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Abstract—Blind image quality assessment (BIQA) is a method 

to predict the quality of a natural image without the presence of 

a reference image. Current BIQA models typically learn their 

prediction separately for different image distortions, ignoring 

the relationship between the learning tasks. As a result, a BIQA 

model may has great prediction performance for natural images 

affected by one particular type of distortion but is less effective 

when tested on others. In this paper, we propose to address this 

limitation by training our BIQA model simultaneously under 

different distortion conditions using multi-task learning (MTL) 

technique. Given a set of training images, our Multi-Task 

Learning based Image Quality assessment (MTL-IQ) model 

first extracts spatial domain BIQA features. The features are 

then used as an input to a trace-norm regularisation based MTL 

framework to learn prediction models for different distortion 

classes simultaneously. For a test image of a known distortion, 

MTL-IQ selects a specific trained model to predict the image’s 

quality score. For a test image of an unknown distortion, MTL-

IQ first estimates the amount of each distortion present in the 

image using a support vector classifier. The probability 

estimates are then used to weigh the image prediction scores 

from different trained models. The weighted scores are then 

pooled to obtain the final image quality score. Experimental 

results on standard image quality assessment (IQA) databases 

show that MTL-IQ is highly correlated with human perceptual 

measures of image quality. It also obtained higher prediction 

performance in both overall and individual distortion cases 

compared to current BIQA models.  

 

Index Terms—Blind Image Quality Assessment; Multi-Task 

Learning; Spatial Domain Image Features; Trace-Norm 

Regularization. 

 

I. INTRODUCTION 

 

Image quality assessment (IQA) is a method to quantify the 

quality of a natural image by quality metrics. For applications 

where the end targets are human consumers, it is preferred to 

have IQA metrics that can quantify the natural image quality 

as perceived by human observers. Therefore, human 

perception based metrics are often considered as the gold 

standard in IQA. They are typically obtained by conducting 

experiments where human observe and rate the quality of a 

natural image presented to them. The ratings are then 

averaged across all participants to yield the mean opinion 

score (MOS), or differential mean opinion score (DMOS). 

The score represents the perceived quality metric for the 

image. However, this approach is expensive, time-consuming 

and unfeasible for real-time applications. An objective IQA 

model that can automatically provide quality measurement 

consistent with MOS/DMOS values is more favourable.  

Objective IQA can be classified into two main categories 

[1]: full-reference IQA (FR-IQA) and blind IQA (BIQA). FR-

IQA models predict the quality of a distorted natural image 

by comparing the entire information difference between the 

image and its reference image. A reference image refers to a 

similar image which is distortion-free and of perfect quality. 

The simplest FR-IQA metrics are mean squared error (MSE) 

and peak signal-to-noise ratio (PSNR). However, they have 

been shown to have poor correlation with human perceptual 

measures [2]-[3]. Many other FR-IQA models were then 

proposed to improve the correlation performance. They are 

developed based on various mechanisms such as human 

visual system (HVS) [4]-[5], image structure [6]-[7], or 

image statistics [8]-[9]. These FR-IQA models achieve a high 

correlation with human perceptual measures. However, full 

reference image information is not available in some 

applications thus a BIQA model is preferred. 

BIQA models can be categorised into two classes [10]: 

distortion-specific (DS) models or general-purpose models. 

DS BIQA methods work by utilising a specific distortion 

model under the assumption that the distortion affecting the 

image is known beforehand. For examples, the quality of 

JPEG compressed images is estimated by the model in [11] 

while the quality of a natural image affected by motion blur 

is assessed blindly in [12]. The effects of blocking and noise 

artefacts are also investigated in [13] and [14], respectively. 

In contrast, no prior knowledge of the distortion affecting the 

image is required in general-purpose BIQA models. Instead, 

image quality is determined by assuming that the image is 

degraded by the same distortion mechanism that affects a 

database of image exemplars. Such image exemplars can be 

obtained from standard IQA databases such as the LIVE [15] 

and CSIQ [5]. Using such exemplars and their provided MOS 

/ DMOS values, the models are then trained to predict the 

MOS / DMOS of the image. 

The majority of current general purpose BIQA models 

focus on extracting relevant features that carry discriminative 

information about image quality. Most of the models employ 

handcrafted features that are designed based on various 

mechanism such as natural scene statistics (NSS) [16]-[20], 

natural colour statistics (NCS) [21] or free energy principle 

[22]-[23]. Some other models use features that are learned 

directly from raw image pixels [24]-[25]. The extracted 

features are then used as an input to regression algorithms to 

learn the mapping between the features’ space and the image 

quality score space. Support vector regression (SVR) with 

linear/radial basis function is frequently used to this effect. 

High prediction performances in correlation with human 
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perceptual scores are reported by these models [16]-[19], 

[24]. However, we noted that a BIQA model may perform 

well for images affected by a particular type of distortion but 

is less effective when tested on different distortion types. We 

believe one possible reason to this is current BIQA models 

are trained independently for each type of distortion, ignoring 

the relationship that may exist among the distortion classes. 

This scenario motivates us to look at an alternative way to 

learn prediction model for BIQA task. In this paper, we 

explore the use of multi-task learning (MTL) to learn 

prediction models for different image distortion classes 

simultaneously. MTL has been utilised in learning prediction 

models for web pages categorisation [26], disease prediction 

[27] and therapy screening [28]. Here, we extend its 

application to BIQA tasks. 

MTL is a learning approach that utilises a shared 

representation to learn multiple related tasks simultaneously. 

Based on the assumption that the learner may find it easier to 

learn multiple tasks together rather than in isolation when the 

tasks share what they learn, MTL has been shown to increase 

the learning capability of each individual task [29]. Treating 

quality prediction for one type of distortion as one learning 

task, our BIQA model is developed to utilise this advantage. 

Given a set of training images, the model, Multi-Task 

Learning based Image Quality assessment (MTL-IQ), first 

extracts relevant spatial domain BIQA features. These 

features are then used to train regression models for different 

distortion conditions simultaneously. The training is 

performed using a trace-norm regularised MTL technique. 

For a test image of a known distortion, MTL-IQ simply 

selects a specific regression model to predict the image’s 

quality score. For a test image of an unknown distortion, 

MTL-IQ estimates the amount of each distortion present in 

the image using an SVM classifier. The probability estimates 

from the classifier are then used to weigh the image prediction 

scores from different regression models. The weighted scores 

are then pooled to yield the final quality score. 

Our work is motivated by promising results achieved by 

another multi-task based BIQA model, MRLIQ [30]. 

However, there are three substantial differences. First, MTL-

IQ utilises spatial domain features as opposed to transform-

based features in MRLIQ. Second, MTL-IQ employs 

different regularisation or penalty term to perform its MTL 

training. Third, in agreement to other established BIQA 

models, MTL-IQ is optimised using the training images’ 

quality ratings (DMOS/MOS), whereas MRLIQ via pairwise 

quality rank.  In addition, MRLIQ was tested only on the 

LIVE IQA database with limited results and analysis. 

Additional experiments and analysis are included in this 

paper to demonstrate our model capability further. The 

remainder of this paper is as follows. The framework for 

MTL-IQ is discussed in Section II. This includes a 

description of the utilised BIQA features as well as the chosen 

MTL technique to train MTL-IQ. The conducted experiments 

and their corresponding results are presented in Section III to 

evaluate MTL-IQ’s performance. The paper is concluded in 

Section IV. 

 

II. MULTI-TASK LEARNING BASED IQA  

 

The proposed framework for MTL-IQ is illustrated in 

Figure 1. It consists of feature extraction (FE), quality 

estimation (QE) and distortion identification (DI) stages. 

 

A. Feature Extraction 

While most of previous BIQA models focused on 

discovering features that are suitably linked to perceptually 

relevant scores, our work focus on developing new learning 

strategy for a BIQA task. Therefore, rather than designing 

new features, MTL-IQ employs the same spatial domain 

features implemented by GMLOG model [19]. The features 

are chosen to alleviate excessive computational load often 

encountered by image transform based features [16]-[17]. 

The features consist of four statistical distributions that are 

derived from the image local contrast operators: gradient 

magnitude (GM) and Laplacian of Gaussians (LOG). 

GMLOG shows that the shape of these distributions will 

deviate from those of high-quality images when an image is 

distorted. As the image’s distortion level increases, there are 

gradual changes in the distributions’ shapes indicating they 

are predictive to image quality and can be BIQA features. 

Specifically, given an image 𝐈, its GM map 𝐆𝐈 and LOG 

response 𝐋𝐈 are defined respectively as: 

 

𝐆𝐈 = √[𝐈 ⊗ 𝐡𝑥]2 + [𝐈 ⊗ 𝐡𝑦]
2
                       (1) 

and      𝐋𝐈 = 𝐈 ⊗ 𝐡LOG .         (2) 

 

In Equation (1), 𝐡𝑥 and 𝐡𝑦 are the Gaussian partial derivative 

filters applied along the horizontal and the vertical direction 

respectively. The LOG filter in Equation (2) is represented as: 

 

𝐡LOG(𝑥, 𝑦|𝜎) =
𝜕2

𝜕𝑥2 𝐠(𝑥, 𝑦|𝜎) +
𝜕2

𝜕𝑦2 𝐠(𝑥, 𝑦|𝜎)  ,     (3) 

 

where 𝐠(𝑥, 𝑦|𝜎) is the isotropic Gaussian function with scale 

parameter 𝜎. These GM and LOG operators are then jointly 

normalized to achieve stable image representations. The 

normalized operators are given by: 

 

𝐆𝐈 =
𝐆𝐈

(𝐍𝐈+𝜀)
  , �̅�𝐈 =

𝐋𝐈

(𝐍𝐈+𝜀)
   ,                    (4) 

 

where 𝐍𝐈 is a local adaptive normalization factor while 𝜀 is a 

constant that prevents numerical instability. 

Once both operators are normalised, MTL-IQ computes 

their respective marginal probability functions and use them 

as the first two BIQA features for the image. The marginal 

probability functions are defined as: 

 

 
 

Figure 1: MTL-IQ framework 
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𝑃𝐆𝐈
(𝐆𝐈 = 𝑔𝑚) = ∑ 𝐊𝑚,𝑛

𝑁
𝑛=1                        (5) 

and                    𝑃�̅�𝐈
(�̅�𝐈 = 𝑙𝑛) = ∑ 𝐊𝑚,𝑛

𝑀
𝑚=1  .          (6) 

In these equations, 𝐊𝑚,𝑛 = 𝑃(𝐆𝐈 = 𝑔𝑚 , �̅�𝐈 = 𝑙𝑛) is the joint 

empirical probability function of the normalized GM and 

LOG operators while 𝑚 = 1,2, … , 𝑀 and 𝑛 = 1,2, … , 𝑁 

represent the quantization levels of those operators. 

The remaining two BIQA features are derived based on the 

statistical interaction between GM and LOG operators. The 

features, known as independency distributions are measured 

by computing the dependency of each specific value 𝐆𝐈 = 𝑔𝑚 

against all possible values of �̅�𝐈 and vice versa. The 

computations can be represented as: 

 

𝑄𝐆𝐈
(𝐆𝐈 = 𝑔𝑚) =

1

𝑁
∑ 𝑃(𝐆𝐈 = 𝑔𝑚|�̅�𝐈 = 𝑙𝑛)𝑁

𝑛=1        (7) 

and      𝑄�̅�𝐈
(�̅�𝐈 = 𝑙𝑛) =

1

𝑀
∑ 𝑃(�̅�𝐈 = 𝑙𝑛|𝐆𝐈 = 𝑔𝑚)𝑀

𝑚=1         (8) 

  

respectively. Equations (7) and (8) can be viewed as the sum 

of conditional probabilities of a specific value of 𝐆𝐈 (or �̅�𝐈) 

over variable �̅�𝐈 (or 𝐆𝐈).. The four distributions are then 

concatenated to produce the MTL-IQ features vector for the 

given image. Further details can be found in [19]. 

 

B. Quality Estimation 

The extracted feature vector is then used as an input to the 

trained quality prediction models to estimate the quality of 

the given image for different distortion conditions. Previous 

BIQA methods train their prediction models via single-task 

learning (STL) approach whereby prediction model for one 

particular distortion is treated as single learning task and 

learnt independently. In contrast, MTL-IQ learns its 

prediction models simultaneously via an MTL approach.  

Given feature vectors extracted from a set of training 

images, MTL-IQ aims to minimise this objective function: 

 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + Ω(𝐖)  ,                (9) 

 

where 𝑓(𝐖) is the empirical loss on the training set and 

Ω(𝐖) is the regularization term that captures the relationship 

among the tasks. For a BIQA case, 𝑓(𝐖) is represented by a 

loss function ℓ(∙,∙) as: 

 

𝑓(𝐖) =  ∑ ∑ ℓ(𝑦𝑖
𝑗
, 𝜔𝑖

T𝑥𝑖
𝑗
)

𝑠𝑖
𝑗=1

𝑛
𝑖=1  ,           (10) 

 

with 𝑛 is the number of distortion classes, 𝑠𝑖 is the number of 

samples in the 𝑖th distortion, 𝑥𝑖
𝑗
 and 𝑦𝑖

𝑗
 are the 𝑗th feature 

vector and the associated DMOS value in the 𝑖th distortion, 

respectively and 𝐖 = [𝜔1, 𝜔2, … , 𝜔𝑛] where 𝜔 is the 

parameter to be estimated from the training samples. 

There are many formulations for MTL. Based on the 

assumption that the distortion classes are related and the fact 

that the extracted features are in high dimension, a trace-norm 

regularised technique [29] is applied to train MTL-IQ. The 

technique captures the task relatedness through low 

dimensional sub-space learning whereby the models from 

different tasks are constrained to share a common low-rank 

structure. Figure 2 illustrates the trace-norm regularised 

training structure for MTL-IQ. 

The technique treats Equation (9) as a matrix rank 

minimisation problem [29]: 

 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + λ[Rank(𝐖)]           (11) 

 

Since the matrix rank minimisation problem is an NP-hard 

problem, a convex relaxation of the rank function Rank(𝐖) 

is normally required. Trace-norm relaxation method is widely 

used to this effect as it has been shown theoretically to be a 

good approximation for Rank(𝐖) [31]. Therefore, the 

problem can now be approximated as a trace-norm 

minimization problem [29]: 

 

min
𝐖

𝐹(𝐖) = 𝑓(𝐖) + 𝜆‖𝐖‖∗               (12) 

 

where 𝜆 is positive regularization parameter and ‖∙‖∗ denotes 

the trace norm defined as the sum of singular values. For 

faster convergence, MTL-IQ employs an accelerated gradient 

method [32] to solve Equation (12) to find the optimized 

values of 𝐖: 

 

 𝐖 = arg min
𝐖

𝛾

2
‖𝐖 − (𝐒 −

1

𝛾
𝛻𝑓(𝐖))‖

F

2

+ 𝜆‖𝐖‖∗ , (13) 

 

where 𝛾 is the step size, 𝛻𝑓(∙) is the gradient of 𝑓(∙) and 𝐒 is 

the search point. The optimized values are then used to 

represent the trained model for each distortion case. Further 

details on AGM can be found in [32]. 
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C. Distortion Identification 

The trained models are then used to predict the quality 

score of a test image. For a test image of unknown distortion, 

MTL-IQ first estimates different distortion types present in 

the image. The process is performed using the extracted 

feature vector as an input to an SVM classifier. SVM is 

chosen here due to its good performance in high dimensional 

spaces and good generalisation capabilities [33]. In this work, 

a multi-class SVM with a radial basis function (RBF) is 

employed. Note that our aim is not to perform hard 

classification but to estimate each distortion class present in 

the image. These estimates are given by the probabilities 

provided by the classifier. These probability values are then 

used to weigh the image prediction scores from different 

MTL models. The weighted scores are then pooled to yield 

the final quality score for the image. 
 

III. RESULTS AND DISCUSSIONS 

 

A. Experimental Setup and Evaluation Protocol 

Databases: MTL-IQ was tested on two well-known IQA 

databases: LIVE [15] and CSIQ [5]. The LIVE database 

contains 779 distorted images that are generated from 29 

references. Each reference image is distorted at 5 or 6 

degradation levels by five types of source coding or artificial 

artefacts: JPEG2000 compression (JP2K), JPEG compression 

(JPEG), additive white noise (WN), Gaussian blur (GB), and 

simulated fast fading (FF). The images are provided with 

DMOS values in the range between 0 and 100. An image of 

higher quality is assigned with lower DMOS. The CSIQ 

database is composed of 30 reference images. The reference 

images are subjected to six types of distortions at 4 or 5 

degradation levels, yielding a total of 866 distorted images. 

Each image is assigned a DMOS value in the range between 

0 and 1. Similar to the LIVE database, a higher DMOS value 

indicates a lower quality image. For the CSIQ database, only 

four types of distortions that contained in the LIVE database 

are considered: JP2K, JPEG, WN and GB. 

Performance metrics: Three metrics that measure the 

consistency between the predicted quality scores and the 

subjective DMOS values were used to evaluate MTL-IQ’s 

performance: the linear correlation coefficient (LCC), the 

Spearman rank order correlation coefficient (SROCC) and 

the root mean squared error (RMSE). The LCC and RMSE 

metrics are used to measure a model’s prediction accuracy 

while the SROCC metric is used to measure the prediction 

monotonicity of a model. Values close to 1 for LCC and 

SROCC or 0 for RMSE indicates that the model has a high 

correlation with human subjective scores. 

Benchmarked models: MTL-IQ was compared against four 

state-of-the-art BIQA models: BIQI [16], BRISQUE [18], 

GMLOG [19] and CORNIA [24], whose source codes are 

publicly available. MTL-IQ was also compared with two 

well-known FR-IQA models: SSIM [6] and FSIM [7]. 

Parameter and training setup: We set MTL-IQ’s 

parameters as implemented by GMLOG. The filters’ scale 

parameter 𝜎 to compute GM and LOG operators was set at 

0.5 while the quantization level 𝑀 = 𝑁 is 10. To train MTL-

IQ and the other BIQA models, we divided the databases into 

two subsets: 80% of the reference images and their 

corresponding distorted versions were randomly selected to 

be a training set while the remaining 20% were used for 

testing. There is no overlap between the two sets. The trace-

norm regularized technique to train the MTL-IQ models was 

implemented using the MALSAR package [34]. In the 

package, the loss function ℓ(∙,∙) is set as a least squares 

function. The SVM classifier for the DI stage is trained using 

the LIBSVM package [35]. We also used the LIBSVM 

package to train regression models for the competing BIQA: 

SVR with a RBF kernel for BIQI, BRISQUE and GMLOG as 

well as SVR with a linear kernel for CORNIA. For a fair 

comparison, their SVR parameters were determined through 

cross validation in accordance to their respective papers. 

 
Table 1 

Median Values Across 1000 Runs of The Overall Performance 

Experiment 

 
IQA 

model 

LIVE CSIQ 

LCC SROCC RMSE LCC SROCC RMSE 

SSIM 0.9464 0.9486 8.8035 0.9347 0.9362 0.0990 

FSIM 0.9612 0.9639 7.5461 0.9675 0.9629 0.0710 

BIQI 0.8486 0.8427 15.4068 0.8089 0.7491 0.1867 

BRISQUE 0.9431 0.9421 9.3953 0.9304 0.9101 0.1073 

GMLOG 0.9505 0.9503 8.8290 0.9394 0.9219 0.0997 

CORNIA 0.9394 0.9416 9.9204 0.9110 0.8873 0.1254 

MTL-IQ 0.9600 0.9567 8.8060 0.9483 0.9263 0.0920 

 
Table 2 

IQR for 1000 SROCC and LCC Values for Overall 

Performance Experiment 

 

BIQA 
model 

LIVE CSIQ 

LCC SROCC LCC SROCC 

BIQI 0.0532 0.0537 0.0710 0.0960 

BRISQUE 0.0197 0.0204 0.0361 0.0390 
GMLOG 0.0167 0.0164 0.0237 0.0260 

CORNIA 0.0184 0.0183 0.0405 0.0515 

MTL-IQ 0.0120 0.0154 0.0204 0.0230 

 

Experiments: We performed two experiments to evaluate 

MTL-IQ’s performance: the overall performance experiment 

and the distortion-specific (DS) performance experiment. In 

the overall performance experiment, the train-test run was 

performed across all images regardless of their distortion 

type. This is to evaluate how well a BIQA model performs 

across all distortion classes. In the DS performance 

experiment, the train-test run was only conducted using 

images from a single distortion class. This is to evaluate how 

well a BIQA model performs for one specific distortion. Note 

that MTL-IQ contains different trained models for different 

distortion classes. For the DS performance experiment in 

which the distortion type is known, the specific trained model 

can directly be used for the QE stage without having to 

perform the DI stage. The train-test run was repeated 1000 

times to ensure that the specific train-test partition does not 

govern the results. Due to the right-skewed distribution of the 

LCC and the SROCC values, the median is often used in the 

previous IQA works as their centre measurements. We 

followed the same approach to report our results. 

B. Overall Performance Results 

The median results for the overall experiment are tabulated 

in Table 1. The top FR-IQA, and BIQA models are in bold. 

MTL-IQ obtained the top LCC, SROCC and RMSE values 

among the competing BIQA models in both databases. In 

comparison to FR-IQA models, MTL-IQ outperformed SSIM 

while approaching the state-of-the-art FSIM. Given that FR-

IQA models require reference images as their input, the 

MTL-IQ’s results are promising. We then computed the inter-

quartile range (IQR) value of the 1000 SROCC and LCC 

results obtained by each BIQA model. A model with low IQR 

value indicates that its’ results are more consistent under 
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different train-test partitions. The IQR values are tabulated in 

Table 2 where the top model is in bold. We can see that 

MTLBIQ produced more consistent results than the rest. 

To visualise the IQR for each model, we also generated the 

box-plots of the SROCC and LCC distributions in Figure 3. 

The central mark on each box is the median while the top edge 

and the bottom edge are the 25th and the 75th percentiles, 

respectively. In terms of outliers, ideally, we would like as 

few outliers as possible and to have them as close to the main 

distribution as possible. In this case, we can see that MTL-IQ 

has more compact outlier distributions on both databases than 

other competing BIQA models. Both IQR and outlier 

observation suggests that MTL-IQ has the best quality 

prediction consistency. 

C. Distortion Specific Performance Results 

The median results across the 1000 trials for the DS 

performance experiment are tabulated in Table 3. For 

simplicity, only the SROCC results are reported. Similar 

patterns can be observed from the LCC and the RMSE results. 

For both databases, MTL-IQ obtained the highest SROCC 

values for images affected by JP2K, JPEG and WN artefacts. 

It also gave competitive prediction performance for GB and 

FF images. In comparison to FR-IQA models, MTL-IQ 

produced a close performance to both SSIM and FSIM 

whereby it yielded better prediction performance for WN 

images. 

Since MTL-IQ employs similar features as GMLOG, a 

direct comparison between the two models can be used to 

investigate whether MTL can improve GMLOG’s learning 

capability in individual distortion classes. From Table 3, we 

can see that MTL-IQ achieved higher correlation values than 

GMLOG in all tested distortion cases. This observation 

indicates that MTL technique can be employed to achieve 

better prediction performance for BIQA task. 
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Figure 3: Boxplots of (a) SROCC and (b) LCC distributions on the LIVE (top) and the CSIQ (bottom) databases 

 Table 3 

 Median SROCC Values Across 1000 Runs for the DS Performance Experiment 

 

IQA 
model 

LIVE CSIQ 
JP2K JPEG WN GB FF JP2K JPEG WN GB 

SSIM 0.9614 0.9764 0.9694 0.9517 0.9556 0.9606 0.9546 0.8974 0.9609 

FSIM 0.9724 0.9840 0.9716 0.9708 0.9519 0.9704 0.9664 0.9359 0.9729 

BIQI 0.8303 0.9062 0.9328 0.8656 0.6885 0.7635 0.9102 0.5397 0.7826 

BRISQUE 0.9164 0.9640 0.9791 0.9446 0.8872 0.8977 0.9212 0.9207 0.9186 

GMLOG 0.9268 0.9630 0.9831 0.9188 0.9012 0.9161 0.9264 0.9408 0.9083 
CORNIA 0.9205 0.9359 0.9608 0.9519 0.9052 0.8942 0.8820 0.7862 0.9041 

MTL-IQ 0.9356 0.9690 0.9842 0.9288 0.9043 0.9279 0.9286 0.9453 0.9181 

 

Table 4 

Average Run-time Comparison 
 

Model BIQI BRISQUE GMLOG CORNIA MTL-

IQ 

Run 
times 

0.05 0.10 0.07 2.43 0.08 
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D. Computational Complexity 

The average run-time comparison between MTL-IQ 

models and the competing BIQA models for a typical image 

of 512 × 768 size is shown in Table 4. These processing times 

are achieved using un-optimised MATLAB R2011b code on 

an 8GB RAM computer with an Intel i5 3.20 GHz processor. 

Note that the training time is not considered here as it is 

assumed that the models are already trained prior to the 

testing stage. BIQI is the fastest model, but it has the worst 

prediction performance among all tested models. MTL-IQ is 

faster than BRISQUE and CORNIA. Although MTL-IQ uses 

the same feature as GMLOG, it is slightly slower due to the 

distortion identification requirement. Despite that, it still can 

process up to 12 images per second thus providing an 

alternative solution to real-time applications. 

 

IV. CONCLUSION 

 

This paper presents a simple yet effective BIQA model that 

employs a trace-norm regularised MTL technique in its 

learning framework. The model, dubbed as MTL-IQ, utilises 

a shared representation among different distortion training 

samples to learn prediction models for each distortion classes 

simultaneously. Experimental results on the LIVE and the 

CSIQ databases showed that MTL-IQ yields high correlation 

with human perceived quality measures across various types 

of image distortions. MTL-IQ also achieved higher prediction 

performance compared to some of the current BIQA models. 

It is worth noting that there are several steps could be taken 

to improve the model. For future works, different features and 

databases could be tested to validate MTL-IQ’s performance 

further. Other MTL techniques could be tested for faster 

computation. MTL technique itself could also be employed 

for distortion identification in a case where the type of 

distortion affecting the image is unknown.    
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