), and 542 

in other cases involve an initial high investment that results in low operational costs together 543 

with high quality outcomes. Finally, for breeding purpose, phenotyping costs also need to be 544 

analyzed in terms of their contribution to the rate of genetic gain. Direct ratios cannot be 545 

established at this stage because of uncertainties about the scalability of measured traits towards 546 

yield in the absence of case studies combining phenomics, modelling and genomic prediction 547 

[75]. However, one piece of equipment and associated methods in phenomics have already 548 

shown their contribution to breeding: it has been observed here that the investment in sensor 549 

networks for environmental characterization has a clear value for interpretation of the genotype 550 
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x environment interaction, and for weighing the investment in specific breeding programs in 551 

relation to the frequency of corresponding target populations of environments.  552 
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 812 

Table 1. Imaging costs involving vehicle, sensors, associated software and personnel in field experiments or in a robotized platform, 813 

for two scenarios of demand for phenotyping (offer or demand-limited) and, in the field, three categories of vehicles (vectors) carrying 814 

sensors (automated or hand-held ground vehicle or unmanned aerial vehicle (UAV). Costs are expressed in US dollars per plot.day per 815 

year (field) or plant.day per year (robotized platform), with the principles of calculations in the panel “vector”. Costs of manpower are 816 

calculated per year and plot.day or plant.day. Two scenarios are considered for field conditions: in scenario 1 (offer limited), the 817 

demand for phenotyping exceeds the capacity of the system; in scenario 2 (demand limited) the demand represents a maximum of 818 

4000 microplots per year.  819 

  820 

  Vector     Sensors    Manpower + training            Maintenance Cost imaging

Hypotheses for 

each scenario

Days  of use

year
-1

Throughput,

µplot or 

plant day
-1

Expected 

duration, 

year

Investment

 k$

Investment

$ per plot 

per day 

vector life

Equivalent 

calculation, 

4 year life

$ year
-1

per plot

 day per 

year

$ year
-1

$ per plot

 day.plot 

per year

$ per plot
 day per year

High throughput
field experiments, 'offer 
limited'

Limited by  availability 

of equipment and 

personnel.

Automated ground vehicle 60 1200 20 430 0.30 0.24 19564 0.2717 15000 0.2083 1.02
Hand-held ground vehicle 50 800 15 50 0.08 0.44 15553 0.3888 3000 0.0750 0.98
UAV 40 4000 2 10 0.03 0.09 24545 0.1534 2000 0.0125 0.29
High throughputfield
 experiments, 'demand 
limited'

Limited by  the demand 

for microplot per year. 

40000 µplots year
-1

Automated ground vehicle 33 1200 20 430 0.54 0.44 12873 0.3218 15000 0.3750 1.67
Hand-held ground vehicle 50 800 15 50 0.08 0.44 15553 0.3888 3000 0.0750 0.98
UAV 10 4000 2 10 0.13 0.38 17018 0.4255 2000 0.0500 0.98

Robotized indoor platform
Limited by  availability 

of equipment and 

personnel.

270 1700 15 1000 0.15 0.02 103618 0.2257 15000 0.0327 0.42
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 821 

Table 2 Distribution of costs in typical experiments in the field (1,700 microplots with 10 days of observation) or robotized platforms 822 

(1700 plants with 90 days). Hypotheses are as above. The cost of microplot or plant handling represents either the current costs per 823 

plot (field) or the cost of greenhouse plus robot, together with manpower (robotized platform). Note that the cost of the robot was 824 

considered in “investment” in Table 1 but is in “plant handling” in Table 2 for easier comparison with the field. Robots are used for 825 

both plant handling and imaging in robotized platforms. ‘Meas’ stands for ‘measurements’ 826 

 827 

 828 

 829 

Cost µplots 
or plant 
handling

k$

 Image
capture

 k$

Image 
analysis 

k$

Trait 
analysis 

k$

Data 
storage

10 years, k$

Total
k$

% 
investment

High throughput
field experiments, 'offer 
limited'
Automated ground vehicle 1700 µplots, 10 days meas 68.0 17.4 3.5 5.3 1.5 96 18.2
Hand-held ground vehicle 1700 µplots, 10 days meas 68.0 16.7 5.3 7.1 0.7 98 17.1
UAV 1700 µplots, 10 days meas 68.0 4.9 7.1 10.6 0.2 91 5.4
High throughputfield
 experiments, 'demand 
limited'
Automated ground vehicle 1700 µplots, 10 days meas 68.0 28.4 3.5 5.3 1.5 107 26.6
Hand-held ground vehicle 1700 µplots, 10 days meas 68.0 16.7 5.3 7.1 0.7 98 17.1
UAV 1700 µplots, 10 days meas 68.0 16.6 7.1 10.6 0.2 103 16.2
Robotized platform
the cost of robot is in the 
'handling' column

1700 plants, 90 days 71.2 9.0 1.8 10.6 2.6 95 9.5
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