JORDAN BLOCKS OF CUSPIDAL REPRESENTATIONS OF
SYMPLECTIC GROUPS
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ABSTRACT. Let G be a symplectic group over a nonarchimedean local field of characteristic
zero and odd residual characteristic. Given an irreducible cuspidal representation of G,
we determine its Langlands parameter (equivalently, its Jordan blocks in the language of
Moeglin) in terms of the local data from which the representation is explicitly constructed,
up to a possible unramified twist in each block of the parameter. We deduce a Ramification
Theorem for G, giving a bijection between the set of endo-parameters for G and the set
of restrictions to wild inertia of discrete Langlands parameters for G, compatible with the
local Langlands correspondence. The main tool consists in analysing the Hecke algebra
of a good cover, in the sense of Bushnell-Kutzko, for parabolic induction from a cuspidal
representation of G x GL,,, seen as a maximal Levi subgroup of a bigger symplectic group, in
order to determine reducibility points; a criterion of Mceglin then relates this to Langlands
parameters.

INTRODUCTION

0.1. Let F be a locally compact nonarchimedean local field of odd residual characteristic
and denote by Wpr the Weil group of F. Let G be the symplectic group preserving a
nondegenerate alternating form on a 2/N-dimensional F-vector space. The local Langlands
conjectures for G (now a theorem of Arthur [2] when F' has characteristic zero) stipulate
that to an irreducible (smooth, complex) representation 7 of G is attached a Langlands
parameter, and the representations with a given parameter form a finite set of isomorphism
classes, called an L-packet for G.

Since the symplectic group is split, Langlands parameters for G' are simply continuous ho-
momorphisms ¢ from Wg x SLy(C) into the dual group G = SOon+1(C), taken up to
conjugation, such that the (2N + 1)-dimensional representation ¢ o ¢ of Wg x SLy(C), ob-
tained from the inclusion ¢ of G into GLan11(C), is semisimple. If 7 is a discrete series
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representation of GG, then its parameter ¢ is discrete, that is, the image of ¢ is not contained
in a proper parabolic subgroup of G; equivalently, ¢ o ¢ is the direct sum of inequivalent
irreducible orthogonal representations of Wr x SLy(C), and has determinant 1. In that case
giving ¢ o ¢ up to equivalence is the same as giving ¢ up to conjugation in G.

On the other hand, we have an explicit description of the cuspidal representations of G
via the theory of types [35], in the spirit of the classification of the irreducible representa-
tions of GL, (F') of Bushnell-Kutzko [10]. It is our goal in this paper to describe as much
as possible of the Langlands parameter of a cuspidal representation of G from its explicit
construction. We will denote by Cusp(G) the set of equivalence classes of cuspidal represen-
tations of G, and by ®*P(G) the subset of discrete Langlands parameters consisting of those
parameters with a cuspidal representation in the corresponding L-packet (see paragraph 0.5
below for a more detailed description).

0.2. At the technical and arithmetic heart of the construction of cuspidal representations
of G and GL,,(F) is the theory of endo-classes of simple characters — families of very special
characters of compact open subgroups. An irreducible cuspidal representation of GL,,(F)
contains, up to conjugacy, a unique such simple character and thus determines an endo-class.
By considering the endo-classes in its cuspidal support, an arbitrary irreducible represen-
tation of GL,,(F') then determines a formal sum of endo-classes (with multiplicities), which
we call an endo-parameter of degree n (see paragraph 2.7). We write &, (F') for the set of
endo-parameters of degree n.

Similarly, an irreducible cuspidal representation of GG is constructed from a semisimple char-
acter, and thus also comes from an endo-parameter, the weighted formal sum of the endo-
classes of its simple components; moreover, the semisimple character is self-dual so that
every endo-class appearing must also be self-dual. Thus the construction of an irreducible
cuspidal representation of G gives rise to a self-dual endo-parameter of degree 2N. We
write EE5% (F) for the set of these self-dual endo-parameters.

0.3. The notions of endo-class and endo-parameter admit an instructive interpretation via
the local Langlands correspondence. Denote by &2r the wild ramification subgroup of the
Weil group Wr. Then the (First) Ramification Theorem [0, 8.2 Theorem] says that there
is a unique bijection between the set of endo-classes over F and the set of Wg-orbits of
irreducible complex representations of &, which is compatible with the local Langlands
correspondence for general linear groups. This then induces a bijection, again compatible
with the Langlands correspondence, between the set of endo-parameters of degree n and
the set of equivalence classes of m-dimensional complex representations of &r which are
invariant under conjugation by Wg (see 7.3 Theorem for a precise statement). We call these
representations of Zp wild parameters.

Our first main result (or, rather, the last in the scheme of proof) is an analogous ramification
theorem for the symplectic group G. First we see that the bijection above restricts to
a bijection between self-dual endo-classes and self-dual Wg-orbits of irreducible complex
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representations of &r. (Note that we really mean that the orbit is self-dual: the only
self-dual irreducible complex representation of &k is the trivial representation, since p is
odd.) We say that a (2N + 1)-dimensional wild parameter is discrete self-dual if it is a sum
of self-dual Wg-orbits of irreducible complex representations of P, and write W3k (F)
for the set of such wild parameters. These are precisely the restrictions to wild inertia of
discrete Langlands parameters. We prove the following Ramification Theorem for G (see
the end of the introduction for remarks on the characteristic).

Theorem (7.6 Theorem). Suppose F' is of characteristic zero. There is a unique bijec-
tion Ex(F) — Wk, (F) which is compatible with the Langlands correspondence for cus-
pidal representations of G:

Cusp(G) ——= OP(@)

i |

EESN(F) ——= Wiy (F)

The bijection here is not just that in the case of general linear groups (indeed, the degree
has changed): one must first take the square of every endo-class in the support of the endo-
parameter, then map across using the bijection for general linear groups, and finally add the
trivial representation of Zp.

0.4. The Ramification Theorem for G is in fact a consequence of rather more precise
results, proved on the automorphic side of the Langlands correspondence. To explain the
connection, we recall in more detail the structure of discrete Langlands parameters, and the
results of Moeglin.

There is, up to isomorphism, exactly one irreducible m-dimensional representation St,,
of SLy(C), for each m = 1. Thus an irreducible representation of Wr x SLy(C) is a tensor
product o ® St,,,, where o is an irreducible representation of Wg; moreover it is orthogonal
if and only if either ¢ is self-dual symplectic and m is even, or o is self-dual orthogonal
and m is odd. By the Langlands correspondence for GL, [21, 19, 20], such a ¢ is the
Langlands parameter of a (single) cuspidal representation p of GL, (F'), where n = dimo.
Saying that o is self-dual is saying that p is self-dual (i.e. isomorphic to its contragredient),
and o is then symplectic (resp. orthogonal) if the Langlands—Shahidi L-function L(s, A%, p)
(resp. L(s,Sym?, p)) has a pole at s = 0 [21], in which case we say that p is of symplectic
(resp. orthogonal) type.

In conclusion, a discrete parameter ¢ for G can be given by a set of (distinct) pairs (p;, m;),
where p; is an isomorphism class of irreducible cuspidal representations of GL,,, (F"), with n;
and m; positive integers, and

o >.mim; =2N +1,
e cach p; is self-dual, of symplectic type if m; is even and of orthogonal type if m; is
odd,
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e if w; is the central character of p; then [ [, w/™ = 1.

0.5. If m is an irreducible cuspidal representation of G and ¢ is its parameter, Mceglin [30]
has given a criterion to determine the set attached to ¢ as above, i.e. the pairs (p;, m;) that
she calls the “Jordan blocks” of m; we write Jord(m) for this set of pairs. Let us explain her
results.

For any positive integer n, the group GL, (F') x G appears naturally as a standard maximal
Levi subgroup of Spy(y,,)(F). If p is a cuspidal representation of GL,(F) we can form the
parabolically induced representation pr® x 7 (we use normalized induction and induce via
the standard parabolic), where s is here a real parameter and v is the character g — | det g|r
of GL,(F). If no unramified twist of p is self-dual then pr® x 7 is always irreducible. On
the other hand, if p is self-dual, there is a unique s,(p) = 0 such that pv® x 7 is reducible if
and only if s = +s,(p).

We define the reducibility set Red(m) to be the set of isomorphism classes of cuspidal repre-
sentations p of some GL, (F'), with n > 1, for which 2s.(p) — 1 is a positive integer. Indeed,
it is known that 2s,(p) is an integer [31], so the condition for p to lie in Red(r) is that s,(p)
is neither 0 nor 1/2. The Jordan set Jord(m) is then the set of pairs (p, m), where p € Red(r)
and 2s.(p) — 1 = m + 2k, for some integer k = 0.

From its construction, Jord(r) is “without holes” in the sense that, if it contains (p, m) then
it also contains (p, m — 2) whenever m — 2 > 0. However there may be discrete series non-
cuspidal representations of G with the same parameter as 7; this happens as soon as Jord(m)
contains a pair (p, m) with m > 1. For the number of cuspidal representations of G with a
given parameter (without holes), see [28] (recalled in paragraph 7.4 below).

0.6. The results of Moeglin described in the previous paragraph now say that, in order
to determine the Langlands parameter of an irreducible cuspidal representation 7 of G, we
need only compute the reducibility points s, (p), for p an irreducible self-dual representation
of some GL,(F'). Moreover, we need only find enough reducibility points s.(p) = 1 to fill
the parameter.

In order to compute these reducibility points, we use Bushnell-Kutzko’s theory of types
and covers [11]. The representation 7 takes the form c—IndS’:r Ar, for some irreducible rep-
resentation A, of a compact open subgroup J,; this pair (J,, A;) is a type for 7. Similarly,
we have a Bushnell-Kutzko type (jp, 5\,)) for p. Moreover, from [27] we have a cover (J, \)
in Spy(y ) (F) of (J, x Jr, Ay @ Ar).

The reducibility of the parabolically induced representation pv® x m for complezr s is trans-
lated, via category equivalence, to the reducibility of induction from modules over the spher-
ical Hecke algebra H(GL,(F) x G,\, ® ;) to H(SPo(nin)(F),A). The former algebra is
isomorphic to C[Z*!], while the latter is a Hecke algebra on an infinite dihedral group, with
two generators each satisfying a quadratic relation of the form (7' + 1)(T — ¢"), with r > 0
an integer and ¢ the cardinality of the residue field of F. The results of [1] then translate
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the values of the parameters r for the two generators into the real parts of those s € C for
which pr® x 7 is reducible.

In the inertial class [p] = {pv® | s € C}, there are precisely two inequivalent self-dual
representations, and we write p’ for the other one. Thus the method described above allows
one to compute the set {s:(p), sx(p')} but not to distinguish between the two values if they
are distinct. Thus our method computes the inertial Jordan set 1Jord(w), which is the
multiset of pairs ([p],m), such that (p, m) € Jord(n).

0.7. According to the previous paragraph, computing IJord(m) explicitly comes down to
computing the parameters in the quadratic relations for the spherical Hecke algebra of the
cover. We do this in two steps.

First, we consider the special case when the semisimple character 6, in 7, from which the
type (Jx, Ar) is built, is in fact simple. In this case, it determines a self-dual endo-class © and
we consider only those irreducible cuspidal representations of some GL,, (F') which have endo-
class ®2. We prove that just these representations already give us enough to fill the Jordan
set (see 2.5 Theorem) and describe an algorithm to determine IJord(m) (see paragraph 5.10).

Here the computation of the parameters can be done using results of Lusztig on finite
reductive groups: if © is the trivial endo-class @y, so that we are in depth zero, this was
done already in [25]; otherwise, the groups in question are the reductive quotients of maximal
parahoric subgroups in a unitary group (ramified or unramified). There is also an added
subtlety which does not arise in the depth zero case: two signature characters of certain
permutations (coming from a comparison of so-called beta-extensions) cause an extra twist
which must be taken care of in the algorithm and counting.

In the second step, we consider an arbitrary irreducible cuspidal representation 7 and reduce
to the first case. More precisely, the semisimple character 6, determines by restriction its
simple components 6;, for 0 < ¢ < [, whence endo-classes ©;. From the construction of the
type (Jx, Ax), we define types (J;, A;) in symplectic groups Sp,y, ('), with Zé:o N; = N,
which induce to irreducible cuspidal representations m; containing a simple character of
endo-class ©;. (See paragraph 2.6 for details.)

The reduction is obtained by showing that elements of IJord(7) with endo-class @; can be
obtained from those of IJord(m;) by a simple twisting process, by a character of order one
or two (see 2.6 Theorem). This character arises as the comparison of pairs of signature
characters as in the first case, for m and for m;; the point that is both crucial and subtle
is that, although we need to make two comparisons, they turn out to be equal. Now the
first case, together with a dimension count, ensures that we have filled the expected size
of LJord(w). If F is of characteristic zero then, by the results of Moeglin, this is indeed the
entire inertial Jordan set (see 2.6 Corollary).

0.8. From our explicit description of the set IJord(7), we know the endo-class of every self-
dual irreducible cuspidal representation of some GL,, (F') which appears in Jord (7). From this
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we deduce the following result, which gives the compatibility of taking endo-parameters with
the endoscopic transfer from G to GLoy11(F') and from which, via the results of Arthur, we
deduce compatibility with the local Langlands correspondence. In the following, the map o
sends a (self-dual) endo-parameter Y. mg® of degree 2N to the endo-parameter Y. me®? +
Oy of degree 2N + 1, where ©q denotes the trivial endo-class.

Theorem (2.8 Theorem). Suppose F' has characteristic 0. Then the following diagram
commutes.

Cusp(G) — > Irr(GLan 4 (F))

| |

55;?\/(F)(T> EEany1(F)

It is very tempting to think that this result could be an instance of a general theory of endo-
parameters for arbitrary reductive groups, which would be in bijection with suitably-defined
wild parameters and would be compatible with (twisted) endoscopy.

0.9. Let m be an irreducible cuspidal representation of G. Having given an explicit de-
scription of LJord(w), we can ask whether we can then determine Jord(m) precisely; that is,
given ([p],m) € LJord(r), can we tell whether it is (p, m) or (p/,m) in Jord(rw), where p’ is
the self-dual unramified twist of p which is inequivalent to p. In certain cases the answer
is yes: often the representations p, p’ have opposite parities (that is, one is symplectic and
the other orthogonal) and then we know that we must have the representation of symplec-
tic type if m is even, and the one of orthogonal type if m is odd. In the exceptional case
where p, p’ have the same parity, we can only recover Jord(w) if it happens that both appear
(that is, ([p],m) appears in [Jord(7) with multiplicity two); otherwise, we are left with an
ambiguity. (See 4.4 Remark for more on this.)

In Section 6, we explore this exceptional case on the Galois side — that is, we look at
the self-dual irreducible representations of Wy which have the same parity as their self-
dual unramified twist. It turns out that they have quite a special structure and that one
can determine their parity (see 6.6 Proposition). This also translates to a criterion for
determining the parity of a self-dual cuspidal representation p (such that p and its self-dual
unramified twist p’ have the same parity), in terms of the type it contains (see paragraph 6.8).

It is also possible, at least in certain cases, to be more precise in the analysis of the cate-
gory equivalences and reducibility, in order to elucidate the ambiguity and recover Jord(r)
completely. We hope to come back to this in the case of Sp,(F'), in a sequel to this paper.

0.10. As one of the referees has pointed out, given a generic cuspidal representation 7
of G, it follows from the results of Arthur and Moeeglin that, for every (p,m) appearing
in Jord(w), we have m = 1; we say that the Jordan set (or the corresponding L-packet) is
reqular in this case.
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In general, determining the genericity of a cuspidal representation of G' from the data used in
its construction is difficult, as the example of Sp,(F') shows (see [13]). However, the principal
difficulties occur when trying to determine which cuspidal representations in a regular L-
packet are generic, rather than in proving that the cuspidals in a non-regular L-packet are
non-generic. Moreover, the case of depth zero representations is much simpler. Since the
appearance of a pair (p,m) in Jord(w) with m > 1 arises from the “depth zero data” used
in the construction of 7, it may be possible to use the techniques of [13] to prove that any
cuspidal in a non-regular L-packet is non-generic. We leave this as an interesting question
to return to later.

A remark on characteristic. The bulk of our work is on the representation theory of sym-
plectic groups; for this, while we require that the residual characteristic be odd, we have no
further conditions on the characteristic — that is, we do not require F' to be of characteristic
zero. In particular, our description of the inertial Jordan set in 2.5 Theorem and 2.6 Theo-
rem does not require characteristic zero. It is only when interpreting these results in terms
of the Langlands correspondence (or the endoscopic transfer map) where, until these results
have been proved with F' of positive characteristic, we require characteristic zero.

Structure of the paper. In Section 1, we recall the basic structure of types for cuspi-
dal representations, in particular semisimple characters and beta-extensions, including the
choice of a base point for beta-extensions. Section 2 contains the statements of the main
results on (inertial) Jordan sets, remaining entirely on the automorphic side, while the fol-
lowing three sections are devoted to their proofs: in Section 3, we recall the theory of covers
and the results of [1, 27] on their Hecke algebras and reducibility of parabolic induction; in
Section 4 we prove the reduction to the simple case which is at the heart of our method; and
in Section 5 we prove the result in the simple case. The exploration of self-dual irreducible
representations of W is given in Section 6 and finally, in Section 7, we interpret our results
via the local Langlands correspondence.

NOTATION

Throughout the paper, F' will be a locally compact nonarchimedean local field, with ring of
integers o, maximal ideal pp, and residue field kr = 0p/pp of cardinality ¢ = gr and odd
characteristic p; similar notation will be used for extensions of F'. The absolute value | - |¢
on F is normalized to have image ¢ and we write v for the character g — | det g|r of GL,,(F).

All representations we consider here will be smooth and complex. By a cuspidal represen-
tation of the group of rational points of a connected reductive group over F, we mean a
representation which is smooth, irreducible and cuspidal (i.e. killed by all proper Jacquet
functors).
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1. CUSPIDAL TYPES AND PRIMARY BETA-EXTENSIONS

In this section we fix notation following mostly [35]. We recall, in the first paragraphs, the
main features of the construction of cuspidal representations of symplectic groups achieved
in [35], to which we refer for relevant definitions. We do not give references for the by

now classical definitions and constructions previously made for general linear groups by
Bushnell and Kutzko. One of the key steps in the construction is the existence of a so-called
beta-extension. We will have to compare such beta-extensions across different groups but,
unfortunately, they are not uniquely defined. Here, following [7], we explain one way of
picking out a particular beta~extension (which we call p-primary, see 1.8 Definition) in each
case, giving a base point to make comparisons.

1.1. We recall the notation for skew semisimple strata and related objects. Let V be a
finite dimensional symplectic space over F' of dimension 2N. We denote by h the symplectic
form on V', by x — Z the corresponding adjoint (anti-)involution on Endr (V') and by o the
corresponding involution on GLg(V). We put G = Spp(V') >~ Sp,yn(F'), the isometry group
of h, which is the group of fixed points of ¢ in GLg(V).

Let [A,n,0, 5] be a skew semisimple stratum in Endp(V') [35, Definition 2.4, 2.5]. In par-

ticular A is a self-dual op-lattice sequence and 5 = —f belongs to the Lie algebra sp (V).
We write B for the commuting algebra of § in Endg(V).

Remark. Following [35] we always normalize self-dual lattice sequences such that their
period over any relevant field is even and their duality invariant d is 1. With this convention,
for any self-dual lattice sequence A and any multiple s of the period e of A, there is a unique
self-dual lattice sequence of period s having the form ¢t — A(?T:) There is thus a well
defined way of summing two self-dual lattice sequences, by first transforming both so that
they have the same period (see [12]). When performing such transformations, the valuation n
of B relative to the lattice sequence A undergoes changes that are of no importance to us,
since the associated groups H', J', J and characters (see paragraphs 1.2, 1.4 below) are left
unchanged; we will thus ignore this parameter and write the stratum in the form [A, —, 0, 5].

The characteristic spaces of 3 determine a canonical orthogonal splitting V' =1!_, V? for
the stratum [A, —,0, 3] such that, letting A® = A n V? (that is, A(t) = A(t) n V? for
any t € Z) and ' = By, the strata [A", —,0, 5], 0 < i < [, are skew simple strata which
are “sufficiently distant” in the sense of [35, Definition 2.4]. We put E = F[f5] = (—Di:l E",
where E' = F['], and write o, for the ring of integers of E*. We recall that A is an op-lattice
sequence, by which we mean that each A’ is an o%-lattice sequence in V.

Convention. In this paper we also take the convention that, for any skew semisimple
stratum [A, n, 0, 8] with splitting V =1!_, V¢, we have 8% = 0. When 0 is not an eigenvalue
of 3, this can be achieved by taking V° to be the zero-dimensional space over F'; since, in
that case, dimp V? = 0, it does not affect any of the following constructions. The reason for
this convention will become apparent later.
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1.2.  From the datum [A, —, 0, 8] are built open compact subrings:

e HY(B,A) = J(B,A) of Endp(V),
e H(B,A) = JHB,A) of spp(V), the fixed points of the former ones under the adjoint
involution on Endg(V);

and open compact subgroups:

« H'(B,A) < J'(B,A) < J(B,A) of GLp(V),
e HY(B,A) < JY(B,A) = J(B,A) of G, the subgroups of fixed points of the former
ones under the adjoint involution on GLg(V).

We will frequently write Hy = H'(3,A) and so on.

1.3. We introduce more notation relative to A. For n € Z we write:
a,(A) = {z e Endp(V) |Vt Z, xA(t) < A(t+n)}, b.(A) = a,(A) N B.

In particular ag(A) is a hereditary op-order in Endp (V') with Jacobson radical a; (A). Let P(A) =
ap(A)* and Pi(A) = 14 a;(A). Then Pi(A) = Pi(A) n G is the pro-p-radical of P(A) =

P(A) n G. The quotient groups
G(A) = P(A)/Pi(A)  and  G(A) = P(A)/Pi(A)

are (the groups of rational points of) finite reductive groups over kp. The latter may be
disconnected so we let G°(A) be (the group of rational points of) its neutral component and
call P°(A) the inverse image of G°(A) in P(A); this is a parahoric subgroup of G.

Actually we will mainly work with by(A) = ag(A) n B and with P(A,,) := P(A) n B,
with G(A,,) = P(A,,)/Pi(A,,) and its neutral component G°(A,, ), and with the parahoric
subgroup P°(A,,) of Gg := BN G, inverse image of G%(A,,) in P(A,,). Indeed we have the
following;:

J(B,A) = P(Moy) J'(B,A)  and  J(B,A)/J (B, A) ~ P(Aoy)/Pi(Aoy) = G(Ao)-

Moreover, we have natural isomorphisms

G(hep) > [[O(A)  and  GAey) = [ [G°(A,).

l
=0 =0

Note that, writing E? for the field of fixed points of E? under the adjoint involution z — Z
and k¢ for its residue field, the groups on the right hand side here are reductive groups
over k!. We also have similar decompositions and isomorphisms for the group J(3, A).
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1.4. On the group H* (B,A) lives a family of one-dimensional representations endowed
with very strong properties, called semisimple characters (loc. cit. §3.1), that restricts to a
family of skew semisimple characters on H'(3, A). In particular, a skew semisimple character
of HY(B3, A), say 0, restricts to a skew simple character 0; of H*(3, A) nSpr(V?) = H'(B, A?),
for 0 < i < I. Among the properties of these families the “transfer property” is specially
important. It asserts that if [A’, —, 0, 5] is another skew semisimple stratum in Endg(V),
then there is a canonical bijection between the sets of skew semisimple characters on H'(3, A)
and H'(B,\’) (loc. cit. Proposition 3.2). The image of 6 under this bijection is called the
transfer of 6.

To any semisimple character 6 of H* (B, A) is associated the unique (up to equivalence) irre-
ducible representation 77 of J! (B, A) that contains 6 upon restriction; actually 7 restricts to a
multiple of § on H'(8,A). Now H} and J} are pro-p-groups with p odd, on which the adjoint
involution ¢ acts. The Glauberman correspondence hence relates their representations to
those of the fixed point subgroups H} and J}. Indeed if 0 is fixed under the involution o so
is 7 and its image n under the Glauberman correspondence is the unique (up to equivalence)

irreducible representation of J!(3, A) that contains 6; it actually restricts to a multiple of 6
on H'(B,A).

1.5. In turn the representation 7 has special extensions to J(3, A) called beta-extensions
and denoted by . These beta-extensions in GLgr (V') are characterized by the fact that they
are intertwined by B* ([10, (5.2.1)]).

Remark. In the literature, these extensions are usually called S-extensions. However, the
simple stratum [A, —, 0, #] giving rise to a particular simple character 6 is not unique, while
the notion of beta-extension turns out to be independent of the choice of 5. It is thus
convenient to write beta-extension, especially since we also have strata indexed by i so we
would otherwise need to talk about [;-extensions etc.

The definition of beta-extensions in classical groups is more delicate [35, §4]. A skew
semisimple stratum as above is called mazimal if by(A) is a maximal self-dual og-order
in B. If [A,—,0,5] is a maximal skew semisimple stratum, a beta-extension of 7 is an
extension x of n to J(5,A) such that the restriction of k to any pro-p-Sylow subgroup is
intertwined by Gg ([35, 3.11, 4.1]). In the general case, the notion of beta-extension is
a relative one. Given a maximal skew semisimple stratum [9, —, 0, 5] in Endp(V') such
that bo(9) > bo(A), given the transfer 6oy of 6 to Hy, and the representation ngy of Jy,
determined by gy, there is a canonical way to associate to a beta-extension kgy of gy, an
extension k of 7, called the beta-extension of n to Jy relative to M, compatible with ko [35,
4.3, 4.5]. (We can also call k a beta-extension of 6.)

Note that the groups J(8, A) and J(B, A) are not pro-p-groups: the notation s here should
not call to mind a Glauberman-like connection with the former <.
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1.6. Let J = J(B,A), for a skew semisimple stratum [A, —,0, 3] as above, let 6 be a
skew semisimple character of H'(3,A) and let A be an irreducible representation of J of
the form A = k ® 7, with x some beta-extension of #, and 7 the inflation of a cuspidal
representation of J/J' ~ G(A,,). Under the additional assumptions that the group Gg has
compact centre and that P°(A,,) is a maximal parahoric subgroup of Gg, the pair (J, \) is
called a cuspidal type for G. Recall from [35] (see also [27] for complements):

Theorem ([35, Corollary 6.19, Theorem 7.14]). A cuspidal type in G induces to a cuspidal
representation of G and any cuspidal representation of G' is thus obtained.

1.7. There is of course a similar result for the group GLy(V). Here we let J = J(5,A)
for a simple stratum [A, —,0, 5] (so that E = F[A] is a field) and let A be an irreducible
representation of J of the form A= R®T, with £ some beta-extension of 6 , and 7 the inflation
of a cuspidal representation of J/J'. Under the additional assumptions that P(A) n B

is a maximal parahoric subgroup of B*, the pair (j , ;\) is called a mazimal simple type
for GLp(V).

Theorem ([10, 5.5.10, 6.2.4, 8.4.1]). A mazimal simple type in GLp(V) extends to an
irreducible representation of its normaliser, which then induces to a cuspidal representation
of GLrp(V); any cuspidal representation p of GLr(V) is thus obtained and the maximal
simple type yielding p is unique up to conjugacy in GLp(V).

Remark. This theorem includes depth zero representations, by formally considering the
null stratum [A, —, 0, 0] to be simple.

1.8. In order to compare representations across different groups, we need a way to compare
beta-extensions. (The transfer of semisimple characters already allows a comparison.) Two
beta-extensions only differ by a character (of a specific shape), however we will need to choose
beta-extensions in a unique way as in [7, §2.3 Lemma 1], which amounts to the GL-case in
the following lemma.

Lemma. (i) Let [A,n,0, 3] be a simple stratum in Endg(V), let 0 be a simple character
of H'(B,A), and let 7} be the irreducible representation of J*(B,A) containing 0.
There exists one and only one beta-extension & of 7j to J(3,\) whose determinant
has order a power of p.

(ii) With notation as in (i), assume the stratum and the simple character are skew so
that the involution o on GLg(V) stabilizes H'(8,A), J'(8, M), J(8,A) and 6. The
beta-extension K in (1) satisfies kK ~ Koo,

(iii) Let [A,n,0,3] be a mazimal skew semisimple stratum in Endp(V'), let 0 be a skew
semisimple character of H'(3,A), and let ) be the irreducible representation of J* (5, )
containing 0. There exists one and only one beta-extension of n to J(B,A) whose
determinant has order a power of p.

Proof. (i) The reference is [10, (5.2.2)] which we imitate below to conclude the proof of (iii).
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In (ii), self-duality with respect to o follows from uniqueness. Indeed 70 o is equivalent to n
so there is an intertwining operator T such that 7i(z) = T (7o o(z)) T, for z € J'(3, A).
Since ¢ stabilizes GLp(g(V), the representation T'( o o(2))T !, for z € J(B,A), is a beta-
extension of 7 by [10, Definition 5.2.1]; its determinant is a power of p, so it is equal to K.

(iii) Let k be a beta-extension of 1 and let ® = det(x|p(s,,)). The main point is to prove

that the character ® of P(A,,) factors through the determinant dety. By this we mean, as

usual, that ®|p(s , ) factors through detg:, for 0 < i < ; the remainder of the proof uses this
°E

convention.

Since 6 is equal to yodety on P'(A,, ), for some character x of 1+ pg, we have that KIP1(A,)
is the sum of dim(n) copies of x o detg. Now x extends to a character x of o and &' =

(% o detg)” ™™ @ is then a character of P(A,,)/P*(A,,). From [35, Lemma 3.10, Corol-
lary 3.11 and Theorem 4.1], the character @’ is trivial on all p-Sylow subgroups of P(A,,)/P'(A,,)
so factors as @’ = 1) o dety where v is a character of o}, trivial on 1 + pg (and depends on

the choice of extension Y).

Let us write oy, = /(1 4+ pg), where g is the group of roots of unity in £* of order prime
to p, and, in the above, let us choose x trivial on p/; so that the order of y is a power of p.
The corresponding character ¢ has order prime to p, so prime to dim(n), and there is a
character a of o} (trivial on 1+ pg) such that ¢ = q4mm,

The representation £ = (« o det E)_l r satisfies the required condition. It is unique since any
other beta-extension has the form (¢ o detg)k, with ¢ as above, and if ¢ is non-trivial then
no p'-th power of 9 can be trivial. O

Definition. With the notations of (i) above, we denote by & the unique beta-extension of 7
whose determinant has order a power of p. We call k& the p-primary beta-extension of 7.

With the notations of (iii) above, we denote by k the unique beta-extension of 7 whose
determinant has order a power of p. We call s the p-primary beta-extension of 7.

We remark that, while the p-primary beta-extensions give a useful way of picking a base
point amongst the beta-extensions, sufficient for our needs here, it is not clear whether this
is the best choice of base point.

2. INERTIAL JORDAN BLOCKS

In this section, we state the main results on Jordan blocks and the consequences for the
endoscopic transfer map. We continue with the notation from the previous section.

2.1. Let m be a cuspidal representation of G =~ Spyy(F). We recall the reducibility
set Red(w) and the Jordan set Jord(w) from the introduction. For any positive integer n, the
group GL,(F') x G appears naturally as a standard maximal Levi subgroup of Spyy ) (F).
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If p is a cuspidal representation of GL,(F') we can form the normalized parabolically in-
duced representation pr® x 7 (we use normalized induction and induce via the standard
parabolic), where s is here a real parameter and v is the character g — |det g|p of GL, (F).
If no unramified twist of p is self-dual (i.e. isomorphic to its contragredient) then pv® x 7
is always irreducible. On the other hand, if p is self-dual, there is a unique s.(p) > 0 such
that pr® x 7 is reducible if and only if s = +s,(p).

Definition. Let 7 be a cuspidal representation of G.

e The reducibility set Red(m) is the set of isomorphism classes of self-dual cuspidal
representations p of some GL,,(F), with n > 1, for which s,(p) > 1.

e The Jordan set Jord(m) is the set of pairs (p,m), where p € Red(w) and m is a
positive integer such that 2s,(p) — 1 —m is a non-negative even integer.

Note that, if p € Red(w) then 2s.(p) — 1 is a positive integer by [31], so that there is a
positive integer m such that (p,m) € Jord(w).

2.2. For p an irreducible representation of some GL,(F), we write n = deg(p). Recall
that the inertial class [p] of a cuspidal representation p of GL,(F) is the equivalence class
of p under the equivalence relation defined by twisting by an unramified character (that is,
twisting by w o det where w is a character of F'* trivial on o). If p is self-dual then the
inertial class [p] contains precisely two self-dual representations: if ¢(p) denotes the number
of unramified characters x of GL,,(F') such that p®yx ~ p, and if X’ is an unramified character
of order 2t(p), then p’ = p® x’ is the other self-dual representation in [p].

Definition. Let m be a cuspidal representation of G. The wnertial Jordan set of m is the
multiset 1Jord(m) consisting of all pairs ([p], m) with (p,m) € Jord(n).

Note that, if ([p],m) € LJord(w), with p a self-dual cuspidal representation of GL,(F),
then either (p,m) € Jord(w) or (p',m) € Jord(m), where p" as above is the second self-dual
representation in the inertial class [p]. As discussed in the introduction, if one of p, p’ is of
symplectic type and the other of orthogonal type, then which occurs in Jord(7) is determined
by the parity of m. On the other hand, if p, p’ are both of the same parity then the inertial
Jordan set [Jord(7) does not distinguish them; of course, if ([p], m) occurs with multiplicity
two in IJord(w), then both (p,m) and (p’,m) occur in Jord(w) and there is no ambiguity;
see 4.4 Remark for more on this.

2.3. In order to refine further the (inertial) Jordan set, we need to use the notion of the
endo-class of a simple character, as defined in [5]. To any cuspidal representation p of
GL,(F) is attached in [0, §1.4] an endo-class of simple characters, denoted by ©(p), as
follows. As recalled in 1.7 Theorem, there is a maximal simple type (.J, ) in GL,(F) which
occurs in p and p determines the GL,(F)-conjugacy class of (J, ). This maximal simple
type is built from a simple character § and we define ®(p) to be the endo-class of 6. (In
fact, this is also the endo-class of any simple character contained in p.) Note that we are
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allowing here the case of depth zero representations (where p contains the trivial character
of P'(A), for some lattice sequence A), in which case ®(p) = O} is the trivial endo-class
over F.

Definition. Let 7 be a cuspidal representation of G and let ® be an endo-class of simple
characters over F'. The inertial Jordan set of m relative to © is the multiset IJord(m, ®) con-
sisting of all pairs ([p], m) with (p, m) € Jord(r) and O(p) = ©.

2.4. We will also need to twist inertial Jordan blocks as follows. With notation as in
the previous paragraph, the GL, (F)-conjugacy class of (J,\) depends only on the inertial
class [p]; it also determines [p] by [11, (5.5)]. The quotient group J/.J! is a linear group over
a finite field, say GL(my,), k). We define the twist of the inertial class [p] by a character x

of k) to be the inertial class [p], determined by the maximal simple type (J,A® x o det)

— that is, in the decomposition A = & ® 7 with & a beta-extension, we replace the cuspidal
representation 7 by 7 ® x o det.

Let ® be an endo-class of simple characters. By [5, Proposition 8.11], it determines a
finite extension kg of kg such that, for any cuspidal representation p of some GL,(F)
satisfying ©(p) = ©, if (J, ) is a maximal simple type in p then the quotient group .J/J"
is a linear group over kg (that is, k, = ke in the notation above). It is thus meaningful to
give the following definition:

Definition. Let m be a cuspidal representation of G, let ® be an endo-class of simple
characters, and let x be a character of kg. The x-twisted inertial Jordan set of 7 relative
to © is the multiset IJord(m, ©®), consisting of all pairs ([p]y,m) with (p,m) € Jord(m)
and O(p) = O.

The relevant case for us will be the case where x is quadratic (that is, of order dividing 2).

Remark. Since p is odd, we have a squaring map ® — ©? on endo-classes: if 6 is a simple
character with endo-class ©, associated to a simple stratum [A, —, 0, 3], then the character 6>
is a simple character for the stratum [A, —,0,243] and ©? is the endo-class corresponding
to 6%. This is well-defined and moreover gives a bijection on the set of endo-classes (again,
since p is odd). We note also that the fields kg and kg2 coincide.

2.5.  We begin the computation of the inertial Jordan set with a special case, to which we
will reduce in the next paragraph. We call a cuspidal representation of G simple if it contains
a simple character; that is, it contains a semisimple character 6 of H'(3, A), associated to a
skew semisimple stratum [A, —, 0, 5], such that E' = F[(] is a field. We allow the degenerate
case § = 0, in which case 7 is of depth zero (and every depth zero representation is simple
with 6 = 0); we also allow, in the case 8 = 0, the degenerate case that G is the trivial group,
so that the trivial representation of the trivial group is regarded as being simple of depth
ZEro.
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Remark. Our use of the word simple here is consistent with, but not the same as, the
use in [18] where, for symplectic groups, it means of minimal positive depth 1/2N. More
precisely, all cuspidal representations of depth 1/2N are simple in our sense, but the converse
is false.

The following theorem tells us that, in the case of simple cuspidals, the Jordan set is filled
by representations with the expected endo-class.

Theorem. Let © be a simple cuspidal representation of G and let 0 be a self-dual simple
character whose restriction to G is contained in w. Let © be the endo-class of the simple
character 6. Then

2N +1 if® = @5, the trivial endo-class;

(2.1) S mdeg(p) = {m

([plm)eliord(r,02) otherwise.
Note that we have ® = @[ if and only if 7 is of depth zero (which includes the degenerate
case N = 0 where G is the trivial group). In this case, the theorem is a special case of the
main result of [25].

Remark. Since the dual group of G is SOgn41(C), the reader may be surprised to see the
sum in (2.1) being 2N rather than 2N + 1 in most cases. The reason is as follows. The
Jordan set of 7 always contains a pair (, 1), with x a quadratic character; since y is tame,
it has trivial endo-class so contributes to the sum in (2.1) if and only if © = ©f. The
point then of Theorem 2.5 is that, apart from this quadratic character, every other cuspidal
representation appearing in the Jordan set of 7 has endo-class ©2%.

We will prove Theorem 2.5 in Section 5 by computing the real parts of the complex reducibil-
ity points of parabolically induced representations of the form pr® x 7, with p a self-dual
cuspidal representation of some general linear group with endo-class ©2, using the theory
of types and covers to reduce the calculation to computations of Lusztig for finite reductive
groups. We note also that the proof not only gives the equality above but also gives an
algorithm to compute the multiset IJord(r, ©?) (see paragraph 5.10 for more detail).

2.6. Now let m be an arbitrary cuspidal representation of G. Recall from 1.6 Theorem
that m can be constructed by induction, starting with a maximal skew semisimple stra-
tum [A, —,0, ] and a skew semisimple character 6 of H'(3,A), which decomposes into a
family of skew simple characters 6; of H'(3, A"), for i € {0,...,1}. Let k be the p-primary
beta-extension of 6 to J, and, similarly, let s, be the p-primary beta-extension of 6; to Jy:
(in Spp(V?)), for 0 <i < L.

Let 7 be the cuspidal representation of G(A,,) = P(A,,)/P'(A,,) such that 7 is induced
from A = k ® 7. Then we can uniquely decompose T as 7 = ®'_,7;, with 7; an irreducible
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(cuspidal) representation of G(A,: ). We may then define, for each i, the cuspidal represen-
tation m; of Spy (V") by

= c—Indiif V) K QT
Note that this representation is simple, in the sense of the previous paragraph.

Remark. Recall that we are using the notation of section 1.1, in particular 1.1 Convention
so that we are assuming 3° = 0. If the space V' is trivial then the representation m is the
trivial representation of the trivial group.

We can now state the crucial reduction theorem, which allows us to determine the inertial
Jordan set of 7 from those of the simple cuspidals ;.

Theorem. With notation as above, for 0 < i < I, let 0; be the unique self-dual simple
character of H? (8%, AY) restricting to 0; on H'(B°, A*). Let ©; be the endo-class of the simple
character 91 and let ke, be the corresponding extension of kp. Then there is a character x;
of kg, of order at most two such that we have an equality of multisets

ord(rm, ®7) = Lord(m;, ©F),,.

The character y; appearing here is in some sense explicit, coming from certain permutation
characters (see 4.4 Theorem, 4.3 Proposition and 3.10 Proposition for more details). The
proof of the theorem will be given in Section 4, following preparation in Section 3 (which
is also needed for the proof of 2.5 Theorem). Again, the principle is to use the theory of
types and covers to compare the real parts of the complex reducibility points of pr® x m with
those of p;v® x m;, for p a self-dual cuspidal representation of some general linear group with
endo-class ©7 and p; self-dual in the inertial class [p],,.

For now, we put together the two previous theorems to get:
Corollary. Suppose F is of characteristic zero. With the notation of the Theorem, we have
l
Lord(r) = |_|TJord(m;, )y,
i=0

Since the proof of 2.5 Theorem gives us an algorithm to compute the multisets IJord(7;, ©7),
we can then use this also to compute [Jord(7), for any cuspidal representation 7.

Proof. The Theorem says that IJord(m) contains the right hand side. On the other hand,
by [30, Theorem 3.2.1] the multiset IJord(r) is finite and we have

Z mdeg(p) = 2 mdeg(p) = 2N + 1.

([p],;m)elJord(n) (p,;m)eJord(m)
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However, writing dimpz(V?) = 2N;, we get from 2.5 Theorem that

l !
Z Z mdeg(p) = (2Np + 1) + ZQNZ- =2N + 1.
i=0 ([p],m)elJord(m;,©2) i=1
Thus we have equality, as required. U

We remark that the proof does not require the full strength of [30, Theorem 3.2.1]; indeed,
it only uses the inequality

Z mdeg(p) < 2N + 1,
(p,m)eJord(n)

which was proved previously in [29, §4 Corollaire]. Thus it does not in fact depend on
Arthur’s endoscopic classification of discrete series representations of G. One could also
prove it (without the restriction on the characteristic of F') by checking that IJord(w, ©) is
empty for any self-dual endo-class ® # ©7; indeed, the methods of Section 4 together with
results from [23] would allow this.

2.7. In this and the following paragraph, we interpret our results in terms of the endoscopic
transfer map from cuspidal representations of G to GLay 1 (F).

For ® an endo-class over F', we recall that the degree deg(®) of © is the degree of an
extension F'[S3]/F for which there are a simple stratum [A, —, 0, 5] with a simple character
of endo-class ®. Although the stratum and the field extension are not uniquely determined
by ©, this degree is (see [5, Proposition 8.11]).

Let N’ be a positive integer and write £(F') for the set of endo-classes of simple characters
over F'. An endo-parameter of degree N’ over F' is a formal sum

Z m@@, me € 220,

OcE(F)
such that
Z me deg(©) = N'.
©cE(F)
In particular, such a formal sum has finite support {@® € E(F) | me # 0}. (In [32], these

formal sums are called semisimple endo-classes; the nomenclature endo-parameter comes
from [23].) We write & n/(F) for the set of endo-parameters of degree N’ over F. We then
have, for each positive integer N’, a well-defined map

Een’ : II"I"(GLN/(F)) i ggN/(F)

given by mapping a cuspidal representation p to ﬁé(p)@(p), and mapping an arbitrary
representation to the sum of the endo-parameters of its cuspidal support.



18 CORINNE BLONDEL, GUY HENNIART, AND SHAUN STEVENS

2.8. We call an endo-class ® over F self-dual if there is a self-dual simple character 0
with endo-class @. We write £59(F) for the set of self-dual endo-classes over F. An endo-
parameter of degree N’ over F' is called self-dual if its support is contained in £%¢(F), and
we write 5%, (F') for the set of self-dual endo-parameters of degree N’ over F.

Since p is odd, the only self-dual endo-class over I of odd degree is the trivial endo-class O,
which has degree 1. Indeed, if 6 is a self-dual simple character which is not the trivial
character, then [33, Theorem 6.3] implies that 0 is associated to a skew simple stratum,
whose associated field extension E/F is therefore of even degree. This implies, in particular,
that there is a canonical bijection

d
EEN(E) — 852N+1< ) Z me® — Z me® + Oy
Ocgsd Ocgsd
For any N’, there is also the natural squaring map
gng(F)ﬁggN/(F), Zm@@H ZTTL@)@Q,

Ocf (O3

which is a bijection since p is odd. Combining these, we get a natural inclusion map

lon 1 EESG(F) — EEqn 1 (F), D me®— > me®’+ 0.

Oc&sd Ocgsd

Given a maximal skew semisimple stratum [A,n,0, 5] and a skew semisimple character 6

of H*(3,\), which decomposes into a family of skew simple characters 6; of H'(3%, A%, for
i €{0,...,l}, we define the self-dual endo—parameter of 6 to be

Z dlmF
deg(©
where ©; is the endo-class of the unique self-dual simple character QNZ which restricts to 6;.

This is a self-dual endo-parameter of degree 2/N.

We write Cusp(G) for the set of equivalence classes of cuspidal representations of G. From 2.6 The-
orem and 2.5 Theorem, we derive the following result.

Theorem. Suppose that I is of characteristic zero. Let w be a cuspidal representation of G
and let 6 be a skew semisimple character contained in w. Then the self-dual endo-parameter
of 0 depends only on m. Moreover, the diagram

Cusp(G) — 225 - [ (GLow 41 (F))

ecl l62N+1

EE(F) > EEan i (F)

commutes, where eq(m) denotes the endo-parameter of any skew semisimple character con-
tained in 7.
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We remark that the fact that the map eq is well-defined is also proved, in much greater
generality and without the assumption that F' has characteristic zero, in [23]; the proof
here is quite different and long predates that in [23]. We also remark that we will see later
(7.6 Theorem) that the map eg is in fact surjective.

Proof. Let m be a cuspidal representation of G and let # be a skew semisimple character
contained in 7, with all the notation from above. In particular, we have a family of skew
simple characters 0;, for 0 < 7 <[, and, for each 4, the unique self-dual simple character 0;
restricting to #; and the self-dual endo-class ©; of 6;.

For (p,m) € Jord(r), we write ®,, for the endo-class of any simple character in p. Then 2.6 Corol-
lary implies that ©, = ©?, for some 0 < i < I; moreover, together with 2.5 Theorem it
implies

m deg(p) l dimp(V?) _, »
2.2 mEEP g, — Y SR g2, gf
2 (o m)eZJord(ﬂ*) deg(©,) * Z deg(®;) TS

In particular, the right hand side here is @5 plus the square of the endo-parameter of 0;
since the squaring map is a bijection, this endo-parameter is therefore independent of the
choice of 6 in 7 since the left hand side is.

Now, according to the results of Moeglin [30, Theorem 3.2.1], the Jordan set exactly deter-
mines the endoscopic transfer of 7 to GLoy,1(F); more precisely, the transfer of 7 is

[ ste,m)

(p;m)eJord(m)

where St(p, m) denotes the unique irreducible quotient of the normalised parabolically in-
duced representation

1-m m—1

3—m
pr 2 X pr oz X .- X pU o2

of GL, deg(p) (£'). The endo-parameter of the transfer of 7 is thus

Z m deg(p) )

—F—0,,
(pym)eJord(m) deg<®p)

where ©,, is the endo-class of (any simple character in) p. In particular, this lies in &3, (F)
and (2.2) now implies that the diagram commutes. O

3. TYPES, COVERS AND REDUCIBILITY

In the following subsections we recall the main results about covers and their Hecke algebras,
from [11] in the general situation and from [27] in the particular situation of interest to us:
induction from a maximal parabolic subgroup of a symplectic group. One of the key features
in [27] is the presence of quadratic characters arising from the comparison of beta-extensions.
Using the notion of p-primary beta-extension, together with results from [1], we describe
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these characters as signatures of permutations and recall the implications of the structure
of the Hecke algebra (including its parameters) for the reducibility of parabolic induction
from [1].

3.1. We briefly recall the general notion of a type as defined by Bushnell and Kutzko in [11].
Let for a moment G be the group of F-points of an arbitrary connected reductive group
defined over F, let L be a Levi subgroup of G and let o be a cuspidal representation of L.
The pair (L, p) determines, through G-conjugacy and twisting by unramified characters of L,
an inertial class § = [L, p|]¢ in G. This class s indexes the Bernstein block R*(G) (in the
category R(G) of smooth representations of G) which is the direct factor of R(G) consisting
of representations all of whose irreducible subquotients are subquotients of a representation
parabolically induced from an element of s.

Let (J,A) be a pair made of an open compact subgroup J of G and an irreducible smooth
representation \ of .J, acting on the finite dimensional space V). The Hecke algebra of the
pair (J,\) is the intertwining algebra of the representation c-Ind§ A, traditionally viewed as:

H(G,\) ={f:G— End(V)) | f compactly supported and
Vge G, Vi, ke, f(igk) = A()S(9)AR)}

The pair (J, ) is an s-type if the irreducible objects of R°(G) are exactly the irreducible
representations of GG that contain A upon restriction to J. In this case there is an equivalence
of categories

M, : R*(G) — Mod-H(G, \), M (m) = Hom (A, 7).

3.2. There is a counterpart of parabolic induction for types: the notion of G-cover, also
defined in [1 1] by Bushnell and Kutzko. Let M be a Levi subgroup of G, let Jy; be a compact
open subgroup of M and let A\y; be a smooth irreducible representation of Jy;. A G-cover
of the pair (Jy, A\ys) is an analogous pair (J,\) in G satisfying the following conditions,
for any parabolic subgroup P of G of Levi M, where we write N for the unipotent radical
of P, and P~ for the parabolic subgroup opposite to P with respect to M, with unipotent
radical N~:

(i) J has an Iwahori decomposition with respect to (M; P), i.e.
J=(JnN)JnM)(JnN), and J n M = Jy;

(ii) A restricts to Ay on Jyy and to a multiple of the trivial representation on J n N~

and J N N;
(iii) the Hecke algebra H(G, \) contains an invertible element supported on the double
coset of a strongly positive element of the centre of M [11, §7].

If the pair (Jar, Ayr) is an sp-type in M for an inertial class )y = [L, o]y (so that L is a
Levi subgroup of M) and if (J, \) is a G-cover of (Jpr, Apr), then the pair (J, A) is an sg-type
in G for the inertial class s¢ = [L,0]¢ [!1, §8]. Furthermore, the third condition above
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provides us with an injective morphism of algebras ¢ : H(M, Ay;) — H(G, \) that induces
on modules a morphism ¢, yielding a commutative diagram :

Ree () — Mod- H(G, \)

Ind§ T Tt*

Mo
R (M) 2 Mod—H (M, M)

The reducibility of parabolically induced representations from P to G, on the left side, can
thus be studied in terms of Hecke algebra modules, on the right side.

3.3. This is the tool we use in this paper, where the types will be cuspidal types as
in paragraphs 1.6, 1.7, simple types and semisimple types. As for the relevant Levi and
parabolic subgroups, they will come in most cases as follows — and now we come back to
the symplectic group G = Spp(V) and the setting of paragraph 1.1. Thus we have a skew
semisimple stratum [A, —,0, 5] with associated orthogonal decomposition V =1!_, V? as
well as all the other notation from §1.

Let V = @;”:_ij be a self-dual decomposition of V' (i.e. for which the orthogonal space

of W7 is @y ;W*) such that:

(a) Wi =@l_,WJ A Viand W7 A V?is an E;-subspace of V;

(b) A(t) =@, A(t) n WU for all t € Z;

(c) for any r € Z and ¢ with 0 < i < [, there is at most one j, with —m < j < m, such
that A(r) n VA WU 2 A(r +1) n VA W)

(d) for j # 0 there exists 0 < 7 < [ such that W7 < V*, and P((An Wj)oiE) is a maximal
parahoric subgroup of GLg, (W7);

(e) P°((AnW?),,) is a maximal parahoric subgroup of G ] ]._, GLg, (WA V?), which
is a group with compact centre.

Such a decomposition is called ezactly subordinate to the stratum [A, —, 0, 5] (compare to [35,
Definition 6.5]).

Let then V = @;”:_ij be a self-dual decomposition of V' exactly subordinate to the
stratum [A, —,0, 8], let M be the Levi subgroup of G stabilizing this decomposition and
let P be a parabolic subgroup of G with Levi component M. Then the pairs (H'(3,A),0),
(JY(B,A),n) and (J(B,A),r) all satisfy conditions (i) and (ii) of paragraph 3.2 above. In
fact, for the first two pairs we need only conditions (a)—(b) and a self-dual decomposition
satisfying these will be called subordinate to the stratum; for the final pair we need only (a)—

(c).

3.4. In the next few paragraphs, we subsume the results of [35], in the form easier to refer
to taken from [27] and in the case that we will focus on, that is, parabolic induction of
self-dual cuspidal representations of a maximal Levi subgroup in a symplectic group. We
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thus continue with the notation of §1 and fix a cuspidal representation 7 of G = Spp(V). We
also fix a finite-dimensional vector space W over F' and a self-dual cuspidal representation p
of GLp(W). We consider the symplectic space X =V L (W @ W*) over F, with form

hx (v1 4wy + WY, vy + wy + wy) = h(vi,v2) + (wy, wy) — (wa, W),

where h is the symplectic form on V' and {:,-) is the pairing W x W* — F. We put M =
GLp(W) x G, a maximal Levi subgroup of Spp(X). According to [15, Proposition 8.4]
and [27, §4.1], one can find a type (Jyy x Jy/, 5\W®>\V) in M for the cuspidal representation p®
m of M and a G-cover of this M-type as follows.

3.5. There exist a skew semisimple stratum [A, —, 0, 5] in End(X) and a skew semisimple
character 6 of H'(3, A) with the following properties.

e The decomposition X = V L (W @ W*) is exactly subordinate to the stra-
tum [A, —, 0, 3]. In particular, letting

AnV =Ay, By=0, AnW=Ay and P[w = pPw,

the stratum [Ay,—,0, By] in Endp(V) is skew semisimple maximal and the stra-
tum [Aw, —,0, S| in Endg(W) is simple maximal. Moreover, the self-duality of p
is reflected in the fact that the restriction of 5 to W @ W* generates a field (equiv-
alently, the restricted stratum [A n (W @ W*), —,0, Bwew=] is skew simple). We
also have 5

Hl(ﬁaA) N M ~ H1(5W7AW> x Hl(ﬁV7AV)7
where the isomorphism is given by restriction, and similarly for J*(3, A) and for J(3, A).
We will abbreviate H*(8,A) = H}, H'(By, Av) = HY and H(By, Aw) = H},, and
similarly for J* and J.

e Let Uy be the restriction of 6 to f[‘},; this is a self-dual simple character. There are
the p-primary beta-extension &y, of Jw and a self-dual cuspidal representation 7y
of jW / jvlv such that p is induced by an extension of 5\W = Ry @Tw to the normalizer
of jW

e Let Oy be the restriction of 6 to H{; this is a skew semisimple character. There are
the p-primary beta-extension ky, of 6y and a cuspidal representation 7y of Jy/Ji;
such that 7 is induced by A\y = £, @ Ty

3.6. Let P be the parabolic subgroup of Sp;(X) which is the stabiliser of the subspace W
(so stabilises the flag W < W L V < X), let U be the unipotent radical of P and let P~
be the parabolic subgroup opposite to P with respect to M (the stabiliser of W*). Also
set Jp = HA(Jy n P) and Jp = Hi(Jr n P).

For any extension k of n to Jy we denote by kp the natural representation of Jp in the
space of (Jy n U)-fixed vectors under k. In particular, there is a beta-extension k, of 6
such that KAP| jaM = Ry @ ky. We can view 7 = Ty @ Ty as a cuspidal representation

of Jp/J} ~ jW/jI}V x Jy/Ji:. Then, letting Ap = o p ® 7, we have:
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Theorem ([27, §4.1)). (Jp, Ap) is an Spp(X)-cover of (Jw x Jv, Aw ® \y).

3.7. Furthermore precise information about the Hecke algebra of this cover is given in
loc.cit.

Theorem ([27, Theorem B]). The Hecke algebra 7 (Spp(X), Ap) is a Hecke algebra on a
dihedral group: it is generated by Ty and Ty, each invertible and supported on a single double
coset, with relations :

(E_qu) (71—1_1):07 ?;:0717 7'0,7”1€Z.

3.8. In fact, the parameters come from rank two Hecke algebras of finite reductive groups
as follows [35, (7.3) and §7.2.2]. There are two self-dual opg-lattice sequences 9, and My
in X such that [9;, —, 0, ], for ¢t = 0, 1, are semisimple strata and:

e the hereditary orders by(91) and by(9M;) are maximal self-dual og-orders contain-
ing bo(A);

e the decomposition X =V 1 (W @ W*) is subordinate to the strata [9%;, —,0, 3],
fort =0,1;

o we have P(A,,) = (P(My,o,) N P7) PHOMy,,) = (P(Mooy) N P) PL(Mo,,)-

The representation 7 = 7y ® 7y is a cuspidal representation of the Levi subgroup G(A,,) =
P(A,,)/PY(Aoy) of G(My4,,) = P(Myo,,)/PHOMy ), for ¢ = 0,1, that can be inflated to the
parabolic subgroup P(A,,)/P'(9M;,,), then induced to the full group G(M;,,). A specific
use of the notion of beta-extension relative to M, ,,, leads to self-dual characters x; of G(A,,,),
for t = 0,1, giving rise to injective homomorphisms of algebras:

(3'1) t%ﬂ(g(ﬁ)’zt,nﬂa)?)@ ®T) - %(G> )‘P) (t = Oa 1)'

We will elaborate on this in paragraph 3.12 below.

3.9. In order to make use of this, we need some control on the characters y; and it is here
that we really need to use the notion of p-primary beta-extension. We continue with the
notation of the previous paragraphs but, for the moment, drop the subscript ¢ on 9t;. We
will assume that P(A,,) = (P("M,,) n P) P1(9M,,) so that, in the notation above, we are
doing the case t = 0; the case t = 1 is obtained by exchanging the parabolic P with its
opposite P~. Denote by gy the transfer of 5 = 0 to Hy, = H'(3,9), and denote by na, non
the unique irreducible representations of J}, Jg, which contain 0, fgy respectively. Similarly,
we have the representations 7y, ny of J}V, Ji- which contain Ow, Oy respectively.

For a moment, let (J, J',n) be either (Jo, Joy, 7om) or (Ja, Ji,na), and let k be any extension
of nto J. We define rp(k), the Jacquet restriction of k, as the natural representation of J M
on the space of J' n U-invariants of x [/, Corollaire 1.12, Lemme 1.18]; that is, rp(k) is the
restriction to J n M of kp, in the notation of paragraph 3.6.
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3.10. In order to compute the character y from (3.1), we need to compare the following
two representations of Jy:

e the beta-extension k, gy of 7 to Jy which is compatible with the p-primary beta-
extension kg, of moy to Jop (in the sense of [35, Definition 4.5));
e the extension rp = k% of ny to J characterized by the property
I'p(/if) = EW ®EV7
where Ry, and sy, are the p-primary beta-extensions of 7y and 7y respectively, as
above. (See [1, Lemme 1.16].)
We apply Jacquet restriction to k, gy. The groups Joy 0 M and Jy n M are both equal
to Jw x Jy and the representations rp(fgy) and rp(ky o) both extend 7y ® ny. From [,

Proposition 1.20], the beta-extension r gy is characterized by

(32) rp(kpom) = Tp(Lon)-

Proposition. For m € Joyg n M, define egn(m) as the signature of the permutation:
Adm: u—smtum, weJyynU /HynU™.

The p-primary beta-extension kgy of non to Jog satisfies:

(3.3) rp(ton) = em(Ey @ Ly ).

This proposition and (3.2) immediately imply:

Corollary. The extensions ky gy and kY of na to Ja are related by:
rp(ry) = emrp(fip on)-

Proof of Proposition. Let ¢ be an arbitrary extension of ngy to Joy. By [4, Lemme 1.10] the
restriction of ¢ to (Jon N P)Jgy is induced from the natural representation ¢p of (Jon N P)Hyy
on the space of Jy, N U-invariants of ¢. Hence we can realize @|j,~n as the action by right
translation on functions taking values in the space of ¢pp. We also have the representa-
tion ngn p of (Jgz N P)Hyy on the space of Jg, N U-invariants of 7.

Let S be the space of ny and let S be the space of 7y, so that S®S is the space of noy p. The
representation ¢p itself extends gy p, so our representation ¢z, ~ar acts by right translation
on the space of functions

fi (Jmn P — S8
satisfying, for all x € (Jon N P)Hgy and all g € (Jog N P)Jgy:

f(zg) = op(x)f(g).

Using Iwahori decompositions as in [1, §1.3] we identify this space with the space T of
functions on Jy, " U~ /Hgy, n U~ with values in S® S. The action of m € Jywn M on fe T
is now given by:

¢(m)f(u) = f(um) = f(m.m™ um) = rp(d)(m) f(m™ um),
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forue Jyy U /Hyy nU™.

Let Ty be the space of complex functions on Jj N U~ /Hjy, n U™ and € the permutation
representation of Jyy N M on Ty:

E(m)f(u) = f(m tum), for feTy, meJmn M, ue JynU /Hyy nU".
We can further identify 7 with 7y ® (5’@ S) to obtain ¢y~ =~ EQrp(9).
All of this applies to kg, so
Eonjggmon = E®rp(kay)-
The determinant of this representation has order a power of p, a property that is unchanged
by taking p*-th powers. Recall that the determinant of some r ® y acting on X @ Y

is (det z)dmY (det y)4™mX . The two spaces here, Ty and S ® S, have dimension a power of p,
which is odd, and the determinant of £ acting on 7q is €.

We now write rp(kgy;) = Aw ® Ky where Ry is a beta-extension of 7y and ky is a beta-
extension of 7y (see (3.2) and [35, Proposition 6.3]). It is enough to prove

emm det (R ® ki) has order a power of p.
Writing egn for the restrictions of ey to Jw and to Jy, this condition transforms into
det (g ® k) and det (esp ® ky) have order a power of p.

The character ey is trivial on pro-p-subgroups so emm ® Rk and eyp @ Ky are beta-extensions
of iy and ny respectively [35, Theorem 4.1]. This last condition actually means that they
are the p-primary beta-extensions of 7y and 7y respectively, and (3.3) follows. U

3.11. Before returning to the implications on reducibility, we examine the character ey a
little further. We begin with a general lemma.

Lemma. Let Z be a finite dimensional vector space over a finite field F, with odd cardinal-
ity q and let g € GLg,(Z). The signature of the permutation g of Z is equal to (dety, g)q%1
Proof. As a character of GLg, (Z), the signature is trivial on the derived subgroup, which
is SLg,(Z), as ¢ > 2, hence factors through a character x of the determinant over F,. We
know x? is trivial and it remains to show that x is not identically trivial on GLg,(Z).

Consider the permutation of F, given by multiplication by an element ¢ of Fy of order 2t
with qz;tl an odd integer. This permutation fixes 0 and has q;—f cycles of length 2¢ in Fys
so has odd signature. Then the element ¢ = diag(¢,1,...,1) has odd signature so x is

non-trivial. O

Proposition. For m € Joywn M, the permutation Adm of Jy "U~/Hy, nU™ is an F,-linear
transformation of this F-vector space and

em(m) = [dety, Ad m]p%1
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Moreover, the permutation w — m~‘um of the space Jyy N U/Hyy 0 U also has signa-
ture egn(m).

Proof. The first part follows from the previous lemma. Since the decomposition X =V L
(W @ W*) is subordinate to [, —, 0, ], the pairing

(x,y) = Om([z,y]), forze JynU J/HyunU™, yeJyunU/HynU,

identifies each of those [F,-vector spaces to the dual of the other [35, Lemma 5.6], in such a
way that, for m € Joyy " M, the transpose of the map x — m™'axm, for z € Jopy,nU~/Hyy U™,
is y — mym™!, for y € Jg N U/Hgy, n U. The result follows. O

3.12. We return to the notation of paragraphs 3.4-3.8 and now put together the Hecke
algebra homomorphisms (3.1) with 3.10 Proposition. Let t = 0 or 1. We recall from [35,
(7.3)] (rephrased in the present framework in [/, Proposition 3.6]) that if x = C—Indiﬁ Kp is
1
a beta-extension of ny = C—Indj’} np relative to 9, then there is an injective morphism of
P
algebras
%(g(mtt,ﬂls)7 7~—VV ® TV) - %(SPF(X>7 kp & (%W ® TV))
that preserves support. We want to express this with the fixed representation Ap = k5 p on
the right, where KNP jaM = Ry @Ky, as in paragraph 3.6. We thus plug in 3.10 Proposition
above and get:

Theorem. Lett =0 or 1. There is an injective morphism of algebras
Jt r%<g(g‘nt,013)7 Su/e (%W ®TV)> - %(SpF(X)u )‘P)

that preserves support, i.e. Supp(ji(¢)) = Jp Supp(@)Jp, for all p € F(G(Mro,), €m, (Tw @
Tv)).

3.13.  We now focus on the finite-dimensional algebra .72 (G (M., ), em, (Tw @7 )), a Hecke
algebra on the finite reductive group G(9M;,,) relative to a cuspidal representation of the
parabolic subgroup P(A,,)/P* (M, ).

Let X :J_é-zo X7 be the splitting associated to the skew semisimple stratum [A, —,0, 3].

Since the stratum [Ay, —, 0, By/] is simple, there is a unique index i such that W < X*, and
then W* < X* also. This index i will be fixed until the end of the section.

Writing V7 = V n X7, the skew semisimple stratum [Ay, —, 0, By] then has splitting consist-
ing of the non-zero spaces in V' =J-§~=0 V7 the only spaces which may be zero here are V°
(since we have the convention that 3° = 0) and V* (which is zero if and only if X* = W@®W™*).

The ambient finite group G(9M;,,) is a product over j, for 0 < j < [, of analogous groups
relative to X7, but in all of them except X* the parabolic subgroup considered is the full
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group:

PO )/ P (M) > PO )/ PO ) = [ | PA, )/ PN )
J#i
P(Aog) /P (OMye,,) = PN )/PHOR 0 ) x [ [ P(AZ)/PH(A).
];ﬁ’t E E
The representation 7y ® 7, decomposes accordingly using 7, = ®§=07j and we finally get
an isomorphism of algebras:

(3-4) H(G( Mo, ), em, (Fw @ 1)) =~ H(G(M, 0 ), €, (T @ 73))

where 7y ®7; is a cuspidal representation of G (Awei ) x G(A},,: ), identified with a maximal
) D)

Levi subgroup of each finite reductive group Q(‘)ﬁi ,i ), fort=10,1.
OE

It follows from Lusztig’s work [20], as recalled in section 5, that this algebra is two-dimensional,
because Ty and egy, are self-dual. It has basis given by the identity element and an ele-
ment 7; supported on the double coset of a certain Weyl group element, called s;, if t = 0,
or s7 if t = 1, in [35, §7.2.2]; this only defines 7; up to a non-zero scalar, which will not
matter to us at first. Lusztig gives an algorithm permitting the actual computation of the
quadratic relation satisfied by 7;. This relation always has the following shape, for some
non-zero complex number w:

(3.5) (T: — ¢ w)(Te + wy) =0, where 7, = (g, (T ® 7)) = 0.

We emphasise the dependency in the inducing cuspidal representation ey, (Ty ® 7;).

3.14. Finally, we can restate [/, Proposition 3.12], describing the real parts of the reducibil-
ity points we wish to compute, in our notation. Recall that, for p a cuspidal representation
of GLp(W) as above, we write t(p) for the number of unramified characters x of GLg (V)
such that p® x ~ p. Recall also that, if p is self-dual, then there are precisely two represen-
tations p, p’ in the inertial class of p which are self-dual.

Let 7 be a cuspidal representation of G. Recall that there is a real number s.(p) = 0 such
that, for real s, the normalised induced representation v°p x 7 of Spp(X) is reducible if and
only if s = +s,(p), and similarly we have s,(p"). Then, for complez s, if v°p x 7 is reducible
then the real part of s must be +s:(p) or +s.(p'); we say that these are the real parts of
the reducibility points of v°p x 7.

Proposition ([, Proposition 3.12]). Let 7w be a a cuspidal representation of G, let p be
an irreducible self-dual cuspidal representation of GLp(W), and take all the notation of the
previous paragraphs. Then the real parts of the reducibility points of the normalized induced
representation v°p X w are the elements of the set

To+T1 [ To—T1 B - 4 B ~ '
(3.6) {i 200) .+ ) } where o = 1o(em, (Fw ® 71)), 11 = 11 (€, (Fwr @ T3)).
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Note that, by [10, Lemma 6.2.5], the unramified twist number t(p) can also be computed
_ dimp W

from the formula ¢(p) = ST

3.15. We can also apply the discussion of the previous paragraphs in the space X® =
W@V’ ®W*. From the splitting of our strata, we have the lattice sequence A}, = A n V"
and the simple stratum [A}, — 0, 8% ] in V'. We write J; = J(Bi,, Al,), and similarly for J}
and H}, and let k; be the p-primary beta-extension of the simple character 0 mr- Then 7 is
a representation of the reductive quotient J;/J! and, putting G; = Spz(V"*) we can define
the cuspidal representation m; = c—IndS’Zi k; ® 7; of Gy. (Note that, if V' = {0}, then m; is
the trivial representation of the trivial group.)

Applying the discussion above to the representation 7; and the space X?, we find that the real
parts of the reducibility points of the normalized induced representation v*p x m; of Spp(X*)
are the elements of the set

/

rh+r'  rh—r
37 ot 4T~ h
(3.7) { 2t(p) "~ 2t(p)

The comparison between (3.6) and (3.7) will be crucial.

} , where 75 = ro(eqi (Tw @ 7)), 71 = r1(€mi (Tw @ 73)).

3.16. We end this section with the simplest example of the computation of the parame-
ters 1,71 in (3.6), for positive depth representations. Continuing in the notation above, we
assume that ¢ > 0 and that ' is mazimal in the following sense: we have [F[3'] : F] =
dimp V¥, so that (the image of) F[3'] is a maximal extension of F' in Endp(V?). In particu-
lar, this implies that V? # {0}. We assume moreover that dimp W = dimp V?, the smallest
example of the situation above. (It will turn out that this is in fact the only situation of
interest, in this context.)

Let E be the fixed field of the adjoint involution acting on E* = F[3"]. The centralizer
of % in Spp(X") is thus isomorphic to the unitary group U(2,1)(E*/E}). In the latter group,
there are two conjugacy classes of maximal compact subgroups, the reductive quotients of
which are, for some a and b with {a,b} = {0,1} depending on the initial lattice sequence A':

e G(Myo,) ~ U(2,1)(kEi/k'E(i)) and G(My,,) ~ U(L,1) x U(l)(kEi/kEé), if £'/E] is
unramified;

e G(My,,) ~ SL(2,kgi) x {£1} and G(My,,) ~ O(2,1)(kg:), if E'/E} is ramified.

We set f = f(E{/F). From the calculations in section 5 the possible values for r,, r, and
the sets of real parts of reducibility points in (3.6) are:

o if £'/E} is unramified: r, = 3f or f, and 7, = f; real parts {1, 1} or {+1,0};

o if £'/E} is ramified: 7, = f or 0, and r, = f; real parts {+1,0} or {+1, +3}.

In both cases the value of 1, = ry(em, 7w ® 7;) is independent of the representation. We
choose 7y such that r,(em, (Tw ® 7)) = 3f if E*/E} is unramified, or 7, (e, (T @ 7)) = f
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if F'/E} is ramified. This choice, which we denote by 7y, is unique and provides us with a
reducibility with real part 1.

We conclude that there exists one and only one self-dual cuspidal representation p of GLg(W)
containing the simple character Uy such that the parabolically induced representation vip@m
is reducible. The representation p contains the type (Jw, &y ® Ty, ). However, as discussed
previously, this does not give us a full description of the self-dual representation p: we know
its inertial class but this still leaves two possibilities. This situation is explored more fully
in Section 6.

3.17. Applying the previous paragraph again to the representation m; of G; = Spp(V?)
and comparing (3.6) and (3.7), we remark that the relevant choice of py for the situation
in X, with the cuspidal representation 7 of G = Spy(V'), differs from the analogous choice
relative to the situation in X?, with the cuspidal representation m; of G;, by a simple twist
by the character g, eqn:. Indeed, in our example, the value of 7, is independent of the
representation. In the next section we will study the general case, when r, and r, may both
depend on the representation.

4. REDUCTION TO THE SIMPLE CASE

In this section, we make the reduction to the simple case, proving 2.6 Theorem. As inti-
mated at the end of the last chapter, the key point to prove is that the character em, egyi is
independent of ¢ (see 4.3 Proposition). Note that the character em,eqn is the character x;
appearing in the statement of 2.6 Theorem. While we have a description of it as a permuta-
tion character and, through careful analysis of this permutation, give a recipe by which one
could compute it, we do not here compute it precisely; we only check that it is independent
of t.

There is one further subtlety which should be remarked upon. In Section 3, we began with a
pair of cuspidal representations (p, ) and built from them a cover of a type, without starting
from types for p and 7. In this section, we begin just with a cuspidal representation 7 of G
and a cuspidal type A for it, and use this to define certain cuspidal representations p of general
linear groups, and maximal simple types A for them. The cover obtained in Section 3 is then
indeed a cover of A@ A but this is only clear because the (semi)simple characters in A and
are suitably related. Thus we take great care to set up the notation in this section.

4.1. We first review the notation that we need. This is the notation as in paragraph 2.6
so that it differs slightly from the notation of the previous chapter. In particular, objects
in the symplectic space V' do not have the subscript V; instead, the corresponding objects
in X (which we have yet to define) will have the subscript X.

Throughout this and the following paragraphs, we fix a cuspidal representation 7 of G =
Spr(V). We have the following data.
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In the symplectic space V.

e A maximal skew semisimple stratum [A, —, 0, 5] in Endp(V') and a skew semisimple
character 6 of H' = H'(3, A) such that 6 occurs in 7.

e The irreducible representation n of J* = J'(3,A) containing § and the p-primary
beta-extension k of n to J = J(5, A).

e A cuspidal representation 7 of G(A,,) = P(A,,)/P'(A,,) such that 7 is induced
from A=r®T.

The stratum [A, —,0, 5] can be written (uniquely) as an orthogonal direct sum of skew
simple strata [A7, —, 0, 7] in Endp(V7), for j = 0,...,[, with the convention that 3° = 0.
The data above then give us the following data in the spaces V7.

e Skew simple characters 6; of H} = H'(/3?, /), which are the restriction of 6.

e The irreducible representation 7; of .J} = J'(57, A7) containing 6; and the p-primary
beta-extension x; of n; to J; = J(87,A7).

e The cuspidal representations 7; of Q(Ai ;) such that, via the isomorphism G(A,,) ~

. E
]_[;:0 Q(Az‘%), we have 7 = ®\_y7;.

e The representation \; = £ ®T; of Jj.

Note that, writing G; = Spp(V7), the representation 7; = C—Indij Aj is a cuspidal represen-
tation. A priori, it is not determined uniquely by the representation 7, but it is determined
by our choice of data ([A, —,0, 3],0) such that 7 contains 6.

We now fix ¢ € {0,--- ,{} and choose an F-vector space W whose dimension is divisible by
the degree [E* : F']. We then have the following data.

In the vector space W.

e A maximal simple stratum [Aw, —,0, S| in Endg(W), together with a field iso-
morphism E’ = F[3] — F[fw] = Ew fixing F and taking ' to Sy

e The simple character Jy of HY, = H'(By, Aw) which is the transfer of the square (6;)?
of the unique self-dual simple character of H* (5%, A?) restricting to 6;.

e The p-primary beta-extension Ky, of Iw to Jy = J (Bw, Aw) and an irreducible
self-dual cuspidal representation 7y, of G(AW,OW), inflated to Jy,, where we have
written oy for the ring of integers of Eyy.

e A self-dual cuspidal representation p of GLy(W) containing Ay = &y ® Ty

These data also induce data in the dual space W* as follows. By duplicating if necessary,
we assume that Ay has period divisible by 4 and that Ay (—1) # Aw(0). (The reason for
doing this is to ensure that the self-dual lattice sequence we will obtain conforms to our
standard normalization — see 1.1 Remark.) Writing (-, -) for the pairing W x W* — F, we
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define A}, by
Ay (r) = {w* e W* [ (Aw(1 —7),w*) S pr}, for r € Z;

then the lattice sequence Ay @ Ajy, is self-dual with respect to the natural symplectic struc-
ture on W @ W*. We also define f;, in Endp(W*) by

(w, By (w*)) = —(Pw (w), w*), for all we W, w* e W*,

Note that, by the fact that [A?, —, 0, 5] is skew, there is a unique isomorphism E* — F[3},]
which takes 5 to 35

We now use these data to define corresponding data in the larger spaces on which we will
have covers (as in Section 3). We define the symplectic space X* = (W @ W*) L V¢ for
which we have the following.

In the symplectic space X°.

e The maximal Levi subgroup M; ~ GLr(W) x Spx(V?) of Spp(X*) which stabilizes
the decomposition X* = (W@W*) L V* and the maximal parabolic subgroup P; =
M,;U; which stabilizes the subspace W (so stabilizes the flag W < W 1L Vi < X?).

e The skew simple stratum [A%, —, 0, 8%] in Endg(X?), where A% = (A @ Ajy,) L A
and 3% is the unique skew simple element which stabilizes the decomposition X* =
(W@ W*) LV and acts as 8" on V' and as Sy on W; it then acts as 3, on W*.
We identify E* with F[f5%] via the isomorphism which takes ' to 8%.

e Two further skew simple strata in Endp(X?),

[m67 ) 07 63(]7 [gﬁzlv R 07 Bgf]a
such that by(9M), for ¢ = 0,1, are the two maximal self-dual o%-orders in the
commuting algebra of 3% which contain by(A%).

e The unique skew simple character 0% of H}, = H'(8%,A%) that restricts to 6;
on H} and to Jy on H}y; this is the transfer to A% of the skew simple character 6;.

e For t = 0,1, the skew simple character emi of H, 1@ that is transferred from 6%;

the corresponding irreducible representation ny; of JE}R"; and the p-primary beta-
t
extension Kops Of Ngyi t0 Jopi-

o An Sp,(X?)-cover (Jb, \b) of the pair (Jy x Ji, \w ® X;) in M.
Finally, we define the symplectic space X = (W@®W*) LV = X | V¥ where V' = J;Z Vi,
JF#
for which we have the following.

In the symplectic space X .

e The maximal Levi subgroup M ~ GLr(W)xSpp(V) of Spp(X) which stabilizes the
decomposition X = (W@ W*) L V, and the maximal parabolic subgroup P = MU
which stabilizes the subspace W'.
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e The skew semisimple stratum [Ax, —, 0, Bx], where Ay = A% L AV, with AV* =1,
A/, and B the unique skew semisimple element which stabilises the decomposi-
tion X = (W@ W*) LV and acts as f on V and Sy on W (or, equivalently, acts
as By on X' and as V' = @, ,; # on V"', from which it is clear that the result-
ing stratum is indeed semisimple). We identify F with F[Sx] via the isomorphism
which takes 3° to 8% and 37 to itself, for j # .

e Two further skew semisimple strata

[&nOa _707ﬂX]7 [slnla _707ﬁX]7

where 9, = 9 L AV for t = 0, 1; then bg(9;) are the two maximal self-dual op-
orders in the commuting algebra of Sx which contain bg(Ax).

e The unique skew semisimple character Ox of Hy = H'(8x, Ax) which restricts to 0
on H' and to Oy on Hy,; it is the transfer to HY of the skew semisimple character 6,
and restricts to 03( on H;(i.

e For t = 0,1, the skew semisimple character foy, of Hglﬁt that is transferred from fy;

the corresponding irreducible representation ngy, of Js}.nﬁ and the p-primary beta-

extension kg, of no, to Jop,.

An Sp(X)-cover (Jp, Ap) of the pair (Jy x J, Aw ® ) in M.

4.2. We use the setup in the previous paragraph and come back to the comparison of real
parts of reducibility points, as in paragraph 3.17. The comparison of beta-extensions yields,
as in 3.10 Proposition, characters Eoni and egy, for t =0, 1.

We fix t = 0,1 and temporarily drop the subscript t. By definition eyn(m), for m € Joyy 0 M,
is the signature of the permutation Adm : u — m™'um of the quotient Jj, N U/Hgy N
U, isomorphic to the F,-vector space Ji; N U/Hg; N U, where U is the Lie algebra of U
(see 3.10 Proposition and 3.11 Proposition). The same holds with eyi(m), for m € Jyi N
M": it is the signature of the same permutation on Jg,, N U;/9y, n U;. On the other
hand U is isomorphic to U; ® Homp (VY% W) in an M;-equivariant way, and the action
of (m,y) € GLrp(W) x Spg(V?) on ¢ € Homp (V¥ W) is given by ¢ — m¢. The associated
decompositions of the lattices J' and $H' (as in [10, Proposition 7.1.12]) lead to:

Lemma. Let (m,y) € P(Aw,o,) X P(A!, ). Then (emiem)((m,y)) is the signature of the
E
permutation ¢ — maeo of

X = 3o 0 Homp (VY W) /$H5 0 Homp (VY W),

Now the quotient group P(Aw.e,, )/P (A, ) is a general linear group GL,,,, (kw) over the

finite extension ky = kgi of kr; this extension depends only on the endo-class of the simple

character ¥y. The lemma actually asserts that the character egnegy: is trivial on P (Noz ) and
E

factors through the signature of the natural left action of GL,,,, (kw) on X.
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4.3. Retrieving the subscripts ¢, our main tool is the following comparison of characters:
Proposition. With notation as above, we have
Cony €amo = Comi €,y -

This character, as a character of GLy,,, (kw), can be written as x; o dety,,, where x; is a
quadratic character of kj;, which is independent of the choice of the space W.

The independence on the space W (for a fixed choice of i) is particularly important. We
postpone the proof of the Proposition for now and, taking it for granted, deduce 2.6 Theorem.

4.4. Recall that we have written © = C—Indg A and, for 7 = 0,...,[, we have the cuspidal
representation 7; = c—Ind?jj A\; of G; = Spp(V7). We have 6;, the simple character of H jl
contained in \;, and we write éj for the self-dual simple character of H Jl which restricts to 0;.
Let ©; be the endo-class of the simple character (6;)?, which is a simple character for the
stratum [A7, —,0,257], and ke, for the corresponding extension of kp.

Recall that, for an endo-class ® and a character y of the multiplicative group of the corre-
sponding finite field kg, we have:

e Jord(m), the Jordan set of 7 (see paragraph 2.1);

e [Jord(m, ®), the inertial Jordan set of 7 relative to ®, which is the multiset of
pairs ([p], m), for (p, m) € Jord(m) such that p has endo-class ©;

e Ljord(m, ®),, the x-twisted inertial Jordan set of 7 relative to @, which is the
multiset of pairs ([p]y, m) with (p, m) € Jord(w, ©).

Recall here that, if p contains a maximal simple type (j . )\), then [p]y denotes the inertial

class of cuspidal representations containing (./, A® xodet) (see paragraph 2.4). Also, when x
is the trivial character we just write IJord(m, ©).

We restate 2.6 Theorem in a refined form:

Theorem. Fiz i with 0 <i <1, and let x; be the character of kg, such that x; o detye, s
the twisting character in 4.5 Proposition. We have an equality of multisets

Lord(m, ©®;) = LJord(m;, ©;),,-

Proof. This is now just a matter of putting together the previous results. Let p be a cuspidal
representation with endo-class ©; and use the notation of paragraph 4.1 so that p is a
representation of GLr(W) containing the maximal simple type Ay = £y ® Ti. The values
of m, if any, for which ([p],m) € IJord(m;, ®;) can then be computed from (3.7): more
precisely, they are

(4.1) ro(esmg (Tw ® Ti))t(ip)ﬁ(emzi (Tw ® 7)) 1
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whenever these integers are strictly positive, together with positive integers less than this
and of the same parity.
Now we consider the inertial class [p],,. The cuspidal representations in this class contain

the maximal simple type Ay ® x; o det = Ky, ® (Tw ® x; © det). Then, using (3.6), we see
that the values of m for which ([p]y,, m) € LJord(nw, ©;) are

ro(em, ((Tw ® xi o det) ® 73)) £ 71 (ean, ((Fw ® X © det) ® 73))
t(p)

whenever these integers are strictly positive, together with positive integers less than this
and of the same parity. But 4.3 Proposition says that these are precisely the same integers as
those in (4.1) (recall that all the characters here are quadratic), and the result follows. [

-1,

Remark. As we have seen in the proof, the pairs ([p], m) which appear in IJord(w) are
determined by the values of r;, = r;(egni (T @ 7;)). Denote by p’ the other self-dual cuspidal
in the inertial class [p]. If p and p’ are of opposite parity, say p is of symplectic type and p’
is of orthogonal type, then we also recover this part of the full Jordan set Jord(w): if m is
even then it is (p, m) which appears in Jord(7), while if m is odd then it is (p/, m).

Suppose now that p, p’ are of the same parity and ([p], m) appears in IJord(w). Then p
and p’ both appear with the same multiplicities in Jord(n) if and only if ror; = 0. Thus in
this case we also recover this part of the full Jordan set. Both p and p’ appear with some
multiplicity in Jord(n) if and only if |ro — 1| > t(p); when p, p’ are both of orthogonal type,
this condition simplifies to rq # 71, since the reducibility points must be integers in this
case.

The situations in which p, p’ have the same parity are examined more closely from the Galois
point of view in Section 6.

It remains now to prove 4.3 Proposition, which will take up the remainder of this section.

4.5. In this and the next few paragraphs, we define and study an auxiliary lattice sequence
which will be needed for the calculations. Let Ay and Ay be op-lattice sequences in finite
dimensional F-vector spaces W and Y respectively, with the same op-period e. We define
an op-lattice sequence C = C(Ay, Ay ) in the vector space C' = Homp(Y, W) by

Clt)={geC|gAy(i) S Aw(i+t) for all i € Z}, for t € Z.

We call the jumps of Ay those integers i such that Ay (i) # Ay (i + 1) (and similarly for any
lattice sequence). The set of jumps of Ay is also the image of Y\{0} by the valuation map
attached to Ay, given by valy (y) = max{k € Z | y € Ay (k)}, for y € Y\{0}.

We make the following assumptions:

(i) The set of jumps of Ay is equal to ay + swZ and the set of jumps of Ay is equal
to ay + syZ.
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(ii) The orders a(Ay ) and a(Ay) are principal orders, in other words non-zero quo-
tients Ay (7)/Aw (i + 1) are all isomorphic, and the same for Ay. In particular there
is an element Ily € a(Aw) (resp. Iy € a(Ay)) such that Hy (Aw (i) = Aw (i + 1)
(resp. Iy (Ay (i) = Ay (i + 1)) whenever 7 is a jump of Ay (resp. of Ay) [10, §5.5].

Lemma. The set of jumps of C is equal to (aw — ay) + ged(sw, sy)Z. Moreover, the
quotient spaces C(i)/C(i + 1) that are non-zero are all isomorphic as kr-vector spaces, and
their common dimension is

ged(sw, sy)

C = C(Ay, Aw) = .

Proof. Proving that the set of jumps is contained in the given Z-coset is straightforward
using only assumption (i). Now we use assumption (ii) and remark that Ily and Iy sat-
isfy Iy (Aw (7)) = Aw (i+sw) and Iy (Ay (7)) = Ay (i + sy ), for any integer ¢. For any ¢ € C'
we check that:

vale (Il @) = vale(p) + sw, vale(¢lly) = vale(¢) + sy

The left (resp. right) multiplication by Ily, (resp. I1y) is thus an isomorphism of 0 p-modules
from C(t) onto C(t + sw) (resp. C(t + sy)) whence the isomorphy.

To compute the dimension we use the generalized index notation [A : B] for two lattices A

and B in a same finite dimensional vector space: [A : B] is just the ordinary quotient
of [A: X] and [B : X] for any lattice X contained in A and B.

The common op-period e is a multiple of sy and sy, say e = rysy = rysy. Write s =
ged(sw, sy) and pick integers n, m such that s = nsy + msy. We have, for any integer k,

) : C(k +nsw)] [C(k + nsw) : C(k + nsy + msy)]
k) :C(k + sw)|" [C(k) : C(k + sy)]™

) wrC(R)]W [C(k) : wrC (k)]

) wrC(k)):

o

— /e e
[

—~
Sy

whence the result. O

4.6. We will need to determine the effect on C(Ay, Ay) of a shift in indices on Ay,. We
further assume the following.

Notation. (i) The space W is an Ey-vector space for some finite extension Ey of F,
with ramification index ey and residue field ky, of cardinality gy .
(i) We fix two oy-lattice sequences Ao and Ay in W with the same underlying
lattice chain of period 1 over Ey (so that swo = swi = e/ew) and with jumps
at awo = 0 and ap; = ﬁ respectively.
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We write sy = ;= and put C; = C(Ay,Awy), for t = 0,1. The sets of jumps of Cy, C; are
respectively

e e e e e
—ay + ged (—, —) Z and —— —ay +gcd (—, —) Z;
Ty ew 2€W Ty ew

they are the same when ;2 divides gcd( € i) We get the following, where valy is

2ew Ty ew
the 2-adic valuation of an integer.

Lemma. Cy and C, have the same jumps if and only if valy(ew) < vala(ry). Otherwise the
gumps of Cy and Cy are shifted by % gcd(%, j)

4.7. We now observe that the group GL,,,, (kw) acts on the quotients C;(7)/C;(i + 1) by
left multiplication, where my, = dimg, W. These actions commute with the left action
of E;, and with the right action of Ily so, on the non-zero quotients, they are all equivalent
and the corresponding permutations of the non-zero sets C;(i)/C;(i + 1) all have the same
signature.

In the same fashion the non-zero quotients C.(i)/C;(i + 1) are isomorphic left modules
over ao(Awiton )/01(Awitoy) =~ Mp, (kw). The latter is a simple algebra hence those
modules have composition series with d simple quotients all isomorphic to the natural

module k. The determinant of the action of g € GL,y,,, (kw) on any such module is
SN\ d
thus (dety,, g)d and the signature of the corresponding permutation is ((detkW g)qwz .

by 3.11 Lemma. The associated character of GL,,,, (kw) is then trivial if and only if d is
even. Now 4.5 Lemma gives us:

Since dimp W = ew [kw : kr|my, we conclude:
Lemma. The signature of the natural left action of GLy,,, (kw) on the non trivial quo-

tients C¢(i)/Cy(i + 1) is the trivial character if and only if

d=—Y _ dimpY
lem(ry, ey )
is even; otherwise it is the unique character of GLy,,, (kw) of order two. In particular:

e this signature only depends on ey, not on W itself;
e when Cy and Cy do not have the same jumps, we have d = dimgY (mod 2).

4.8. We return to the notation of paragraphs 4.1, 4.2 but, for now, we drop the subscript ¢
so that 9 denotes either of the orders 9, or M. We first detail the structure of the by (91)-
bimodule J3, nU/$i; N U, isomorphic to Jyy nU/Hgy, nU by the Cayley map, or equivalently
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by Y — 1+Y. (Recall that U denotes the Lie algebra of U.) We use the inductive definition
of the orders Jop and $Hep given in [34, §3.2].

We have, for some u > 1, a sequence (79 = 5,7, ,7% = 0) and a strictly increasing
sequence of integers 0 < 19 < -+ < 7,1 = n = vyu() such that, for 0 < v < u — 1,
the stratum [N, — 7, — 1,7,] is semi-simple and the stratum [90, —,7,,7,] is equivalent
to [9, —, 7y, Yos1]. Using the inductive definition and writing [Z] for the image in the
Grothendieck group of a by(91)-bimodule Z, we find that:
(4.2)

[an/$an] = [y /a1 = [0 /0] Z (Sl B CHEYOa B

where b;/ gﬁ is shorthand for the intersection of a,,(9%) with the centraliser of ~.

From [31, Proposition 3.4], we may choose the elements 7, so that the decomposition X =
V L (W@ W*) is subordinate to all strata considered above; in particular we can take inter-
sections with U in every term in the above equality. Then the value egy(m) of the quadratic
character gy can be calculated as the product of the signatures of the permutation Adm on
each resulting quotient.

4.9. We now begin the proof of 4.3 Proposition. Recall that, by 4.2 Lemma, the charac-
ter egpi€gn is given by the signature of the permutation ¢ — meo on

X = 3o 0 Homp (VY W) /$H5 0 Homp (VY W),
for m e P(Aw.oy )-

The space Homp(V'¥*, W) decomposes as a direct sum @®;.;Hom(V7, W). Moreover, each V7

in turn decomposes as a direct sum V7 =17 | Y7 of subspaces Y7* for which the assump-

tions of §4.5-4.7 are satisfied, and such that the resulting decomposition of V' is subordinate
o [A,—,0,5]. Precisely:

e if 3; is non-zero, we take a direct sum of lines over F; that splits the lattice se-
quence A7 as in [12, §5.3 Lemma).

e If 8; = 0, the reductive quotient of the maximal parahoric subgroup P(A7) is iso-
morphic to the direct product of at most two symplectic groups over kr, whence a
decomposition of V7 as an orthogonal sum of at most two symplectic spaces satis-
fying the conditions required.

The action of GL,,,, (kw) on X then decomposes as a direct sum over j, s of actions on
x9S — 39)1 A Yj’s/f);ﬁ A Y'j,s7
where Y7* = Homp (Y7, W).

Using [34, Proposition 3.4] and [12, §5.3 Corollary|, we may choose the elements -, for (4.2)
so that the decomposition X =1;, Y?* L (W @ W*) is subordinate to all strata consid-
ered. The action of GL,,,, (kw) then decomposes further along (4.2) into pieces that fit the
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hypotheses of 4.7 Lemma, namely pieces of the following forms:

Q1 = [ag’ A Y fal T A Y],
Qs = [E2 0 YI* ul3 0 v),
Qs = [0 A Y7 B0 P A X = (B0 A Y Bl A Y.

4.10. At last we come to the point, which is not actually to compute the character egyiéegy,
but rather to prove that this character does not depend on the maximal self-dual order 9.
In our setting there are exactly two choices for 2, with a given period e and duality invari-
ant d = 1. Indeed, the lattice chain underlying the self-dual lattice sequence Ax N (W @W*)
is the disjoint union of two self-dual lattice chains, one containing a self-dual lattice and
its multiples, the other containing a non-self-dual lattice (whose dual is py, times it) and
its multiples. Let 9t and 9; be the two possible choices and write Ay = My N W
and AWl = sml N W. According to [35, Lemma 6.7], the sets of jumps of Ay and Ay,
eij respectively, and all results in paragraphs 4.5-4.7 apply.

We can thus compare €y €a, and ey: €, term by term.

Term Q,. We apply paragraphs 4.5-4.7, replacing Y by Y75 Ay by A n Y?* and us-
ing Ay = M, AW as above, for t = 0,1. We remark that dimp Y7* is always even. Hence,
by 4.7 Lemma, the signature on (); is trivial unless Cy and C; have the same jumps, so give
the same signature.

Term @Q,. We actually have 7y = (3, hence this term is zero if the centralizer of 5 does
not intersect Homp(V7,W). This condition holds under the assumptions of 4.3 Proposition
because j # 1.

Term Q5. Since My and My have the same intersection with V', we may and do choose
the same sequence (7,,7,) for both. We may also scale all our lattice sequences to make the
period big enough so that all numbers r, /2 are integers. Now ()3 is zero unless the centralizer
of v, intersects Homp(V7, W), which we now assume. We then apply paragraphs 4.5-4.7
over F[v,].

If the lattice sequences Cy and C; have the same jumps we have the equality we want. Other-
wise, they are shifted by half a period (4.6 Lemma) and the integer d given by 4.7 Lemma is
equal to dimpp,,1 Y75, If d is even we are also done. Otherwise we have 8; # 0 and sy = e/e;,
and the period of Cy and C; is e/lcm(eyw, €;).

Since Q3 is the difference of two terms [Ci(a)] — [C:(b)] in the lattice sequence Cy, for ¢ = 0, 1,
over F[v,], the values of Q3 for t = 0 and ¢ = 1 will be the same on condition that the
difference a — b is a multiple of half the period. This is what we will now prove.

In the notation of (4.2), we let h > 1 be the smallest integer such that the centralizer of -,
intersects Homx(V7, W), so that we only need to consider terms with v > h. If h = u there
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is nothing to do. Otherwise, we need to examine the values of r;, and 7,_; more closely,
in terms of the normalized critical exponents k&'[v,] (see [341, pp. 129,141-2]). We use [31,
p. 141], case (ii) for r,—1 = —ko(yn—1,9M) (the unnormalized critical exponent relative to 901)
and case (i) for r, = —ko(ys, M), to get
6(9ﬁ|0p)
e(F[wml/F)

for some element ¢ in F[v;], so that

e(Mor)

Ty = —kf(%)m,

Th—1 = Vp[y,](c)

Th=1 _Th _ e(M|orpy,))

This is indeed an integer multiple of the half-period of jumps

e<m|0F[’}’h]) (lcm(€W7 ej) > -
2 e(F[wm]/F)
since the last term is the inverse of an integer.

For v > h we use [34, p. 141] case (i) again and get:

roo1 1Ty _ eMopp,) (o p e(Fwl/F) . r
T - 5 = 9 <_k0 (%}_I)G(F[’YU_J/F) + kO (’711))
This is a multiple of the half-period of jumps if and only if
—kg (vo-1)e(F[1]/F) + kg (vo)e(F[1-1]/F) lem(ew,¢))
e(F[vo-1]/F) e(F[v]/F)
(4 roo o EEwal/F)\  lem(ew,e;)
- (o 0GR ) T
is an integer, which is the case because e(F[v,]/F) divides e(F[y,-1]/F) (see [11, 2.4.1]).

Putting this together, we obtain the character egyiegn as a product of signatures, each of them
only depending on ey by 4.7 Lemma, hence our character only depends on ey, not on W.
Furthermore, the extension Ey is isomorphic to F[3;], hence ey is equal to e(F[5;]/F),
independent of the choice of W. This completes the proof of 4.3 Proposition, whence
of 4.4 Theorem.

5. THE SIMPLE CASE

In this section we prove 2.5 Theorem. Recalling that, by 3.12 Theorem, the parameters of
the Hecke algebra of our cover are those in the Hecke algebra of a finite reductive group,
we are required to analyse these Hecke algebras. Fortunately, these are described by the
work of Lusztig [20] and have been computed in our cases in [25]. One subtlety is that
the twisting characters ey, give rise to involutions which we have not computed explicitly
so remain unknown. Fortunately, the numerics are such that an exact description of these
involutions is not needed.
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5.1. Let 7 be a simple cuspidal representation of GG in the sense of paragraph 2.5. Since the
case of depth zero representations is already dealt with in [25], we assume moreover that 7
has positive depth. Thus 7 contains a skew simple character § of H' = H(3,A), for some
maximal skew simple stratum [A, —, 0, 3], with § # 0, and E = F[J] is a field. We write ©
for the endo-class of the unique self-dual simple character 8 which restricts to 6. We retain
all the notation of paragraph 4.1 so interpret simplicity as meaning that [ = 1 and drop the
index 1 for notation. We will be considering the space X = X!, while varying the self-dual
cuspidal representation p of GLp(WW) (and the space W). Note that we have Ey ~ E so we
will identify them.

For a self-dual cuspidal representation p of some GLp(W), recall that we write deg(p) =
dimp(W) and s.(p) for the unique non-negative real number such that the normalized
induced representation v°p x 7 is reducible. Then the description of the Jordan set in
paragraph 2.1 shows that, in order to prove 2.5 Theorem, the equality we must prove is

(5.1) D [sx(p)?] deg(p) = 2N,

p

where the sum runs over all self-dual cuspidal representations p with endo-class ©(p) = ©.

5.2. Recall that we have 7 = c-Ind§ )\, with A\ = k ® 7 and that p contains the maximal

simple type Ay = Eyw ® Tw and has unramified twist number #(p) = di:(lg)w

have written e(®) = e(©?) = ¢(E/F) since it depends only on the endo-class. Moreover,
by 3.14 Proposition, we have that the real parts of the reducibility points of the normalized
induced representation v°p x w are the elements of the set

ro+T  To—T1 }
+ , = ;
{ 2t(p) " 2t(p)
where, for ¢t = 0,1, the integers r, = r¢(egm, (Tw ® 7)) comes from the quadratic relations in
the finite Hecke algebra J€(G(M;,,,), €m, (T ® 7)) as in (3.5).

, where we

Remark. It will be crucial to note that the character ey, depends only on the dimen-
sion deg(p) = dimp(1V), and not on the representation p itself.

The contribution to the sum (5.1) of the inertial class [p] (that is, writing p/ = p™/#P)les@)
for the other self-dual representation in the inertial class, the combined contributions of p

and o) is 2 2
Krgt?pq)nl) ‘ " {(T;tzp?) ‘ '

From results of Lusztig (see [25, §8] and also paragraph 5.6 below), the numbers r,/t(p) are
either both integers or both half-integers so that this simplifies to

(5.2) E&;;ﬂ .
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5.3. In order to prove (5.1) we will need to recall Lusztig’s parametrisation of cuspidal
representations of classical groups, and the computation of the parameter r;, in the Hecke
algebra J(G(My,,), €m, (Tw ® 7)). We follow the description in [25, §§2,3,6 and, espe-
cially, 7], to which we refer for details and references for the assertions made here.

In almost all cases, we have
H(G M), €m, (T @ 7)) = A (G (Myo), €, (Tw @ 7°)),

where 7° is an irreducible component of the restriction Tgo(s, ), and it is here that we will
perform our calculations. In the exceptional cases we have r; = 0 and it will turn out that this
matches the formula one would obtain by following the recipe for computing the parameters
in the connected component G°(9M;,,,). Thus we will assume first that the calculation is to
be done in G°(M;,, ) and then, in paragraph 5.7, we will treat the exceptional cases.

5.4. Since P(A,,) is the normaliser of a maximal parahoric subgroup of the centraliser G,
we can decompose

go(AﬂE) = g(O)(A0E> x g(l)(AUE)
as a product of two connected classical groups over k% (the residue field of the fixed points E,

in £ under the involution on A). We have a similar decomposition of G°(9M,,,) with,
moreover,

g(l)(mIO,UE) = g(l)(AUE) and g(O) (gﬁl,UE) = g(O) (AUE)7
and the Levi subgroup
QN(AW,UE) X g(t)<A0E) = g(t) (g‘nt,ﬁE)'
We choose an irreducible component 7° of the restriction 7ige(s, ) and write it as 7O @M,

Writing the character ey, as egﬁvt ® 65();2 & ei(nlt)t, we have isomorphisms of Hecke algebras

%<go(mt,03)7 €, (%W ® To)) = %(g(t) (mt,OE)’ ESVJ[;z%W ® ES();I)tT(t))v

and it is in this Hecke algebra that we compute the parameter r;.

5.5. We now fix t = 0 or 1 so drop the sub/superscript ¢ from our notations for now. Thus
we have:

e a connected classical group G°(9M,, ) over k%, with Levi subgroup G(Aw.,e, ) X G(As,)
and G(Aw,,) ~ GL,,(kg), where m = dimpg(W);

e a self-dual cuspidal representation 7iy ® 7 of G(Aw,es) X G(Aoy);

e a character ) ® em of G(Aw,,) X G(A,,) of order at most two, which depends
on m = dimg (W) but not on 7y .

By Green’s parametrization (and after fixing an isomorphism G(Aw,,) ~ GLy(kg)), the
cuspidal representation 7y, corresponds to an irreducible monic polynomial @ € kg[X] of
degree m; moreover, this polynomial is kg/k9-self-dual, that is

QX) = (Q(0) ' X=9Q(1/X),
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where x — T is the automorphism of kg with fixed field k%, extended to k[ X ] coefficientwise
(see [25, §7.1]). Since a cuspidal representation 7y of G(Ayy,, ) is self-dual if and only if 7y el
is cuspidal self-dual, twisting by €y induces an involution on the set of irreducible kg/kS-
self-dual monic polynomials of degree m. We denote this involution by o, w; it is either
trivial, or given by Q(X) — (—1)48QQ(-X).

Similarly, by Lusztig’s parametrization, the cuspidal representation 7 lies in a rational
Lusztig series E(s) corresponding to (the rational conjugacy class of) a semisimple ele-
ment s of the dual group of G(A,,). Since its series contains a cuspidal representation, this
semisimple element s has characteristic polynomial of a particular form, namely

R(X) = [P0,

where the product is over all irreducible kg/k%-self-dual monic polynomials and the inte-
gers ap satisfy certain combinatorial constraints (see [25, (7.2) and §7.7]); more precisely,
we have:

e > rapdeg(P) is the dimension of the space V on which the dual group of G(A,,)
naturally acts;

o if either kg # k%, or P(X) # (X + 1), then ap = 5(b} + bp), for some non-negative
integers bp;

o if P(X) = X £ 1 then, writing ay := a(x—1) and a_ := a(x41), there are inte-
gers b, b_ > 0 such that

(1) if G(Aoy) is odd special orthogonal then a; = 2(b% + b, ) and a_ = 2(b% +b_),

(ii) if G(A,,) is symplectic then a;, = 2(b% + b, ) + 1 and a_ = 2b%,
(iii) if G(A,,) is even special orthogonal then a; = 2b% and a_ = 202,
and, in case (iii), the (£1)-eigenspace in V is an even-dimensional orthogonal space
of type (—1)%+, and the same in case (ii) for the (—1)-eigenspace only.

As above, twisting by the character ey will induce a degree-preserving involution on the set
of irreducible kg/k%-self-dual monic polynomials. If the character ey is trivial then this in-
volution is trivial. If the character egy is non-trivial quadratic then, by [14, Proposition 8.26],
twisting by ey induces a bijection between rational Lusztig series

E(s) — E(-s),

and the involution is given by P(X) — (—1)%¢PP(—X). In either case, we denote by o,, ¢
the involution induced by twisting by ey. (Note that this is a degree-preserving involution
on the set of all irreducible kg /k%-self-dual monic polynomials; the subscript m is included
to indicate that the involution depends on m.) The characteristic polynomial corresponding
to the cuspidal representation Tegy is then

[T POxFmmern,
P
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Putting together our two involutions, we get an involution on the set of irreducible kg/k$-
self-dual monic polynomials of degree m given by

Om = 0Om,G°OmWw-
5.6. Recall that the Hecke algebra 52 (G(M,,.), e T e ) is generated by an element 7~
satisfying a quadratic relation
(T —q'w)(T +w) =0,

where ¢ is the cardinality of the residue field of kz. The work of Lusztig, explicated in [25, §7],
allows one to write down explicitly the parameter r in terms of the characteristic polynomials
of the previous paragraph, as follows.

Let Q(X) be the irreducible kg/k9-self-dual monic polynomial of degree m corresponding
to Ty, and let Py(X) = [, P(X)* be the monic polynomial corresponding to 7, where
the ap are as described in the previous paragraph. Writing f for the degree of the exten-
sion kg/kp, one gets the following values:

o if kp = k% and 01(Q) = X — 1 then

f
o if kp = k% and 01(Q) = X + 1 then
T {21)_ + 1 if G is odd special orthogonal,

)20, if G is even special orthogonal,
2by +1 otherwise;

f 2b_ otherwise;
o if kp # k% or m is even then
r m
7 (2bon(@ + 1)

Note that, since t(p) = mf, the number r/t(p) is a half-integer, as asserted above. More-
over, r/t(p) is an integer precisely when F/E, is ramified and E/F is a maximal extension
(i.e. of degree dimp(WV)); in particular, this depends only on the polynomial @ (that is,
on Ty, so on the representation p) and not on either the representation 7 or on the involu-
tion oy.

5.7. In this paragraph, we treat the exceptional cases, where we do not have an isomor-
phism
(53) ‘%p(g(mt,ﬂE)7 €, (7~—W ® 7_)) = %(go(mt,ﬂpj)? Eam; (%W ® 7—0))7
According to the description in [27, §6.3], this occurs precisely when:
e FE/E, is ramified;
e dimg(W) = 1, so that 7y is a character of order at most 2;
e and either G(A,,) = G°(Ao,) or em,Tjgo(n,,) is reducible.
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We remark that e, 7jge(a, ) 1s reducible if and only if 7ige(s, ) is reducible.

In these cases, writing G°(M;,,) = GO(A,,) x GW(A,,), there is one value of t for
which G®(A,,) is an even special orthogonal group (for the other it is a symplectic group)
and it is precisely for this value of ¢ that we do not have an isomorphism (5.3) and we get
parameter r; = 1.

As above, we write 7Y ®@7M for an irreducible component of TIgo(Ao ), and write eoy, as e, ®
65()3011 ® 65(7}11 Writing Ps(X) = [[ P(X)* for the polynomial corresponding to the cuspidal

representation 7, the fact that it does not extend to the full even orthogonal group implies,
by [25, Proposition 7.9], that +1 are not roots of Pj, that is, a, = a_ = 0.

Since Ty is a character of order at most 2, the corresponding polynomial is Q(X) = X + 1.
In particular, since we have by = b_ = 0, the formulae of paragraph 5.6 are still valid, since
they too give r; = 0. Thus those formulae are valid in every case.

5.8. Finally, using the formulae of paragraph 5.6, we return to computing the contribu-
tion (5.2), so we retrieve the sub/superscripts t. We have:

e an irreducible kg/k$-self-dual monic polynomial Q(X), corresponding to the cusp-
idal representation 7y ;

e for t = 0,1, a polynomial [ [, P(X )“g) corresponding to the cuspidal representa-
tion 7

e for t = 0,1, an involution a,(ﬁ) on the set of irreducible kg/k%-self-dual monic poly-
nomials of degree m.

Suppose first that either kg # k% or m is even; then we get

(0) (1)
o+ 17 (200 * 1) + (20 + 1)?
2t(p)? 8

J

N[ =

1,0 (0) 1,(1) (1)
- [Ebaﬁfi)(@ (ba&?’(ca) * 1) + 5ba£é)(cz> (ba£i>(cz> + 1) +
_ (0 (1)

%@ T %D

If kp = k% then one of the groups G®(M,,, ) is symplectic while the other is orthogonal.

Here we can treat each case, each polynomial X + 1, and each possibility for the involu-

tions cr@, separately. Up to permuting {0, 1} we are in one of the following two cases:
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If G(A,,) is odd special orthogonal and GV(A,,) is symplectic, then the contribu-
tion of o’ (X —1)is

0 2 1 2
<2bé )+ 1) + <2b(+) + 1)

2

0 0 1 1 0 1
:2b§>(bg)+1)+2b9 (bi)+1>+1:a§)+ag>,

where ( is the sign defined by a§0)0§1)(X —1) = X — (; and the contribution of 051) (X +1)

1S
2 2
(2b(_°§ + 1) + <2b‘_”)

2

2
= 2°) <b(_°2 + 1) +2 (b&”) = a'% +a.

In particular, the sum of the contributions of X + 1 is
agf) + a(_o) + a(j) + a(l)

If GO(A,,) is even special orthogonal and G)(A,,) is symplectic, then the contri-
bution of 051)()( —1)is

2 2
(26) + (20 +1)
>

2
—2 <b§°)> + 20t (b(f) + 1) =al” +alV -1,

where ( is again the sign defined by U§O)U§1) (X —1) = X —(; and the contribution of ag) (X +
1) is

(zb(_ogf + <2b(_”)2 ) 2 1
5 =2<b(_02> +2<b( )> za(_(]2+a(_).

In this second case, the sum of the contributions of X + 1 is
a(f) +a + ag:) +a — 1;

the term —1 reflects the fact that the sum of the dimensions of the spaces on which the dual
groups of G®(A,,) act naturally is 1 more than the sum of the dimensions of the spaces
on which the groups G®(A,,) act naturally. Note also that this latter sum of dimensions
is precisely dimg(V'), where we recall that V' is the symplectic space on which our group G
acts.

5.9. Having computed all the contributions to the sum (5.1) in the previous paragraph,
we can now sum them over all possible ), noting that, if the cuspidal representation p
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corresponds to the polynomial @, then deg(p) = [E : Fldeg(Q). If kg # k9% this is
straightforward and we obtain

D lse(o)) des(o) = [£: F1Y (m 3 (al, +alih )

P m deg(Q)=m

—[E: F] <2 afy) deg(P) + Y ay’ deg(P)> — [E: F]dimg(V) = 2N,

as required. Here the penultimate equality occurs because each group G® (A, ») is a unitary
group (whose dual group is then a unitary group acting naturally on a space of the same
dimension), and the sum of the dimensions of the spaces on which they act is dimg(V).

If kg = kS, then we need to be a little more careful with the polynomials X + 1 (that is,
the kg /k$-self-dual monic polynomials of degree 1), as described at the end of the previous
paragraph. If one of the G®)(A,, ) is even special orthogonal (and the other symplectic) then

we get that 3 [sx(p)?| deg(p) is

[E: F] Z m Z (a%)(@ + afj%(@)) + agf) +a9 + @Srl) +aM —1
m=2 deg(@Q=m "

=[E: F| <Z a§3) deg(P) + Zag) deg(P) — 1) = [E: F]dimg(V) = 2N,

where the penultimate equality uses the fact that the dual of a symplectic group acts natu-
rally on a space of dimension 1 greater, while the dual of an even special orthogonal group
acts naturally on a space of the same dimension.

On the other hand, if one of the G®(A,,.) is odd special orthogonal (and the other symplectic)
then we get the same sum except without the term —1, and the penultimate equality uses the
fact that the dual of an odd special orthogonal group acts naturally on a space of dimension 1
smaller, while the dual of a symplectic group acts naturally on a space of dimension 1 greater.

This completes the proof of (5.1), whence of 2.5 Theorem.

5.10. The results in this section not only prove 2.5 Theorem but also give an algorithm
to compute the inertial Jordan set of a positive depth simple cuspidal representation of G.
(The case of depth zero is treated already in [25].) Moreover, 2.6 Corollary then gives the
inertial Jordan set for any cuspidal representation of G.

Indeed, suppose 7 is a simple cuspidal representation of G, induced from a cuspidal type A\ =
r®7. With the usual notation, let 7° be any irreducible component of the restriction of 7 to
the maximal parahoric subgroup P°(A,,). Then 7° is the inflation of a representation rO®
7 with each 7® a cuspidal representation of a finite reductive group over k%. These
each appear in some rational Lusztig series and we consider the set Q) of monic irreducible
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polynomials dividing the characteristic polynomial (over kg) of the corresponding semisimple
conjugacy class, for t = 0,1, all of which are ky/k%-self-dual. For each m € deg(Q®), we

compute the signature character egy,, and thus deduce the involution o) asin paragraph 5.5.
We set

Q={oV(Q)| Qe Q" deg(Q)=m, t =0,1}.

Now let © be the endo-class of the self-dual simple character lifting any skew simple character
in 7 and let Q € Q. We put n = deg(Q) deg(®) and let  be the unique (up to conjugacy)
m-simple character in GL,,(F) with endo-class ®? (in the language of [J], for example).
Let £ be the p-primary extension of 5, a representation of a group J. The group J / J!
is then a finite general linear group of rank deg(Q) over kg, and we let 7o be the unique
cuspidal representation in the Lusztig series corresponding to a semisimple conjugacy class
with characteristic polynomial (). Write [pg] for the inertial class of cuspidal representations
of GL,,(F') containing & ® 7.

The inertial classes in {[pg] | @ € Q} are precisely the inertial classes which will appear
in IJord(w). In order to compute the multiplicities with which [pg] appears, we follow
the recipe of paragraph 5.6 to compute the corresponding Hecke algebra parameters r
and r1, whence the real parts of the reducibility points |ro + r1|/(deg(Q)[kE : kr]) and the
multiplicities from Moeglin’s criterion. In the case that kg # k% or m = deg(Q) > 1, this is
straightforward, with the real parts of the reducibility points given by

bt + o) + o), — o)

o(Q Q) and oD@ W@

2 2

where ag) = %bg)(bg) + 1) is the power to which P divides the characteristic polynomial
corresponding to 7). By construction of Q, the first of these is certainly greater than %
In the case kg = k% and deg(Q) =1 (so that @ is X £ 1) there is no such simple universal
formula, and instead one must proceed in a case-by-case analysis as in paragraph 5.8. We
leave this as an exercise to the reader; a similar calculation is done in [25, section 8].

6. GALOIS PARAMETERS

In this section we study self-duality in terms of Galois parameters with a view, in particular,
to understanding the ambiguities in our results in terms of the local Langlands correspon-
dence.

6.1. We denote by F a fixed separable closure of F' and by Wy the absolute Weil group
of F' (with similar notation for intermediate fields). We would like to explore a self-dual
irreducible representation o of Wg, with a view to determining its parity (that is, whether
it is symplectic or orthogonal); in particular, we would like to know when the self-dual
irreducible representation ¢’ which is an unramified twist of (and not isomorphic to) o has
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the same parity as o, since it is in this case that we have ambiguity. For now, we do not
require p to be odd.

Let x be an unramified character of Wpr. Then (xo)Y is isomorphic to x oV, so, o being
self-dual, yo is self-dual if and only if %0 ~ o.

We let t(o) be the number of unramified characters n of Wy such that no ~ o — such
characters form a cyclic group. We deduce that the only unramified character twist ¢’ of o
which is self-dual but not isomorphic to ¢ is obtained as yo, where y is an unramified
character of order 2t(c). (If r = valy(t(c)), any unramified character of order 2"+ would do
equally well.)

Let E be the unramified extension of F' in F of degree t(c). Then o is induced from a
representation 7 of Wy; the restriction of o to Wg is the direct sum of the conjugates of 7
under Gal(E/F'), which are pairwise inequivalent. As o is self-dual, 7V is one of those
conjugates.

Assume first that 7 is self-dual — which, we remark, is necessarily true if ¢(o) is odd.
Since t(7) = 1, the unramified twist 7/ of 7 which is self-dual but not isomorphic to 7
has the form y7, where x is the order 2 unramified character of Wy, and it has the same
parity as 7. Since induction for self-dual representations preserves the parity, we deduce
that o and ¢’ share the same parity too.

Assume then that 7 is not self-dual. Then 7" is necessarily isomorphic to 77, where 7 is
the order 2 element of Gal(E/F'). Let E = E7, so that E/E is quadratic, and let T' be the
(irreducible) representation of Wi induced from 7. As 7v ~ 77, we see that 7T is self-dual.
Its restriction to Wg is 7 @ 7V, with 7 not isomorphic to 7V, so the Wg-invariant bilinear
forms on the space of T' form a space of dimension 2, with a line of alternating forms and
a line of symmetric ones. Each of these lines is invariant under Gal(E/F), one offering
the trivial representation, the other the order 2 character w of Gal(E/F). The self-dual
unramified twist 7" of T" which is not isomorphic to T is 7" = nT where 7 is unramified
of order 4, so that 7" ® T’ ~ wT ® T. From the previous analysis, we deduce that if T
is symplectic then 7" is orthogonal and conversely: T" and 7" have different parities. By
induction again we see that o and ¢’ have different parities.

6.2. Let us look at some special cases. Assume first that ¢ is tame. Then t(0) = dim(o).
Introducing F and 7 as in paragraph 6.1, we have that 7 is a character, regular under the
action of Gal(E/F). If 7 were self-dual it would have order 1 or 2, but any character of E*
of order 1 or 2 factors through Ng/p, hence can be regular under the action of Gal(E/F)
only if t(o) = dim(o) = 1, so E = F. Thus, apart from quadratic characters of Wg, tame
self-dual irreducible representations o of Wy have even dimension, and we can apply the
discussion of paragraph 6.1 to them, concluding that ¢ and ¢’ have different parities.
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6.3. We now assume that o is not tame, but we concentrate on our case of interest: that
is, we assume from now on that p is odd. We want in that case to spot when o and ¢’ have
the same parity, and then try to say whether they are orthogonal or symplectic.

Let us first analyse o. Its restriction to the wild ramification subgroup &p of W is non-
trivial, since o is not tame. Let v be an irreducible component of this restriction — so that
is not the trivial character of &r — and S = S, its stabilizer in Wr. Then by Clifford
theory o is induced from the representation of S on the isotypical component V(7) of « in
the space V of o.

Now by assumption o is self-dual, and so is its restriction to #Zr. But & is a pro-p-group
and p is odd, so no non-trivial irreducible representation of & is self-dual, and we see
that 7Y is not isomorphic to v. Thus there is g in Wg\S with 9y isomorphic to vY; the
coset ¢S is the same for all possible choices of g, and ¢® belongs to S, so S = S U ¢S is a
subgroup of Wy containing S as an index 2 subgroup.

To get o, we can first induce V() from S to S, and then from S to Wy. We shall prove
now that Indg V() is self-dual; its parity is then inherited by . This reduces the problem
to understanding the parity of Indg V(7).

6.4. To prove that Indg V(7) is self-dual, we take an abstract viewpoint:

Proposition. Let 4 be a group with a subgroup F€ of index 2, and let g € Y\ . Let (p,V)
be an irreducible representation of F. Assume that p is not self-dual, but that p¥ is equiv-
alent to 9p. Then Indffp 15 irreducible and self-dual. If dimV s odd, then Indﬁiﬂp 18
symplectic if and only if its determinant is trivial.

Proof. Since 9p is not isomorphic to p, the induced representation Indif p is irreducible,
and it is self-dual because (Ind%, p)¥ is isomorphic to Ind%, p¥ hence to Ind%, 9p, itself
isomorphic to Indif p. It Indiﬂ p is symplectic, then clearly its determinant is trivial. To
prove the converse statement when dim V is odd, we need to analyse the situation carefully.

Since p¥ is equivalent to 9p, there is a non-degenerate bilinear form ® : ¥V x ¥V — C such
that

®(hv, ghg ') = ®(v,v") for all he S v, v e V.

It is unique up to scalar. We claim that the form ¥, defined by ¥ (v,v’) = ®(v/, g%v) for v, v
in V, is proportional to ®. Indeed, for v,v" € V and h € 7, we find

U (hv, ghg™'v') = ®(ghg™'v', g* ) = ®(v', g*v) = U (v,').
Writing ¥ = A® with A € C*, we compute
D(v',v) = B(g, %) = W(v, ¢20') = AD(v, ) = NI (W, 0) = X0 (0, v)

for v,v" in V so that A> = 1. We shall see that the parity of Indfff p is governed by the
scalar .
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On the space V @ V equipped with the representation p @ 9p, there is an J#-invariant
symplectic form f, unique up to scalar, which we can take to be

f : ((1)171}2)7 (wlva)) I (I)(Ulaw2) - (I)(wl,?)g).
The space of Indif p can be taken as V@V where 5 acts as p@ 9p and g acts via

9(“1702) = (0279201)-

Since ®(vq, g*v1) = W(vy,v9) = A®(vy,v5), we get that g acts on f by multiplication by —A,
SO Indff p is symplectic if and only if A = —1.

Let us choose a basis (e1,...,e4) of V, where d = dimp. Then ®(vy,v9) = (*x1)HxXs,
for v1,v9 € V with coordinates given by x;,x, € C? respectively, and H the d x d Gram
matrix of ® in the basis. If My is the matrix of p(g?) we get ®(ve, g%v1) = ("x2)H M 2x,
from which we deduce that HM_, = A(*H), which implies that det p(¢g?) = A%

Now det(Ind?, p) is an order 2 character of & which is trivial on .#; in fact it is given by
(det p o Ver) wdims

where Ver : 4 —— @2 —— #°P is the transfer and w is the non-trivial character of ¢
trivial on 7. In this special case where . has index 2 in ¢, the transfer map Ver is trivial

on ¢ and sends g to g2, so det(Ind?%, p(g)) = (=\)%

When d is odd, we find that Indff p is symplectic if and only if its determinant is trivial, as
desired. 0

Remark. When d is even, Indif p always has trivial determinant, regardless of its parity.
Determining the parity amounts to computing the scalar \.

6.5. We revert to the context of paragraphs 6.1-6.3. We want to spot the cases where o
and ¢’ (in the notation of paragraph 6.1) have the same parity, and in those cases possibly
apply 6.4 Proposition to determine that parity. For that we have to analyse the situation
further.

It is known (see [9, 1.3 Proposition]) that v extends to a representation I' of S = S, and
we can even impose that det I' have order a power of p; then I' is unique up to twist by an
unramified character of S, of order a power of p. Since 97 is equivalent to 7", we see that 9I°
is equivalent to xI'V where y is an unramified character of S of order a power of p. Such
a x has a unique square root n with order a power of p and replacing I' with 77 'T", we may
— and do — assume that 9" ~ ['V. This now specifies I' completely.

As a representation of S, the space V(7) is a tensor product I'® §, where § is an irreducible
representation of S trivial on &p, well-defined up to isomorphism. Since 9V(y) ~ V(v)" as
representations of S, we get that 96 ~ §V.

Let K be the fixed field of S, and K that of S; thus the extension K /.f( is quadratic, in
particular tame. Writing d = dim J, the representation ¢ is induced from a character « of
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the unramified degree d extension K, of K in F, with o tamely ramified and regular under
the action of Gal(K,;/K); this character « is determined up to the action of Gal(K,/K).

In those terms, we try to see when o and ¢’ have the same parity; that is, writing o = Ind 7
as in paragraph 6.1, where 7 is a representation of Wg with F/F unramified of degree t(o),
we want to know if 7 is self-dual. Note that t¢(V(v)) = d, so t(o) = df (K /F), where f(K/F)
is the inertia degree of K/F. The extension K;/E is totally tamely ramified, and we can
take 7 to be Ind(I' ® o) where the induction is from Wy, to Wg (and we first restrict I'
from S to Wg,).

6.6. The following result describes when o, ¢’ have the same parity.

Proposition. Let o be a self-dual irreducible representation of Wr. Assume o is not tame,
and adopt the above notation. Then the following are equivalent:

(i) o and o' have the same parity;

(i) K/K is ramified and d = 1.

When these conditions are satisfied, o and o' are symplectic if and only if the character «
15 ramified.

Remark. When d = 1, we see that « is a tame character of K* which satisfies 9o = o~ .
It K /[N( is ramified, g acts trivially on the residue field of K, and oy, has order 1 or 2.
In that case, let @ be a uniformizer of K with w? € K; then the condition 9o = o
translates into a(—w?) = 1: either « is unramified of order 1 or 2 or oz« is the quadratic

character wy i defining K.

Proof. To prove the proposition, we need to see when 7 = Ind%f{d(T ® «) is self-dual.
The restriction of I' ® a to HFr is 7, so 7 can be self-dual only if there is h in Wg such
that v ~ 94 — that is h € ¢S, or equivalently Wg n S # Wg n S. Recalling that F is
the maximal unramified extension of F' in K4, we see that the fixed field of Wg n S is Ky;
if K/K were unramified, the fixed field of Wy n S would also be Ky, so that 7 could not be
self-dual.

Thus, if 7 is self-dual then K /f( is ramified and we take ¢ in Wz n S. Reasoning as in
paragraph 6.3 and using 6.4 Proposition, we see that 7 is self-dual if and only if '®« induces
to a self-dual representation of Wy , where K, is the fixed field of g in K (so that Kd/f(d
is quadratic ramified); in particular we then have 9(I' ® a) ~ (' ® a)¥. Since 9" ~ T'V
by construction, this implies 9a = o~ and since K;/ K, is ramified, g acts trivially on the
residue field of Ky so ay,, has order 1 or 2 and regularity with respect to Gal(K/Kq)
implies d = 1. Thus if 7 is self-dual then d = 1, which proves (i) = (ii).

Conversely if (ii) is satisfied then 7 is self-dual if and only if a = a~! by the above analysis,
which gives (ii) = (i).
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Assume finally that conditions (i) and (ii) are satisfied. Using again 6.4 Proposition, we
have to check whether the determinant of IndW (I' ® o) — which by self-duality has order 1

or 2 — is trivial. Seeing that determinant as a Character of K* (via class field theory), it is
equal to

v =det(I'® @) zx (wK/f()dimT

But det I" has order a power of p and p is odd, and « has order at most 4 (cf. the remark
above) so we find v = (a‘KXwK/K)dimV. If o is unramified then v = wy g (since dim+y is
odd) is non-trivial; if « is ramified then oz« = wy z by the remark and v is trivial. The
final claim of the proposition now follows from 6.4 Proposition. U

6.7. Now we interpret the conditions of 6.4 Proposition in terms of the cuspidal represen-
tation p of GL,(F'), with n = dim o, which corresponds to o under the Langlands corre-
spondence. To describe this representation p we will use the machinery of the construction
of cuspidal representations as in §1.

Assume o is not tame, i.e. p is not of depth zero. Then p contains a simple character 9~,
belonging to a set of simple characters built using an element § € GL, (F') which generates
a field F[5]. We have n = d[F|[f] : F], so that d is determined by p. Moreover the
extension K /F which appears above in the discussion on the construction of ¢ is isomorphic
to the maximal tame subextension L/F of F[S]/F (see [9, Tame Parameter Theorem]).

When p — equivalently o — is self-dual, we can choose [ such that the self duality comes
from an automorphism = — Z of F[3], sending 3 to —3, and 0 to 6= (see [3, Theorem 1]).
That automorphism induces an order 2 automorphism of L; let L be its fixed field.

Proposition. The extensions K/K and L/L are isomorphic.

Thus condition (ii) in 6.6 Proposition can be translated in terms of p. See below (para-
graph 6.8) for a translation of the last assertion of loc. cit..

Proof. The proof relies on the compatibility of tame lifting of simple characters with the
induction process for Weil group representations [7, 5, 9]. Choose an isomorphism ¢ of K/F
onto L/F.

The representation ok of Wi on V(o) corresponds to a (cuspidal) representation py, of GL,,(L),
where m = d[F[#] : L]; the simple character 8, appearing in py, is an L/F-lift of § and L/F
is the maximal tame extension such that 6 has a lift to GL{pa1:1(L).

If K’ is intermediate between F and K, and L' = (K’ ), then oy = IndWK’ V(o) corresponds
to a (cuspidal) representation prs of GLy (L), with m’ = d[F[S] : L'], and the simple char-
acter 0 appearing in py, is an L'/F-lift of 0 and lifts to 0, in L/L’. But K is the maximal
intermediate subfield K’ such that oy is self-dual. Because the Langlands correspondence
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is compatible with taking contragredients, the field WK ) is the maximal field L’ interme-
diate between F and L such that 6, is self-dual (i.e. conjugate to 67} in GLr81.0(L)).
Thus «(K) = L. O

6.8. Now assume that d = 1 and L/L (or equivalently K/K) is ramified. We want to
express the condition that « is ramified in 6.6 Proposition in terms of p. For that we have
to review a little bit the construction of p from # from Section 1, whose notation we use.

We also continue with the notation for p introduced in the previous paragraph. Recall
that, since d = 1, we have n = [F[8] : F/|]. The simple character 0 is a character of H'
and we have the open subgroups J-, ', J of GL, (F'). We write 7 for the unique irreducible
representation of J! containing 6. Then J=U F[3 jl and, by the Types Theorem [9, 7.6
Theorem], there is a unique beta-extension & such that tr k is constant on the roots of unity
of F[5] of order prime to p which are regular for the action of Gal(K,,/F), where K, is the
maximal unramified extension of F'in K. Moreover, the same result gives that p contains the
representation & ® wa of J, where a is seen as a character of J/J' ~ Up(g)/Ups ~ U /Uy
and w is the order 2 character of Ur(g

Thus we conclude that p is symplectic when p contains &, and is orthogonal when p con-
tains wk.

6.9. We have discussed at length above the ambiguity between o and ¢’ inherent to our
method — of course when o and ¢’ have different parities it is the orthogonal one that
features.

Let us now briefly mention a few favourable circumstances when our methods do allow us
to determine completely the parameter of a cuspidal representation m of Spyy (F).

Since the parameter ¢ of 7 is orthogonal of dimension 2N + 1, one irreducible component
must have odd dimension. But in our case where p is odd, the only irreducible orthogonal
representations of Wy with odd dimension are the four quadratic characters of Wr. Thus
at least one of them, say w, has to occur in the parameter, and if the Jordan block it
belongs to is (w,m) then m has to be congruent to 1 (mod 4), to yield an odd-dimensional
contribution to ¢; the contribution to the determinant is then w. We then see that if we
know all other components, then we can decide between w and w’ by taking into account
the condition det ¢ = 1. To know all the other components o, it is necessary that for each
of them, o and ¢’ have different parities. We conclude that it will be rather rare that we
determine ¢ without ambiguity.

Let us give just a few examples in low dimension. See [25] for a discussion of depth zero
cases.

N =1, SLy(F)

The parameter is either p @ w with p irreducible orthogonal of dimension 2 and w = det p,
or wi; @ wy @ ws where the w;’s are the non-trivial quadratic characters of Wr. In terms
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of homomorphisms Wr —> SO3(C) ~ PGLy(C), the second case corresponds to a triply
imprimitive representation of Wg, the first case to a simply imprimitive one [$]. In the first
case, our methods allow us to determine p only if it is induced from the quadratic unramified
extension of F (i.e., in fact, when w is unramified of order 2).

N = 27 Sp4(F)

There has to be a quadratic character w of Wy occurring with Jordan block (w, 1) only.
If another quadratic character n occurs, the Jordan block can be (n,1) or (n,3). In the
latter case ¢ = w ® 1 @ n ® Stz and the determinant condition implies that w is trivial
and consequently that n is not trivial. If our computation shows that both 1 and the
non-trivial quadratic unramified character w,, occur, then the parameter is necessarily ¢ =
1wy, Bwn,®Sts; if, on the contrary, our method gives that a ramified quadratic character n
occurs, then we cannot distinguish between 1 and 1’ = nw,,..

Let us look at the case where two distinct characters w,  occur with Jordan blocks (w, 1)
and (n,1) only. Then a third character, v say, must also occur and ¢ = W AN DV D p
where p is irreducible orthogonal of dimension two. The determinant of p is the quadratic
character wg/r defining the extension from which p is induced so that the determinant
condition on ¢ is wnrwg/r = 1.

When E/F' is unramified, there is no ambiguity in p in our computation, and the parameter
is
¢p=1Op®u dp

where p, y/ are the two ramified quadratic characters of Wg.
When E/F is ramified, the parameter could be

¢ =1 @ Why @ wner/F ® P or gb =1 ® Whr @ Wner/F @ Pl
and we cannot resolve the ambiguity between p and p'.

Finally if there is only one quadratic character w of W occurring in ¢, we can compute w, and
thus determine ¢ completely, only if the other components (necessarily even-dimensional)
offer no ambiguity.

We hope to come back to the case of Sp,(F') in a sequel to this paper, where a refinement
of our methods will allow a more complete determination of ¢.

7. LANGLANDS CORRESPONDENCE AND RAMIFICATION

In this final section we interpret our results on the endoscopic transfer map in terms of the
Langlands correspondence for G. In particular, we prove a Ramification Theorem for the
symplectic group G, giving a bijection between self-dual endo-classes and self-dual orbits of
irreducible representations of the wild inertia group & which is simultaneously compatible
(in a suitable sense) with the Langlands correspondence for symplectic groups over F' in all
dimensions.
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7.1.  We first recall the Ramification Theorem for general linear groups, from [6, 8.2 The-
orem| (see also [9, 6.3 Theorem]). Recall that £(F) denotes the set of endo-classes over F.
We write Wg\ Irr(Zr) for the set of Wg-orbits of irreducible representations of Zp. By
abuse of notation, we will identify such an orbit with the direct sum of the inequivalent
irreducible representations in the orbit; thus, for v an irreducible representation of #r with
stabiliser S, we identify its Wg-orbit [y] with By, s ?7. In particular, we can then talk of
the dimension of an orbit.

Given an irreducible representation of Wg, by Mackey theory its restriction to & is a mul-
tiple of a single Wg-orbit of irreducible representations, so we get a natural map Irr(Wg) —
We\ Irr(PF), which is surjective.

Theorem. There is a unique bijection E(F) — Wp\Irr(Pr), © — [v(O)], which is com-
patible with the local Langlands correspondence:

U Cusp(GL,(F)) —— Irr(Wr)

= i

E(F) —— Wp\ Irr(Pr)

Moreover we have deg(®) = dim[y(©)].

7.2. Now we consider how this bijection behaves with respect to duality. Recall that we
write £¢(F) for the set of self-dual endo-classes; that is, those endo-classes © for which
there is a self-dual simple character 6 with endo-class ©. If the endo-class is non-trivial
then 6 is associated to a skew simple stratum [A, —, 0, §] and the associated field E = F[f]
has degree n over F' and is equipped with a Galois involution with fixed field E,. If ©® is
the trivial endo-class then we have £ = E, = F'.

It will be useful to have the following result, which guarantees the existence of self-dual
cuspidal representations of general linear groups with given (self-dual) endo-class.

Lemma. Let © be a self-dual endo-class and E/E, as above. Let m be an integer which is

(i) odd, if E/E, is unramified quadratic,
(ii) 1 or even, if E/E, is ramified quadratic,
(iii) even, if E = F,

and put n = mdeg(®). Then there are (at least) two inequivalent orthogonal self-dual
cuspidal representations of GL,, (F') with endo-class ©, and two inequivalent symplectic self-
dual cuspidal representations of GL,(F') with endo-class ©.

Note that, in the case that ' = F' (so © is trivial) and m = 1, there are four inequivalent
self-dual (cuspidal) representations of GL;(F) with endo-class © but all four are orthogonal;
they are the four quadratic characters.
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Proof. Suppose first that © is non-trivial. Let 0 be a self-dual simple character with endo-
class ©, as above, with associated skew simple stratum [A,—,0,8] and E = F[]. Then
any transfer (in the sense of simple characters) of 6 is also self-dual, by [34, Corollary 2.13].

Let m be an integer as in the hypotheses of the lemma and let f be a non-degenerate skew-
hermitian form on an m-dimensional E-vector space V such that the associated unitary
group (a group over Fj,) is quasi-split. We write 0%, for the ring of integers of E, and p%,
for its unique maximal ideal, with k% the residue field. Fix A, an F-linear form on E, such
that {e € F, | Ao(€0%) S pp} = p%, and consider the form h = X\;otrg g, of on V. Thinking
of V' as an n-dimensional F-vector space, this is a nondegenerate alternating form. We take
the transfer 6,, of 8 to the unique (up to conjugacy) self-dual og-lattice chain A,, on V' such

that A, (0) # A, (1). Thus 6 is a self-dual simple character of endo-class ©.

Denote by k&, the unique p-primary extension of 0., and denote by J,, the group on which it
lives; then, by uniqueness, &,, is self-dual (that is, invariant under the involution ¢ defining
the symplectic group Spp(V)). Now £, extends to a representation K, of E*.J,, with
determinant a power of p and any two such extensions differ by an unramlﬁed character of
order a power of p. In particular, IC o ¢ is another such extension so has the form IC X,
for y unramified of order a power of p. Since p is odd, x has a unique square root x’ of order
a power of p, and then we can replace Km by &m ® x’, which is self-dual.

Now we consider the quotient .J,,/J. ~ P(Amoy)/P (Amoy) =~ GLp(kg). The involu-
tion o also acts here, with fixed points a unitary group if E/FE, is unramified and a sym-
plectic group if F/E, is ramified (in the latter case, it is symplectic rather than orthogo-
nal because A,,(0) # A,,(1)); the action of o is conjugate to the map transpose-inverse-
Gal(kg/k%)-conjugate. The conditions on m are then precisely those required for the ex-
istence of a Gal(kg/k$)-self-dual cuspidal representation 7 of GL,,(kg) (that is, such that
the Galois conjugate of 7 is equivalent to 7¥) — see [I, Theorem 7.1] in the case kg = k%,
and [22, Corollary 5.8] in the case kg # k9,.

Let w be a quadratic character of F, necessarily tame since p is odd. We also write w for the
character of kj, induced by restricting w; then the representation 7w is also Gal(kg/k%)-self-
dual. We inflate 7w to jm and extend to a representation 7; of £~ jm by setting ﬁ(wE) =
w(wg)lds,, for wg a fixed uniformizer of E such that g = (—1)*¥/P)wy, where v —
T denotes the generator of Gal(E/E,). This representation 7, is then self-dual, that is,
equivalent to 7, o o.

Finally, the representation p, = c—Inng;"J IC ® T, is then irreducible and cuspidal, and

equivalent to p,0o. Since the involution o is a conjugate of the involution transpose-inverse,
by a theorem of Gelfand-Kazhdan [16, Theorem 2], the representation p, o ¢ is equivalent
to p-

Thus we have constructed four self-dual cuspidal representations p,, of GL,,(F') with endo-
class ©®, and it remains only to see that two are orthogonal and two symplectic. Note that p,
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and p,, are unramified twists of each other if and only if w™'w’ is the non-trivial unramified
quadratic character wy,. If either m > 1 or E/E, is unramified then, by 6.6 Proposition
and 6.7 Proposition, the representations p, and its self-dual unramified twist p,.,,. have
opposite parities so we are done. (Note that, writing L for the maximal tame subextension
of E/F and L, for that of E,/F, we have that L/L, is ramified if and only if E/E, is
ramified, since p is odd.)

On the other hand, if m = 1 and E/E, is ramified then we are in the situation of para-
graph 6.8, and the argument there explains that one pair p,, pu.w,,, consists of two orthogonal
representations, while the other pair consists of two symplectic representations, as required.

We are left with the case that © is the trivial endo-class and m is even. The existence
of self-dual cuspidal depth zero representations is [, Theorem 7.1] and the argument that
there are (at least) two orthogonal and two symplectic is formally exactly as in the previous
case, with K the trivial representation. Il

We say that an orbit [y] in Wg\ Irr(PF) is self-dual if it is self-dual when considered as a rep-
resentation of Zg; that is, if there is g € Wy such that 4¥ ~ 9y. We write (Wg\ Irr(225))™
for the set of self-dual orbits. Then we have:

Proposition. The bijection of 7.1 Theorem restricts to a bijection
(7.1) EN9(F) — (Wg\Irr(2p))™.

Proof. Let v be an irreducible representation of & and put n = dim[y]. Suppose that [v]
is a self-dual orbit and let g € Wy be such that 9y ~ v¥. Then, as in paragraph 6.5, there
is a unique irreducible representation I' of the stabilizer S of + such that det ' has order
a power of p and 9I" ~ I'V. Then the representation IndgVF ' is irreducible self-dual so the
corresponding cuspidal representation p of GL,(F) is also self-dual. By [3, 2.2 Corollary]
(see also [17, p.10]), p contains a simple character with self-dual transfer to GLg,(F), so the
endo-class ©(p), which corresponds to [y] by 7.1 Theorem, is self-dual.

Conversely, let © be a self-dual endo-class and put n = deg(©®). By the lemma, there is a
self-dual cuspidal representation p of GL, (F) with endo-class ®. Then the corresponding
irreducible representation of W is self-dual so the orbit in its restriction to &r is also
self-dual, as required. O

7.3. We now introduce the notion of wild parameter.

Definition. A wild parameter (over F) is a finite-dimensional semisimple complex rep-
resentation V of #r such that 9V ~ V, for all g € Wp. We write W(F) for the set of
equivalence classes of wild parameters over F, and W, (F) for the set of equivalence classes
of n-dimensional wild parameters over F.

Equivalently, we can think of an element of ¥,(F) as the GL,(C)-conjugacy class of a
homomorphism ¢ : #r — GL,(C) for which there exists A € GL,(C) such that ¢y o Ad g =
Ad Ao, for all g e Wp.
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Thus a finite-dimensional semisimple complex representation V of #r is a wild parameter
if and only if, when we decompose it into its isotypic components V = (—B,yelrr([%) V(vy), we
have

dimV(y) = dim V(%y), for all g € Wk.
Therefore a wild parameter is equivalent to

@ mpy ],

Wp\Irr(ZF)

where we are thinking of the orbit [v] as the sum over the Wg-conjugates of v € Irr(p),
and mp,) € Zxo.

Equivalently, the n-dimensional wild parameters are precisely the restrictions to & of
the Langlands parameters for GL,(F); that is, writing ®,(F) for the set of admissible
homomorphisms ¢ : Wr x SLy(C) — GL,(C) up to conjugacy, and ®(F) = |-, ®n(F),
the natural map
O(F) — U(F)

induced by ¢ — ¢4, is surjective. Indeed, by taking direct sums one need only check that,
for any v € P, there is a Langlands parameter ¢ whose restriction to & is isomorphic
to [y]. This, however, follows from the discussion in paragraph 6.5: v extends to a rep-
resentation I' of its stabiliser S, by [9, 1.3 Proposition|, and then Ind?:F I is the required
Langlands parameter (with trivial SLy(C) action).

Recall from paragraph 2.7 that an endo-parameter of degree n over F' is a formal sum
Y me®, me€Zso, suchthat ) medeg(®)=n.
Qct Qct

We write &, (F) for the set of endo-parameters of degree n over F. Then the Ramifi-
cation Theorem for GL,, (7.1 Theorem) together with the compatibility of the Langlands
correspondence with parabolic induction immediately give:

Theorem. The bijection of 7.1 Theorem induces, for each n, a bijection E€,(F) — U, (F)
which is compatible with the Langlands correspondence:

~

I (GL, (F)) —> &, (F)

i i

En(F) —— Un(F)

7.4. Now we turn to the case of the symplectic group G and recall Arthur’s local Langlands
correspondence in this case.

We denote by ®(G) the set of Langlands parameters for G, that is, the set of conjugacy
classes of homomorphisms ¢ : Wg x SLy(C) — SOyn41(C) such that the representation
obtained by composing with the natural inclusion map ¢ : SOgn,1(C) — GLoy;1(C) is
semisimple.



JORDAN BLOCKS OF CUSPIDAL REPRESENTATIONS OF SYMPLECTIC GROUPS 59

We denote by ®9¢(G) the set of discrete Langlands parameters, that is, those whose image is
not contained in a proper parabolic subgroup of SO,y 41 (C); equivalently, to¢ is a direct sum
of inequivalent irreducible orthogonal representations of Wg x SLy(C) and has determinant 1.
Thus, given ¢ a discrete Langlands parameter, the representation ¢ o ¢ decomposes as a
multiplicity-free direct sum

(7.2) P 0; @ St

el
where St,,, denotes the unique m-dimensional irreducible algebraic representation of SLy(C),
for m > 1, and the o; are irreducible self-dual representations of Wg, such that

® >y midim(o;) = 2N + 1,
e 0; is symplectic if m; is even and orthogonal if m; is odd,
* Hie[ det(0i>mi =1

We say that a discrete Langlands parameter ¢ is cuspidal if, whenever o ® St,, is a sub-
representation of ¢ o ¢ and m > 2, the representation o ® St,,_o is also a subrepresentation
of 1 o ¢. We denote by ®P(G) the set of cuspidal Langlands parameters.

As usual, for ¢ a discrete Langlands parameter, we denote by .7, the group of connected
components of the centralizer in SOy, 1(C) of the image of ¢. This is a finite product of
copies of the cyclic group of order 2; if 1o ¢ decomposes as in (7.2), then .4 has order 2#/~1.

Theorem ([2, Theorems 1.5.1 and 2.2.1], [28, Theorem 1.5.1]). Suppose that F is of charac-
teristic zero. There is a natural surjective map from the set of discrete series representations
of G to ®9¢(Q) with finite fibres, characterised by an equality of stable distributions via
transfer to GLaoy,1(C). Moreover:

e the fibre of ¢ € ®U¢(QG) is in bijection with the set of characters of Sy;

o the fibre Iy of ¢ € ®4(G) contains a cuspidal representation of G if and only if ¢
is cuspidal, in which case 11, N Cusp(G) is in bijection with the set of alternating
characters of .

We do not recall the definition of alternating character (see [28, §1.5]) but only recall that
if, for ¢ a cuspidal Langlands parameter as in (7.2), we set Iy = {o; | o; is orthogonal},
then there are 2#/0~1 alternating characters of .. (Note that I is non-empty, since one of
the o; must be a quadratic character.) In particular, the L-packet of a cuspidal Langlands
parameter ¢ consists only of cuspidal representations if and only if m; = 1, for all i € I (in
the description (7.2); that is, each self-dual irreducible representation of Wy which appears
in ¢ is orthogonal and appears with multiplicity one. In this case, we say that ¢ is reqular.

7.5. We say that a wild parameter V is self-dual if it is self-dual as a representation of Zp,
in which case det(V) is trivial (since p is odd).

Given a self-dual wild parameter, we would like to see that there is a unique choice of
orthogonal structure on it. This is indeed a special case of the following result on the
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existence and uniqueness of orthogonal structures on self-dual representations of groups of
odd order.

Proposition. Let ¥ be a finite group of odd order and let V be a finite dimensional complex
representation of . If V is self-dual, then V is orthogonal: there is on V a ¢ -invariant
non-degenerate symmetric bilinear form; moreover such a form is unique up to the action

of Auty (V).

In other words, a self-dual representation of ¢ is underlying a unique (up to isomorphism)
orthogonal representation.

Proof. As ¢ has odd order, the only self-dual irreducible representation of ¢ is the trivial
representation lg. For an irreducible representation v of ¢, let V(v) be the 7-isotypic
component of V, and put V, = Homg(, V), so that V() decomposes canonically as y® V,.
Then V is self-dual if and only if V, and V,+ have the same dimension for all .

Assume V is self-dual. For any ¢-invariant non-degenerate symmetric bilinear form on V,
we can write V as the orthogonal direct sum of its subspaces V(1) and V(v) @ V(y"), for v
running through a set of representatives of the non-trivial irreducible representations up
to contragredient. On V(lg), where ¢ acts trivially, there is a non-degenerate symmetric
bilinear form, unique up to the action of Aut(V(1g)).

Therefore, for existence and uniqueness, it is enough to consider the case where V = V(v)®
V(v"), for some non-trivial 7. Then the dual of V(7) is vV ®(V,)*, whereas the dual of V(v")
is v ® (V,v)*. An isomorphism j : V — V" (that is, a self-duality on V) is the direct sum
of Id,®1 and Id,w ®1', where i is an isomorphism of V, onto (V,v)*, and i’ an isomorphism
of V,v onto (V,)*. The self-duality is orthogonal if and only if ¢ and ¢’ are transpose to each
other.

Obviously there exists then an orthogonal structure on V, and moreover all such structures
are given by the choice of i (with ¢ its transpose). Since Autg()), which is the prod-
uct Aut(V,) x Aut(V,v), acts transitively on the set of ¢, we have uniqueness too. O

7.6. Now let V be an n-dimensional self-dual wild parameter over F'. By 7.5 Proposition, V
then carries a Zp-invariant nondegenerate symmetric bilinear form, unique up to the action
of Aut», (V). Thus we can regard V as a homomorphism ¢ : Zr — SO(V) ~ SO, (C).

For v € Irr(PF), we write V[v] for the component of V corresponding to the orbit of v
under Wp; that is V[v] = X i, V(7). We consider the stabiliser in SO(V) of the self-dual

decomposition
V=D Vhl
Wp\Irr(ZF)
and say that V is discrete if this stabiliser is contained in no proper Levi subgroup of SO(V).
Equivalently, the self-dual parameter V is discrete if and only if every orbit [y] in the support
of V (that is, such that V[7] is non-zero) is self-dual.
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We write WSd(F) for the set of equivalence classes of discrete self-dual n-dimensional wild pa-
rameters over F'. Note that the restriction to & of any discrete Langlands parameter for G
is a discrete self-dual wild parameter of dimension 2N + 1, which explains the nomenclature.

Recall also that we have the set &¢(F) of self-dual endo-parameters of degree n over F,
which consists of those endo-parameters of degree n with support in the set £54(F) of self-
dual endo-classes. Then we have the following Ramification Theorem for G.

Theorem. The bijection (7.1) induces, for each N > 1, a bijection EEXN(F) — W 1 (F)
which, when F' is of characteristic zero, is compatible with the Langlands correspondence for
cuspidal representations of G:

Cusp(G) ——= OP((3)

i |

EESN(F) ——= Wiy (F)

The induced bijection &5 (F) — Ui, (F) is not as obvious as in the case of general linear
groups. If we denote the bijection (7.1) by © — [7(©)] then the induced map is

(7.3) Y me® — 1y, & P me[y(0%)].

We remark also that this Theorem asserts that the restriction map ®“(G) — U5 (F)
is surjective, so that every discrete self-dual wild parameter of dimension 2N + 1 occurs as
the restriction of not only some discrete Langlands parameter for G but of some cuspidal
parameter. In fact, we show that it occurs as the restriction of a regular parameter (i.e. one
whose L-packet consists only of cuspidal representations).

Proof. Since the only irreducible self-dual representation of Zr is the trivial representation
(so the only odd-dimensional self-dual class [7] is that of the trivial representation), while
the squaring map on endo-classes is a bijection (since p is odd), it is clear that (7.3) defines a
bijection. Its compatibility with the Langlands correspondence is now just a reinterpretation
of 2.8 Theorem, using 7.3 Theorem.

It remains to prove that the vertical maps are surjective. We prove that the map on the right
is surjective, and then surjectivity on the left follows. So let V = @ m,[7] be a (2N + 1)-
dimensional self-dual wild parameter (where the sum is over the Wy orbits in Irr(Zr) as
usual). We will define a regular Langlands parameter o = @ o[v] for G such that o[y]
restricts to V[v] = my[v].

Let v € Irr(#r) be a non-trivial representation. If mp,) = 0 then we put o[y] = {0} so
assume mp, > 0, in which case the orbit [] is self-dual. Let © be corresponding (self-dual)
endo-class and let E/E, be the quadratic extension associated to a skew simple stratum
which has a simple character with endo-class ®. We pick non-negative integers my, mo
with m; + my = my,) such that:
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(i) my, my are odd or 0 if F/FE, is unramified;
(ii) mq, my are even or 1 if F/E, is ramified.

For i = 1,2 we put n; = m;deg(®). Then, by 7.2 Lemma, there exist inequivalent or-
thogonal self-dual cuspidal representations py, po of GL,, (F), GL,,(F) respectively, both
with endo-class ©. Let 01,09 denote the corresponding Langlands parameters, which are
orthogonal and, put o[y] = 01 @ 09; then the restriction of o[v] to Pr is V[7v], as required,
by 7.1 Theorem.

Finally, put m = mp op] — 1 which is even. By 7.2 Lemma, there is an orthogonal self-dual

depth zero cuspidal representation of GL,,(F'), and let 0 be the corresponding representation
of Wr. We put 0[l»,] = d @w, where w = det(d) [ [ det o[~].

N# 2]

Then o = P, o[7] is aregular cuspidal Langlands parameter for G which restricts to V. U

7.7. In the proof of 7.6 Theorem we saw that, for any self-dual wild parameter V of odd
dimension, there is a regular Langlands parameter for G which restricts to V. As well as
this, one can (in general) cook up other examples of Langlands parameters which restrict
to V and are highly irregular. Since we find it amusing, we include here a description of how
to find a highly irregular Langlands parameter which restricts to V.

We begin with the following observation, which is just the translation of 7.2 Lemma (with m =
1) to Galois representations. Suppose v € Irr(Zp) is non-trivial with self-dual Wg-orbit.
Then there are four self-dual representations of Wr whose restriction to &r is [v], two
of which are orthogonal and two of which are symplectic. We write 0,1, 0,2 for the two
orthogonal ones, and o0 3, 0,4 for the two symplectic ones.

Now we decompose V = @ my,[7] as above. As before, we will define a Langlands param-
eter o = @ o[y], with o[v],2, = my[y]. We will obtain a parameter which is not regular

whenever either myi,, ;> 3 or my,; > 1, for some non-trivial self-dual [v]-

By Lagrange’s 4-squares theorem, we can find non-negative integers such that
dmpy +2 = ai + a3 + a3 + aj.

Moreover, two of the a; are even and the other two odd. We label them so that ay,ay are
even and as,ay are odd and, when mp,; = 2, we take the solution with a; = a; = 0. Then
we set

4
o[v] =P 0, ® (Sta,—1 ®Sta,3D -+ ),

i=1
where we understand that we ignore the terms on the right where a; < 1.

Finally, write w; = H[  det o[v], which is a quadratic character, and let ws,ws,wy

Y#[l o
denote the other three quadratic characters. Again, there are non-negative integers such

that
M1, ] = ai + a3 + a3 + aj.
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Since mp 2] 18 odd, there is exactly one a; which has opposite parity to the other three,
and we choose our numbering so that this is a;. Then we take

4
o[1g.] = P w;i ® (Staq,—1 @ Stag,—3® - -+ D St1)

i=1

where, again, we ignore the terms for which a; = 0.

1]
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