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Abstract

It is a classical result that an unrooted tree T having positive real-valued edge

lengths and no vertices of degree two can be reconstructed from the induced

distance between each pair of leaves. Moreover, if each non-leaf vertex of T has

degree 3 then the number of distance values required is linear in the number of

leaves. A canonical candidate for such a set of pairs of leaves in T is the following:

for each non-leaf vertex v, choose a leaf in each of the three components of T−v,

group these three leaves into three pairs, and take the union of this set over all

choices of v. This forms a so-called ‘triplet cover’ for T . In the first part of this

paper we answer an open question (from 2012) by showing that the induced

leaf-to-leaf distances for any triplet cover for T uniquely determine T and its

edge lengths. We then investigate the finer combinatorial properties of triplet

covers. In particular, we describe the structure of triplet covers that satisfy one

or more of the following properties of being minimal, ‘sparse’, and ‘shellable’.
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1. Introduction

Trees with a label set X of leaves play a central role in many areas of

classification, such as systematic biology and linguistics. In these settings, it

is usually assumed that the non-leaf vertices of the tree have degree at least

three, and that there is an assignment of a positive real-valued length to each

edge of T . A classical and important result from the 1960s and 1970s asserts

that any such (unrooted) tree T with edge lengths is uniquely determined from

the induced leaf-to-leaf distances between each pair of elements of X. This

result is the basis of widely-used methods for inferring trees from distance data,

such as the popular ‘Neighbor-Joining’ algorithm [9].

When the unrooted tree T is binary (each non-leaf vertex has degree 3)

then we do not require distance values for all of the
(
n
2

)
pairs from leaf set X

(where n = |X| ≥ 3), since just 2n − 3 carefully selected pairs of leaves suffice

to determine T and its edge lengths (see [5]; more recent results appear in

[2], motivated by the irregular distribution of genes across species in biological

data). This value of 2n−3 cannot be made any smaller, since a binary unrooted

tree with n leaves has 2n − 3 edges, and the inter-leaf distances are linear

combinations of the corresponding 2n − 3 edge lengths (so, by linear algebra,

these values cannot be uniquely determined by fewer than 2n− 3 equations).

There is a particularly natural way to select a subset of
(
X
2

)
for T when T

is binary. Since each non-leaf vertex is incident with three subtrees of T , let us

(i) select a leaf from each subtree, (ii) consider the three pairs of leaves we can

form from this triple, and then (iii) take the union of these sets of pairs over

all non-leaf vertices of T . This process produces a ‘triplet cover’ of T (defined

more precisely below), as illustrated in Fig. 1.

A triplet cover need not be of this minimum size (i.e. of size 2n−3) and in an

earlier paper we characterized when it is [6]. That paper also established that

in this case the resulting triplet cover is ‘shellable’, complementing other recent

work into phylogenetic ‘lasso’ sets [2, 7], as well as a Hall-type characterization

of the median function on trees in [4].
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In this paper, we present three main new results. Our first result (Theo-

rem 2.1, which is a special case of Theorem 2.3) answers in the affirmative a

question that has been open since 2012, namely do the distances between leaves

induced by a triplet cover on a binary tree with positive edge lengths deter-

mine the tree? Our second main result (Theorem 4.1) describes the structure

of ‘sparse’ triplet covers in terms of a 2-tree decomposition of a certain graph.

Our third main result (Theorem 5.4) provides a sufficient condition for a triplet

cover to be ‘shellable’. Along the way, a number of other properties of triplet

covers are derived. We begin with some definitions.

1.1. Definitions

Let X be a finite set |X| ≥ 3. Given a set C of subsets of a set Y , we let⋃ C =
⋃

t∈C t, and we denote elements in
(
X
2

)
and

(
X
3

)
also by xy and xyz,

respectively, where x, y, z ∈ X.

Given a graph G = (V,E), we let V = V (G) denote its vertex set and

E = E(G) its edge-set.

• A phylogenetic X–tree is a tree T = (V,E) that has leaf-set X and for

which the non-leaf vertices have degree at least 3. If all non-leaf vertices

of T have degree exactly 3 then we say that T is a binary phylogenetic

X–tree (or simply a binary phylogenetic tree when the leaf set is clear or

not important).

• We let V̊ = V̊ (T ) ⊆ V (T ) denote the set of interior vertices of T . If T is

binary then |V̊ | = |X| − 2.

• A cherry of a binary phylogenetic X–tree T is a pair of leaves of T that

are adjacent to a common vertex.

• Two phylogenetic X–trees T = (V,E) and T ′ = (V ′, E′) are isomorphic,

denoted T ∼= T ′, precisely if there is a graph isomorphism ϕ from T to T ′

that sends leaf x of T to leaf x of T ′ for each x ∈ X.
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Suppose that T is a phylogenetic X-tree as above.

• Given an element x ∈ X, where |X| ≥ 4, we let T −x denote the phyloge-

netic X–tree which is obtained by removing the leaf x and the edge that

contains it from T and suppressing the remaining degree 2 vertex.

• Suppose that T is a subset of
(
X
2

)
. We say that a triple abc ∈

(
X
3

)
supports

a vertex v ∈ V̊ (relative to T ) if we can select leaves a, b, c ∈ X, one from

each component of T − v, such that ab, ac, bc ∈ T .

• We call a subset T ⊆
(
X
2

)
a triplet cover for T if, for each element v ∈ V̊ ,

there is some element in
(
X
3

)
that supports v (relative to T ). An example

is shown in Fig. 1. We call each element in T a cord.

• Given a subset T ⊆
(
X
2

)
and x ∈ X, we let T −x = T − {xa : a ∈

X − {x} and xa ∈ T }. In other words, T −x is the subset of T obtained

by removing from T precisely those cords which contain x.

a c

e

db

u(abc) w(cde)

v(bce)

Figure 1: A binary phylogenetic X–tree T for X = {a, b, c, d, e}, and, in parentheses, triples

of elements from X whose medians correspond to the indicated interior vertices. The corre-

sponding triplet cover is T = {ab, ac, bc, be, ce, cd, de}.

2. Tree distances from any triplet cover determines the underlying

binary tree

The triplet cover question posed in [2] and discussed further in [7], asks the

following. Suppose that T is a triplet cover for a binary phylogenetic X–tree T

having strictly positive edge lengths. Then is T the only phylogenetic X–tree
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(up to isomorphism) with strictly positive edge lengths that can induce the same

distance values on pairs of leaves chosen from T ?

It is fairly straightforward to show that the triplet cover question has an

affirmative answer if we impose the additional restriction on each possible al-

ternative tree T ′ that T is also a triplet cover for T ′ (Proposition 1 of [2]).

However, this additional restriction cannot be assumed a priori for the general

question. The following theorem provides an affirmative answer to the triplet

cover question in general.

To state this theorem, we require one further definition. Given a phylogenetic

X–tree T and an assignment ` of strictly positive lengths to the edges of T , let

d(T,`)(x, y) denote the total length of the path between x and y in T (i.e. the

sum of the lengths of the edges in the unique path in T that connects x to y).

Theorem 2.1. Suppose that T is a triplet cover for a binary phylogenetic X–

tree T , where |X| ≥ 3, and that ` is an assignment of strictly positive edge

lengths for T . Then for any phylogenetic X–tree T ′ and any assignment `′ of

strictly positive edge lengths for T ′, if d(T,`)(x, y) = d(T ′,`′)(x, y) for all xy ∈ T
then T ∼= T ′ and ` = `′.

Remarks: It suffices to show that T ∼= T ′, since ` = `′ then follows easily

(for example, by Proposition 1 of [2]). Note also that Theorem 2.1 is not true

when |X| = 2, as we may take T ′ to have a single vertex, and T to have two

vertices joined by an edge of arbitrary length (in this case T = ∅).
We prove the other (main) part of the theorem by establishing a slightly

more general result (Theorem 2.3) which allows a more streamlined proof-by-

contradiction argument based on the assumption that a (minimal) counterex-

ample exists.

The proof of the following result (Proposition 2.2) does not require or use

Theorem 2.1 (nor is that theorem implied by Proposition 2.2). However, the

two results are complementary since Theorem 2.1 ensures that the reconstructed

tree (namely T ) produced by the algorithm described in Proposition 2.2 is the

only tree that can realize d(T,`) for all elements xy in some triplet cover T for
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T . We have stated the first part of this Proposition 2.2 in the same format

as Theorem 2.1 to make explicit the additional assumption that is required in

Proposition 2.2 (namely condition (ii)). Theorem 2.1 excludes the possibility

that another pair (T ′, `′) could give the same d(T,`)–values as (T, `) on elements

xy ∈ T , when T is not also a triplet cover for T ′.

Proposition 2.2. Suppose that T is a triplet cover for a binary phylogenetic

X–tree T , where |X| ≥ 3, and that ` is an assignment of strictly positive edge

lengths for T . Then for any phylogenetic X–tree T ′ and any assignment `′ of

strictly positive edge lengths for T ′, if

(i) d(T,`)(x, y) = d(T ′,`′)(x, y) for all xy ∈ T , and

(ii) T is also a triplet cover for T ′,

then T ∼= T ′ and ` = `′. Moreover, there is a polynomial-time algorithm to

reconstruct (T, `) from the values of d on T .

Proof: To this end, put d = d(T,`) and, for any leaf x of X let

λ(x) =
1

2
min{d(x, z) + d(x, z′)− d(z, z′) : xz, xz′ ∈ T , z 6= z′}.

Notice that the set in the definition of λ(x) is non-empty since T is a triplet

cover of T (consider the vertex of T adjacent to leaf x) and so λ(x) can be

determined (in polynomial-time) from the values of d on T . Moreover, λ(x) is

the length of the pendant edge of T incident with leaf x.

CLAIM: x and y form a cherry of T if and only if xy ∈ T and d(x, y) =

λ(x) + λ(y).

Proof of claim: First suppose that x and y form a cherry of T . We have xy ∈ T
since T is a triplet cover for T (consider the interior vertex of T that is adjacent

to x and y). Moreover, d(x, y) = λ(x)+λ(y). Conversely if x and y do not form

a cherry of T and if xy ∈ T then d(x, y) > λ(x) + λ(y) since there is at least

one interior edge, having strictly positive length, in the path between x and y.

This establishes the claim.
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It follows form the claim that from T and d|T we can identify a cherry

x, y of T , as well as the length of the pendant edges incident with x and y

(namely, λ(x) and λ(y)). Let us now remove x from X to give a reduced label

set X ′ = X − x, remove xy from T and replace each pair xz ∈ T by a pair yz

to obtain a modified set T ′ ⊆
(
X′

2

)
. For any pair xz ∈ T that has been replaced

by yz ∈ T ′ set d′(y, z) = d(x, z) + λ(y)− λ(x), and let d′ coincide with d for all

other elements of T ′. Then T ′ is now a triplet cover for the binary tree T − x
with its induced (strictly positive) edge lengths. By induction on |X| we can

continue this cherry identification and deletion process until we obtain a binary

phylogenetic tree on just three leaves. By reversing this process the original tree

T and its edge lengths ` can then be reconstructed (in polynomial time).

2.1. Proof of Theorem 2.1

As mentioned, we need only prove that a binary phylogenetic tree T is

uniquely determined (up to isomorphism) by the values of d(x, y) = d(T,`)(x, y)

(for some strictly positive assignment ` of edge lengths to T ) for pairs x, y in

a triplet cover of T (the uniqueness of the edge lengths was shown in [2] and

is straightforward). Also, it is convenient for the proof to work with a slightly

more general class of trees than binary phylogenetic trees, namely ‘binary X–

trees’. To define this class, recall that an X–tree T is a tree for which each

vertex of degree at most 2 is labelled by at least one element of X, and each

element of X labels exactly one vertex of the tree. Thus T may have unlabelled

vertices, but these must have degree 3 or more, and T may have vertices labelled

by more than one element of X. We refer to X as the label set of T . Thus,

a phylogenetic X–tree is an X–tree in which only the leaves are labelled, and

each leaf is labelled by only a single element of X.

Deleting an edge e of a X–tree and considering the two connected compo-

nents of T − e partitions X into two nonempty sets. Any such bipartition of

X consisting of two blocks, say A and B, is called an X–split and we denote
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it by writing A|B. Moreover, the set of splits arising from an X–tree T in

this way (by cutting edges of T ) is pairwise compatible, which means that, for

any two splits A|B and A′|B′ in the set, at least one of the four intersections

A ∩ A′, A ∩ B′, B ∩ A′, B ∩ B′ is empty. It is a classical result (due to Peter

Buneman) that X–trees (up to a natural notion of isomorphism) are in bijective

correspondence with the sets of pairwise compatible X–splits, with each X–split

in the set corresponding to a unique edge of the associated tree. Thus two X–

trees T and T ′ are isomorphic, written T ∼= T ′, precisely if they have the same

set of X–splits. This definition agrees with the earlier notion of isomorphism

when restricted to binary phylogenetic X–trees.

We will say that an X–tree T is binary if (i) each vertex of degree at most 1

is labelled by one or two elements of X, (ii) each vertex of degree 2 is labelled

by exactly one element of X, and (iii) all remaining vertices are unlabelled and

have degree 3. In the case |X| = 3 we also allow an isolated vertex labelled by

the three elements of X to be a binary X–tree.

Note that if we take any binary phylogenetic X–tree and collapse any (pos-

sibly empty) subset of pendant edges of this tree, we obtain a binary X–tree;

conversely, each binary X–tree T is obtained from a unique binary phylogenetic

X–tree TB by collapsing a unique subset of pendant edges of T . Note that TB

is the X–tree whose set of X–splits consists of the X–splits of T together with

any trivial X–splits (i.e. x|X − x, x ∈ X) not already present in T . This is

illustrated in Fig. 2.

It is straightforward to extend the notion of triplet cover from a binary

phylogenetic X–tree to a binary X–tree: We say that a subset T of
(
X
2

)
is a

triplet cover of a binary X–tree T , if T is a triplet cover (in the usual sense) of

the associated binary phylogenetic X–tree TB .

Given an X–tree T and a function ` that assigns strictly positive lengths to

each edge of T , let d(T,`) : X×X → R≥0 be the induced distance function on X

in which d(T,`)(x, y) is the sum of the lengths of the edges on the (unique) path

in T connecting the vertices of T labelled by x and y. Notice that d(T,`) takes

the value 0 if and only if x and y label the same vertex of T . The function d(T,`)
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(i)

e

d

c

f

a b

(ii)

c

f
e; d*

*

*

a b

Figure 2: (i) A binary phylogenetic X–tree for X = {a, b, c, d, e, f}. If we collapse the three

edges indicated by * we obtain the binary X–tree shown in (ii).

is non-negative, symmetric and satisfies the triangle inequality, and so d(T,`) is

a pseudometric on X.

Theorem 2.3. Suppose that T is a triplet cover for a binary X–tree T , where

|X| ≥ 3, and that ` is an assignment of strictly positive edge lengths for T .

Then for any X–tree T ′ and any assignment `′ of strictly positive edge lengths

for T ′, if d(T,`)(x, y) = d(T ′,`′)(x, y) for all xy ∈ T we have T ∼= T ′.

Proof: The theorem is readily verified for |X| = 3. Suppose there is a counterex-

ample to Theorem 2.3 when |X| ≥ 4. In that case, we can select a counterexam-

ple — say (T , T, T ′) — for which (i) |X| ≥ 4 is minimal (call this minimal value

n) and (ii) within all counterexamples with |X| = n the sum of the number of

edges in T and in T ′ is minimal. We will show that we can then always construct

another counterexample that either (i) has a label set of size n− 1 ≥ 3, or has a

smaller total number of edges across the two trees, contradicting the minimality

assumptions, or (ii) has a label set of size 3, for which the result holds. Such a

contradiction implies that no counterexample T , T, T ′ to Theorem 2.3 can exist.

We first establish the following claims:

(i) There is no trivial X–split present in both T and T ′.

(ii) T ′ does not contain any trivial X–split.
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To establish Claim (i), suppose that some trivial X–split, say x|X−x (for some

x ∈ X) is present in both T and T ′. Let ex and e′x denote the pendant edges

of T and T ′ that are incident with x, let `(ex), `′(e′x) denote their lengths, and

let `x = min{`(ex), `′(e′x)}. If `(ex) = `′(e′x) then collapse the pendant edges ex

and e′x, while if `(ex) 6= `′(e′x) then collapse the shorter of the two pendant edges

ex and e′x, and reduce the length of the other pendant edge by `x. The resulting

pair of modified trees still consists of a binary X–tree and an X–tree, both with

strictly positive edge lengths, and the distance between x and any other element

of X in both T and in T ′ has been reduced by `x while all other distances remain

the same. Thus, the sum of the number of edges in T and T ′ has been reduced

by at least 1. Furthermore, every split that is present in exactly one of T and T ′

still has that property after modification, thus the two obtained trees can not

be isomorphic. However the two modified trees, along with the original triplet

cover T provide a smaller counterexample (in terms of the sum of the number

of edges in T and T ′) violating the minimality assumption. This establishes

Claim (i).

To establish Claim (ii), assume that there is a trivial X–split x|X − x (for

some x ∈ X) present in T ′. By Claim (i), x|X − x is not present in T , and so

either x labels an interior vertex of T , or else x together with another element of

X, say y, labels a leaf of T . In either case, since T is a triplet cover for T there

is a triplet wxy with {wx,wy, xy} ⊆ T and with d(T,`)(w, x) + d(T,`)(x, y) =

d(T,`)(w, y). But then (since d(T,`)(x
′, x′′) = d(T ′,`′)(x

′, x′′) for all x′x′′ ∈ T ) it

follows that T ′ does not have x as the sole label of one of its leaves (i.e. T ′ does

not contain x|X − x). Hence, T ′ does not contain any trivial X–split. This

establishes Claim (ii).

Now, let v be any leaf of T ′, and let Y ⊂ X denote its label set (note that

T ′ cannot be a single-vertex tree since otherwise T would be also, and any two

single-vertex X–trees are isomorphic). By Claim (ii), |Y | > 1. Thus one of the

following two cases must apply:

Case A: T contains all trivial X–splits y|X − y for all y ∈ Y .
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Case B: There exists some y ∈ Y for which the trivial X–split y|X − y
is absent from T .

(We will show that neither case can arise, which will furnish the required con-

tradiction).

In Case A, let e′v denote the pendant edge of T ′ that is incident with v, and

for each y ∈ Y , let `(ey) be the length of the pendant edge of T incident with

the leaf labelled by (only) y. Let

`Y = min[{`(ey) : y ∈ Y } ∪ {`′(e′v}].

If `′(e′v) = `Y then collapse edge e′y in T ′, otherwise reduce the length of e′v

by `Y . Similarly, for each y ∈ Y for which `(ey) = `Y collapse edge ey of T ,

otherwise reduce the length of ey by `Y . Again the resulting modified pair of

trees still consists of a binary X–tree and an X–tree, both with strictly positive

edge lengths, but either T or T ′ has at least one (pendant) edge fewer than

before. Note that the modified trees cannot be isomorphic, since otherwise Y

would be contained in the label set of a single vertex in both. As one of them

is a binary X-tree, this implies |Y | = 2 and Y ∈ T , but the distance between

the two elements of Y is zero in T ′ and non-zero in T . Moreover, the distance

between two distinct elements x, x′ of X in either tree is either unchanged (if

neither x nor x′ is in Y ) or is reduced by `Y for both trees, when |{x, x′}∩Y | = 1.

For the remaining case where x, x′ ∈ Y the distances in the modified trees may

differ, however we also have that xx′ 6∈ T , since the distance between x and x′

in T and in T ′ is different (it is zero in T ′ and non-zero in T ). It follows that

the modified trees again provide a smaller counterexample (in terms of the sum

of the number of edges in T and in T ′) violating the minimality assumption.

This shows that Case A cannot arise.

For Case B, there exists some element y ∈ Y that labels either an interior

vertex of T , or else y together with another element of X, say x, labels a leaf

of T . In either case, since T is a triplet cover for T there is a triplet xyz

with {xy, xz, yz} ⊆ T and with d(T,`)(x, y) + d(T,`)(y, z) = d(T,`)(x, z). Thus,

since v is a leaf of T ′ we must have that x or z is in Y . Without loss of
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generality we may assume that x ∈ Y . Then since xy ∈ T it follows that

d(T,`)(x, y) = d(T ′,`′)(x, y) = 0. In particular, {x, y} is contained in the label set

of a leaf u of T .

Delete label x to obtain a set X ′ = X −x of size |X| − 1, and form modified

X ′–trees T̃ and T̃ ′ from T and T ′ (respectively) by deleting the label x from u

and v. Then T̃ is a binary X ′–tree, T̃ ′ an X ′–tree, and both trees inherit strictly

positive edge lengths from T and T ′. Note that since x and y label the same

vertex in T and T ′, we have that no split that is present in T or T ′ separates x

from y. Hence, a split of X is present in exactly one of T and T ′, if and only if

its restriction to X − x is present in exactly one of T̃ and T̃ ′. Thus those trees

are not isomorphic.

Consider the modified set T̃ ⊆
(
X′

2

)
obtained from T by deleting xy ∈ T

and replacing each remaining occurrence of x by y in any pair xz ∈ T . Then T̃
is a triplet cover for T̃ , and if x′x′′ ∈ T̃ then the distance between x′ and x′′ in

T̃ is the same as it is in T̃ ′. Consequently, (T̃ , T̃ , T̃ ′) provides a counterexample

to Theorem 2.3. However, this new counterexample has a label set X ′ of size

|X ′| = n − 1 which is one less than the starting counterexample (T , T, T ′). If

n− 1 = 3 this is impossible, since the theorem holds when the label set has size

3, while if n− 1 ≥ 4 we have violated the minimality assumption regarding the

choice of (T , T, T ′). This shows that Case B cannot arise, thereby completing

the proof.

Note that while the proof of Theorem 2.3, and thereby Theorem 2.1 is non-

constructive, it ensures that the simple polynomial-time algorithm for recon-

structing the pair (T, `) (described in the proof of Proposition 2.2) produces the

only possible pair that induces the given d(T,`)–values on T .

3. Properties of minimal triplet covers

In this section, we collect together a number of definitions, observations, and

results (extending earlier work from [6]) that are required for establishing some
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further main results later in the paper.

3.1. Preliminaries

In the remainder of this paper, unless stated to the contrary, we will assume

that T refers to a binary phylogenetic X–tree. We will also write V̊ for V̊ (T )

(the set of interior vertices of T ) when T is clear.

Suppose that T is a triplet cover of T . The following terminology and result

is from [6].

• For x ∈ X the multiplicity µT (x) of x (relative to T ) is the number of

cords in T that contain x. The multiplicity of T is µ(T ) = minx∈X µT (x).

• |T | ≥ 2|X| − 3 (for a direct proof see [6, Proposition 3]). We call T
minimum if |T | = 2|X| − 3.

• We call a triplet cover T of T minimal if T − {t} is not a triplet cover for

T for all t ∈ T .

Note that there exist triplet covers that are minimal but not minimum (an

example is given in Fig. 3).

The following lemma summarizes some results established in [6] (namely,

Corollary 1, Proposition 2, and Corollary 2 of that paper, respectively).

Lemma 3.1. Suppose that T is a minimal triplet cover of T . Then

(i) 2|X| − 3 ≤ |T | ≤ 3|X| − 6.

(ii) 2 ≤ µ(T ) ≤ 5.

(iii) If T is a minimum triplet cover, then µ(T ) = 2.

Given a subset T ⊆
(
X
2

)
and v ∈ V̊ , we let Sv(T ) be the subset of

(
X
3

)
which

consists of precisely those triples which support v. We call Sv(T ) the support

of v (relative to T ).

Note that if abc ∈ Sv(T ), some v ∈ V̊ , then v = medT (a, b, c), where for all

xyz ∈
(
X
3

)
, medT (x, y, z) denotes the median of x, y, z (i.e. the unique vertex

that lies on all of the shortest paths between x, y and z).
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Lemma 3.2.

(i) T is a triplet cover of T if and only if |Sv(T )| ≥ 1 for all v ∈ V̊ .

(ii) If T is a triplet cover of T and v, w ∈ V̊ distinct, then Sv(T )∩Sw(T ) = ∅.

Proof: The proof of Part (i) is straightforward. For Part (ii), if this were not

the case, then for xyz ∈ Sv(T ) ∩ Sw(T ) we would have v = medT (x, y, z) = w,

a contradiction.

3.2. The cover graph Γ(T ) and triplet set C(T )

Given subset T ⊆
(
X
2

)
, the cover graph (of T ), denoted Γ(T ), is the graph

with vertex set X and edge set T . This graph, introduced in [2], has played an

important role in subsequent papers [3], [7], [6].

We now consider a set which will be useful for understanding the triangles

(i.e. 3–cycles) in a cover graph. Given a subset T ⊆
(
X
2

)
, we define

C(T ) =
⋃̇

v∈V̊
Sv(T ) ⊆

(
X

3

)
.

Note that the union in this definition is disjoint by Lemma 3.2(ii). In addition

we note some other useful properties of the set C(T ).

Lemma 3.3.

(i) If T is a triplet cover for T , then
⋃ C(T ) = X, and |C(T )| ≥ |X| − 2.

(ii) If T is a minimal triplet cover, then every cord in T is a subset of some

element of C(T ).

Proof: For Part (i), if x ∈ X, then let v be the vertex in T adjacent to x. If

A ∈ Sv(T ), then clearly x ∈ A. The inequality now follows from Lemma 3.2(ii).

For Part (ii), suppose that T is minimal and that there is a cord xy ∈ T that

is not a subset of any element in C(T ). Then, for all v ∈ V̊ , xy ∈ T is not a

subset of any element of Sv(T ). It follows by Lemma 3.2(i) that T − {xy} is a

triplet cover for T , a contradiction.
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We now collect together some important properties of the cover graph.

Theorem 3.4. Suppose that T is a triplet cover for T .

(i) The triangles in the cover graph Γ(T ) are in bijective correspondence with

the elements of C(T ).

(ii) Γ(T ) is 2-connected.1

(iii) If T is a minimal triplet cover for T , then every cord in T is the edge of

some triangle in Γ(T ).

Proof: Part (i): Suppose xyz ∈ C(T ), and so xyz ∈ Sv(T ), for some v ∈ V̊ .

Then clearly x, y, z is a triangle in Γ(T ), since xy, yz, xz ∈ T . Thus, we have

a map ψ that takes elements in C(T ) to triangles in Γ(T ). Clearly this map is

injective. Moreover, if x, y, z is a triangle in Γ(T ), then for v = medT (x, y, z),

we have xyz ∈ Sv(T ) and ψ(xyz) = x, y, z. Thus ψ is surjective.

Part (ii): The statement clearly holds if |X| = 3, and so we assume |X| ≥ 4.

Suppose x ∈ X. Let v ∈ V (T ) be the vertex in T adjacent to x. Let w 6= x

be a vertex adjacent to v in T , and let Tw be the tree which is the connected

component of T minus the edge {v, w} that contains w. Let Yw = V (Tw) ∩X.

We claim that the graph induced by Γ(T ) on Yw is connected.

Consider Tw as being a rooted, directed tree, with root w and all edges

directed away from w. For u ∈ V (Tw) we let Yu denote the set of leaves x in X

for which u lies on the path in Tw from the root vertex w to x. We now prove

the claim using induction on |Yu|. If |Yu| = 1, then clearly the graph induced by

Γ(T ) on Yu is connected. Now, suppose u ∈ V (Tw) with |Yu| > 1. Let u′, u′′ be

the children of u in Tw. By induction, we can assume that the graphs induced

1The connectivity of Γ(T ) also follows from [2] (Proposition 1 and Corollary 3).
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by Γ(T ) on Yu′ and on Yu′′ are connected. But as T is a triplet cover for T ,

there must exist a cord y′y′′ ∈ T with y′ ∈ Yu′ and y′′ ∈ Yu′′ . So the graph

induced by Γ(T ) on Yu = Yu′ ∪ Yu′′ is connected. The claim now follows as

w ∈ V (Tw).

Now, let xyz be a triple in the support Sv(T ) of v, for some y, z ∈ X, which

must exist as T is a triplet cover for T . Let w′, w′′ denote the two vertices in T

adjacent to v that are not equal to x. Then as xyz ∈ Sv(T ), it follows without

loss of generality that y ∈ Yw′ and z ∈ Yw′′ . Moreover, as the graphs induced

by Γ(T ) on Yw′ and Yw′′ are both connected by the above claim, x 6∈ Yw′ , Yw′′

and {y, z} is an edge in Γ(T ), it immediately follows that the graph Γ(T ) − x
obtained by removing x and the edges which contain it is connected. Note that

such edges must exist as xy, xz ∈ T . As the selection of x ∈ X was arbitrary, if

follows that Γ(T )− x is connected for all x ∈ X, i.e. Γ(T ) is 2-connected.

Part (iii): This follows by Part (i) and Lemma 3.3(ii).

3.3. Sparse triplet covers and Hall-type subsets of triples

We call a triplet cover T of T sparse if |C(T )| = |X| − 2 (cf. Lemma 3.3(i)).

Note that if T is a sparse cover of T , then the function fT : C(T ) → V̊ , which

maps xyz ∈ C(T ) to medT (x, y, z) is a bijection. From this observation, it is

possible to construct minimal triplet covers that are not sparse (an example is

provided in Fig. 3).

Note also that there are sparse triplet covers that are not minimal (an ex-

ample is to add a new cord eh into the triplet cover T in Fig. 4).

We say that a subset C ⊆
(
X
3

)
is of Hall-type if

⋃ C = X and C satisfies the

following property (cf. [4]): For all non-empty subsets C′ ⊆ C,∣∣∣⋃ C′∣∣∣ ≥ |C′|+ 2.

For example, for the triplet cover T in Fig. 4, the set C(T ) is of Hall-type. Note

that in [4, Theorem 1.1] it is shown that if C ⊆
(
X
3

)
and

⋃ C = X then there
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Figure 3: Top: A minimal triplet cover that is not sparse. Bottom: The associated cover

graph for T .

is a phylogenetic X-tree T = (V,E) for which the map from C to V̊ defined by

putting xyz 7→ medT (x, y, z) is injective if and only if C is of Hall-type. We now

use this fact to show that sparse triplet covers are of Hall-type.

Lemma 3.5. Suppose T is a triplet cover of T . If T is sparse, then C(T ) is of

Hall-type.

Proof: Note that since T is sparse the map fT is a bijection. Hence, since⋃ C(T ) = X by Lemma 3.3(i), it follows by [4, Theorem 1.1] mentioned above

that C(T ) is of Hall-type.
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3.4. Sections

A subset C ⊆ C(T ) is called a section (of C(T )) if |C ∩ Sv(T )| = 1 for all

v ∈ V̊ . Note that C(T ) always contains a section and that if C is a section, then

|C| = |X| − 2

We now define a set whose properties will be useful later on. Given a subset

C ⊆
(
X
3

)
, we define the cord set of C to be

Co(C) = {xy ∈
(
X

2

)
: xy ⊂ A some A ∈ C}.

Note that clearly Co(C(T )) ⊆ T , but that in general T is not necessarily a

subset of Co(C(T )) (for example, if we add in a new cord eh to the triplet cover

T in Fig. 4, we obtain a new triplet cover T ′ for which T ′ is not a subset of

Co(C(T ′))). Moreover, if C is a section of C(T ), then Co(C) ⊆ T .

Proposition 3.6. Suppose that T is a triplet cover for T . The following hold:

(a) If T is a minimal triplet cover for T , then Co(C(T )) = T .

(b) T is sparse if and only if C(T ) is of Hall-type.

(c) (i) If C is a section of C(T ), then Co(C) is a triplet cover for T . In

particular,
⋃ C = X.

(ii) If C is a section of C(T ), then C is of Hall-type.

(iii) T is minimal if and only if Co(C) = T for every section C of C(T ).

(iv) T is sparse if and only if C(T ) has a unique section.

Proof: Part (a): Since T is minimal, for all xy ∈ T , xy ⊂ A for all A ∈ Sv(T ),

some v ∈ V̊ (otherwise we could remove xy from T and still have a triplet cover).

So T ⊆ Co(C(T )). As remarked above, the reverse inequality is obvious.

Part (b): By Lemma 3.5 it suffices to prove that if C(T ) is of Hall-type, then T
is sparse. Suppose for contradiction that T is not sparse. Let C be a section of

C(T ), so that |C| = |X|−2 and so (since C(T ) is of Hall-type) we have
⋃ C = X.
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Since T is not sparse C(T ) > |X| − 2. Hence there is some t ∈ C(T ) that is not

in C. Let C′ = C ∪ {t}. Since C(T ) is of Hall-type and C′ ⊆ C(T ),

|X| = |
⋃
C′| ≥ |C′|+ 2 = (|X| − 2 + 1) + 2 = |X|+ 1,

a contradiction.

Part (c-i): If v ∈ V̊ (T ), then there exists xyz ∈ C, x, y, z ∈ X, with xyz ∈
Sv(T ), and so xy, yz, zx ∈ Co(C). Hence Sv(Co(C)) 6= ∅. The statement now

follows from Lemma 3.2(i).

Part (c-ii): We can think of a section C of C(T ) as being a bijective map

fC : V̊ → C which for each v ∈ V̊ selects some element in Sv(T ) (the inverse of fC

is the map which takes each xyz ∈ C, x, y, z ∈ X, to medT (x, y, z)). Statement

(ii) now follows immediately from [4, Theorem 1.1] mentioned before Lemma 3.5.

Part (c-iii): Suppose T is minimal. In view of Proposition 3.6(c-i) T =

Co(C) must clearly hold whenever T is minimal.

Conversely, suppose that Co(C) = T for every section C of C(T ). Suppose T
is not minimal. Then there exists some xy ∈ T , x, y ∈ X, such that T − {xy}
is a triplet cover for T . Thus for all v ∈ V̊ , we have xy is not contained in some

A ∈ Sv(T ). So, we can choose a section C of C(T ) in which xy is not a subset

of any element of C. But then xy 6∈ Co(C), which contradicts the assumption

that Co(C) = T for all sections C of C(T ).

Part (c-iv): Clearly, if T is sparse, then C(T ) contains a unique section. Con-

versely, if C(T ) has a unique section, then |C(T )| = |X|−2, and so T is sparse.

3.5. The range of µ(T )

We saw in Lemma 3.1 that when µ(T ) is a minimum triplet cover for T

then µ(T ) = 2. However, for minimal triplet covers, µ(T ) can be larger. For
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example, there exists a sparse triplet cover T for some T with µ(T ) = 4 (see

Fig. 4; note that in this example T −x is not a triplet cover for T − x for any

x ∈ X). Our main result of this section is that for a minimal triplet cover T for

T then µ(T ) must lie within these two extreme values.

Proposition 3.7. If T is a minimal triplet cover for T , then 2 ≤ µ(T ) ≤ 4.

Proof: We use an argument similar to the proof of (3) ⇒ (2) of [4, Theorem

1.1].

Let C be a section of C(T ), which is of Hall-type by Proposition 3.6(c-ii).

Put n = |X|. For x ∈ X, let nC(x) be the number of triplets in C containing x.

If there exists some x ∈ X such that nC(x) = 1, then µT (x) = 2 by the ‘only

if’ direction of Proposition 3.6(c-iiii). Hence µ(T ) = 2. Thus we may suppose

that nC(x) > 1 for all x ∈ X. Let Ω = {(x, S) ∈ X × C : x ∈ S}. Then

|Ω| =
∑
x∈X

nC(x) ≥ 2k + 3(n− k),

where k = |{x ∈ X : nC(x) = 2}|, and, since C is a section of C(T ),

|Ω| = 3|C| = 3(n− 2).

Hence 2k + 3(n − k) ≤ 3n − 6, and so k ≥ 6. Hence there exists some x ∈ X
with nC(x) = 2. Thus µT (x) ≤ 4 and so µ(T ) ≤ 4 by again invoking the ‘only

if’ direction of Proposition 3.6(c-iii).

4. 2-tree decompositions

A graph H = (V,E) with |V | ≥ 3 is called a 2-tree if there exists an ordering

v1, v2, . . . , vq of V such that {v1, v2} ∈ E and, for i = 3, . . . , q, the vertex vi

has degree 2 and belongs to a unique triangle in the subgraph induced by H on

the set {v1, v2, . . . , vi} [5, p.235]. We let ∆(H) denote the set consisting of the

triangles in H. Note that |E| = 2|V | − 3 and |∆(H)| = |V | − 2 [8, p.227].

A 2-tree decomposition of a graphH = (W,F ) is a collection {Hi = (Wi, Fi)}mi=1,

m ≥ 1, of subgraphs of H (called blocks) such that the following hold:
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Figure 4: Top: A sparse minimal triplet cover with µ(T ) = 4. Bottom: The associated cover

graph.

• Hi is a 2-tree, and its vertex set Wi has size at least 3;

• the vertex sets of H1, . . . ,Hm cover every vertex of H (i.e. W =
⋃m

i=1Wi);

• the edge sets of H1, . . . ,Hm partition the edge set of H (i.e. F =
⋃m

i=1 Fi

and the sets Fi are pairwise disjoint).

We call the decomposition strict if the edge set of every triangle in H is a

subset of some Fi, 1 ≤ i ≤ m.

Note that 2-tree decomposition should not be confused with the phrase ‘tree-

decomposition’ that is used in the graph-theoretic literature when describing the

tree-width of a graph. Note also that if H = (V,E) is a 2-tree, then it can be

easily shown that any 2-tree decomposition of H has one block, namely, H itself.

We now state our second main theorem.
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Theorem 4.1. Suppose that T is a triplet cover for T .

(a) If T is minimal and C is a section of C(T ), then C = ∪̇mi=1∆(Hi) for

{Hi = (Wi, Fi)}mi=1 some 2-tree decomposition of Γ(T ). Moreover, {Hi =

(Wi, Fi)}mi=1 is the only 2-tree decomposition of Γ(T ) with C = ∪̇mi=1∆(Hi)

and, if T is sparse, then this decomposition is a strict 2-tree decomposition.

(b) The following statements are equivalent:

(i) Γ(T ) has a strict 2-tree decomposition;

(ii) Γ(T ) has a unique strict 2-tree decomposition;

(iii) T is minimal and sparse.

(c) If T is minimal, then the following statements are equivalent:

(i) Γ(T ) has a unique 2-tree decomposition;

(ii) T is sparse.

Proof: Part (a): Suppose that T is a minimal triplet cover for T , and let C be

a section of C(T ). We first construct a 2-tree decomposition of Γ(T ).

Pick some element t1 ∈ C. We now select a sequence of elements from C
starting with t1 as follows. Suppose that some sequence t1, t2, . . . , ti ∈ C, i ≥ 1,

of elements in C has been selected. To select ti+1 check if there exists some

t ∈ C − {t1, t2, . . . , ti} and some 1 ≤ j ≤ i with |tj ∩ t| = 2. If such a t exists,

then put ti+1 = t, and repeat this process for the new sequence, otherwise stop.

This process will clearly stop yielding a sequence t1, t2, . . . , tk with 1 ≤ k ≤ |C|.
Now put (W1 =

⋃k
i=1 ti, F1 =

⋃k
i=1 Co({ti})). If C = {t1, t2, . . . , tk} then

stop. Otherwise pick some element in C − {t1, t2, . . . , tk}, and repeat the above

process for C−{t1, t2, . . . , tk}, to obtain a new pair (W2, F2). Then, if necessary,

keep repeating this whole process until all elements in C have been selected. This

results in a collection of pairs {(W1, F1), . . . (Wm, Fm)}, with 1 ≤ m ≤ |C|.
We illustrate this construction in Fig. 5 for the section {acw, abc, bdz, bcq, qcd, adq}

of C(T ) for the example in Fig. 3. Choosing t1 = acw and then t2 = abc,
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t3 = bcq, t4 = acd, and t5 = adp gives rise to a sequence of elements in

C for which the stated property holds. Then W1 = {a, b, c, d, p, q, w} and

F1 = T −{bd, bz, zd}. Since C 6= {t1, . . . , t5} clearly holds we next pick t6 = bdz.

Since C = {t1, . . . , t6} we stop and put W2 = {b, c, d} and F2 = {bd, bz, zd}.
Thus the resulting 2-tree decomposition has two blocks.

p

d

a b

c q

w

z

Figure 5: A 2-tree decomposition for the section C = {acw, abc, bdz, bcq, qcd, adq} of C(T ) for

the example in Fig. 3.

Now, note that by construction Hi = (Wi, Fi) is a subgraph of Γ(T ),

|Wi| ≥ 3, and Hi a 2-tree for all 1 ≤ i ≤ m. Moreover, since
⋃ C = X

(see Proposition 3.6(c-i)), it follows that X =
⋃m

i=1Wi, and since T is minimal,

Co(C) = T (see Proposition 3.6(c-iii)) and so T =
⋃m

i=1 Fi.

We now observe that if e is any element of T , then by construction of the

pairs (Wi, Fi), there must be some 1 ≤ l ≤ m with e ∈ Fl and e 6∈ Fk for any

k < l. Moreover, by construction if t ∈ C with e ∈ Co({t}), then Co({t}) ⊆ Fl.

In particular, again by construction, it follows that e 6∈ Fk for any k > l. Hence,

the sets Fi are pairwise disjoint. Moreover, by construction, C = ∪̇mi=1∆(Hi),

and so |X|−2 = |C| = ∑m
i=1 |∆(Hi)| as C is a section. Hence {Hi}mi=1 is a 2-tree

decomposition of Γ(T ), with C = ∪̇mi=1∆(Hi).

To see that the uniqueness statement holds, suppose that {H ′i = (W ′i , F
′
i )}qi=1

is any 2-tree decomposition of Γ(T ) with C = ∪̇qi=1∆(H ′i). Suppose that v1, . . . , vb

is an ordering of W ′1, which can be used to construct the 2-tree H ′1. Let δ be

the triangle v1, v2, v3 in H ′1 (which must exist as |W ′1| ≥ 3). Then δ must be

contained in Hi for some 1 ≤ i ≤ m, since C = ∪̇mi=1∆(Hi).

Now, note that H ′1 is a subgraph of Hi. Indeed, if not then there must
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exist some 4 ≤ l ≤ b so that the triangle added to form a 2-tree on v1, . . . , vl

which is subgraph of H ′1 is not contained in Hi, but the 2-tree obtained from

the sequence v1, . . . , vl−1 is in Hi. So the triangle containing vl which is added

at stage l to H ′1 must be contained in some Hj , j 6= i. But this contradicts

Fi ∩ Fj = ∅.
Using similar reasoning, it follows that Hi is a subgraph of H ′1 (since we can

also use the triangle δ as the first three elements in an ordering for constructing

Hi). Thus H ′1 is equal to Hi.

Now, we can repeat this process for H ′2, considering now a triangle that

provides the first three elements in an ordering for constructing H ′2 that is in

the set C − ∆(H ′1), and keep repeating this whole process until finally come

to considering a triangle in H ′q in the set C − ∪̇q−1
i=1 ∆(H ′i). In this way we see

that q = m and H ′i is equal to some Hj for all 1 ≤ i ≤ m. Hence the 2-

tree decomposition {Hi}mi=1 is the unique 2-tree decomposition of Γ(T ) with

C = ∪̇mi=1∆(Hi).

To complete the proof of Part (a), note that if T is sparse, then C = C(T ) by

Proposition 3.6 (c-ii). It follows by Theorem 3.4(i) and construction of {Hi}mi=1

that there is no triangle in Γ(T ) which is not contained in some Hi. Hence

{Hi}mi=1 is a strict 2-tree decomposition of Γ(T ).

From now on, we denote the 2-tree decomposition associated to a section C given

in Part (a) by HC .

Part (b): The implication (ii) ⇒ (i) is obvious.

(iii) ⇒ (i) follows from Part (a) by taking the 2-tree decomposition HC(T ).

(i) ⇒ (iii) Let {Hi = (Wi, Fi)}mi=1 be a strict 2-tree decomposition for Γ(T ).

Then |X| − 2 =
∑m

i=1 |∆(Hi)|. But every triangle in Γ(T ) is contained in

precisely one of the blocks Hi since {Hi = (Wi, Fi)}mi=1 is strict. Hence by

Theorem 3.4(i),

|C(T )| = |∆(Γ(T ))| =
m∑
i=1

|∆(Hi)| = |X| − 2,
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and so T is sparse. Moreover, T is minimal. Indeed, every edge xy of Γ(T ) must

be contained in some triangle of Γ(T ) (by definition of a 2-tree decomposition).

Hence, its removal would imply |C(T − xy)| = |∆(Γ(T − xy))| < |∆(Γ(T ))| =

|X| − 2, and so T − xy would not be a triplet cover of T .

(i)⇒ (ii) Suppose that {Hi = (Wi, Fi)}mi=1 is any strict 2-tree decomposition

for Γ(T ). Then C(T ) = ∆(Γ(T )) = ∪̇mi=1∆(Hi), and since T is sparse C(T ) has

a unique section (by Proposition 3.6(c-iv)), namely C(T ). Statement (ii) now

follows from Part (a) and the fact that T is minimal.

Part (c): (i)⇒ (ii) Suppose that T is not sparse. Then C(T ) must have at least

two distinct sections C and C′. Then HC 6= HC′ are 2-tree decompositions of

Γ(T ). Statement (i) now follows immediately.

(ii) ⇒ (i): This follows from Part (b).

Note that there exists a minimal triplet cover T for some T , and a 2-tree

decomposition of Γ(T ) which is not of the form HC as defined in the proof of

the last theorem for any C a section of C(T ). Namely, take the tree and minimal

triplet cover in Fig. 3, add in a new leaf r to the edge adjacent to the cherry

{p, d} to get T , and add the cords rc and rd to get T . Then for the 2-tree H1

with triangles consisting of the vertex sets {p, a, d}, {a, b, d}, {a, b, c}, {b, c, q},
{a, c, w}, {d, b, z} and the 2-tree H2 consisting of the triangle {r, d, c}, {H1, H2}
is a 2-tree decomposition, but cannot arise from a section since abc and abd are

both in the support of the same vertex of T .

4.1. Further observations

We now show that 2-tree decompositions have some attractive properties,

which also allow us to obtain previous results on triplet covers in a rather natural

way.

Proposition 4.2. Suppose that H = (W,F ) is a graph that has a 2-tree de-

composition into m ≥ 1 blocks. Then |F | = 2|W | − 4 +m.
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Proof: Let {Hi = (Wi, Fi)}mi=1 be a 2-tree decomposition of H. Then, since the

number of triangles in a 2-tree equals the size of its vertex set minus 2

(1) |W | − 2 =

m∑
i=1

|∆(Hi)| =
m∑
i=1

(|Wi| − 2).

Now, as {Hi}mi=1 is a 2-tree decomposition, |F | = ∪̇mi=1|Fi|. Hence, as the

number of edges in a 2-tree is equal to twice the number of its vertices minus 3,

we have

(2) |F | =
m∑
i=1

(2|Wi| − 3).

Using Equations (1) and (2) it immediately follows that |F | = 2|W | − 4 +m.

Proposition 4.2 leads directly to the following result which shows that the

size of the 2-tree decomposition HC associated to a section C is independent of

the choice of C.

Corollary 4.3. Suppose that T is a minimal triplet cover for T , for which Γ(T )

has a 2-tree decomposition into m ≥ 1 blocks. Then |T | = 2|X| − 4 + m. In

particular, it follows that if C is any section of C(T ), then the 2-tree decompo-

sition HC of Γ(T ) has |T | − 2|X|+ 4 blocks.

We pause to mention two consequences of Corollary 4.3. First, suppose that

T is a triplet cover for T . Let T ′ be a minimal triplet cover for T contained in

T , and let C be some section of C(T ′). Let m = |HC |. Then by Corollary 4.3,

|T | ≥ |T ′| = 2|X| − 4 + m. Thus, since m ≥ 1, |T | ≥ 2|X| − 3. (This recovers

[6, Proposition 1]).

Second, suppose that T is a minimum triplet cover for T . Let C be a section

of C(T ), and |HC | = m. By Corollary 4.3, we then have 2|X| − 3 = |T | =

2|X| − 4 + m, and so m = 1. Therefore, Γ(T ) is a 2-tree (this recovers [6,
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Theorem 1]). Moreover, as Γ(T ) is a 2-tree, |C(T )| = |X| − 2, and so T is

sparse.

Remark

The results above suggests the following natural question: If a graph H =

(V, F ) is 2-connected and H has a strict 2-tree decomposition in which

every pair of blocks intersect in at most 2 vertices, then does there exist

a minimal, sparse triplet cover T for some phylogenetic X-tree T , with

Γ(T ) isomorphic to H? Note that this can be shown to hold in case H is

a 2-tree.

5. Shellings and ample patchworks

The concept of a shellable triplet cover was introduced in [2], and has proved

helpful in subsequent papers. In order to define it, one requires the notion of a

quartet tree. Suppose that X = {a, b, c, d} and that T is a phylogenetic tree for

which the path joining a and b does not share a vertex with the path joining

c and d. In that case we say that T is a quartet tree and denote it by writing

ab|cd.

Given a triplet cover T of a phylogenetic X–tree T , we say that T is T -

shellable if either |X| = 3 or |X| ≥ 4 and there exists an ordering of the cords

in
(
X
2

)
−T , say a1b1, a2b2, . . . , ambm such that for every 1 ≤ i ≤ m, there exists

a pair xi, yi of distinct elements in X − {ai, bi} such that the restriction of T

to the set Yi = {ai, bi, xi, yi} is the quartet tree xiai|yibi, and all cords in
(
Yi

2

)
except aibi are contained in Ti = T ∪ {ajbj : 1 ≤ j ≤ i− 1}.

For example, the triplet cover (indicated in terms of the median) in Fig. 1

is shellable since ae, bd, ad is a shelling for it.

Although this combinatorial definition of shellability seems somewhat in-

volved, its motivation rests on it being a sufficient condition for recursively

determining the distances between all pairs of leaves (when the edges of T are

assigned arbitrary positive edge lengths) starting with just the distance values
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for the pairs in the triplet cover. In other words, if a triplet cover T of T is

shellable then the pairs of elements from X that are not already present in T
can be ordered in a sequence so that the distance in T between the leaves in

each pair is uniquely determined from the distances values on pairs that are

either (i) present as an element of T or (ii) appear earlier in the sequence.

Note that a triplet cover of a tree T need not be T–shellable, even if T
is sparse. An example is shown in Fig. 6. Thus, it is of interest to better

understand those triplet covers which are shellable.

is sparse. An example is shown in Fig. 6. Thus, it is of interest to better

understand those triplet covers which are shellable.
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Figure 6: A non-shellable triplet cover (left). Its associated cover graph is described by the

bold edges in the graph on the right. The three additional (lightly shaded) edges ik, bf, dh form

the initial sequence of a shelling (based on the quartets ij|kl, ab|ef , and cd|gh, respectively),

which does not extend to a full shelling.

The following lemma recalls some basic properties of shellability established

in Proposition 4 of [6].

Lemma 5.1.

(i) Suppose that x 2 X and T is a triplet cover of T such that T �x is a triplet

cover of T � x. If T �x is (T � x)-shellable, then T is T -shellable.

(ii) Suppose that T , T 0 are triplet covers of T and that T 0 ✓ T . If T 0 is

T -shellable, then so is T .

Let M be a finite set. A hierarchy on M is a collection H of non-empty

subsets of M which satisfies the property that for all A, B 2 H, A \ B 2
{;, A, B}. The hierarchy H is maximal if there is no element H of 2M �H such

that H [ {H} is a hierarchy.

From [1], a collection P of subsets of M forms a patchwork if it satisfies the

following property

A, B 2 P and A \ B 6= ; ) A [ B 2 P.
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bold edges in the graph on the right. The three additional (lightly shaded) edges ik, bf, dh form

the initial sequence of a shelling (based on the quartets ij|kl, ab|ef , and cd|gh, respectively),

which does not extend to a full shelling.

The following lemma recalls some basic properties of shellability established

in Proposition 4 of [6].

Lemma 5.1.

(i) Suppose that x ∈ X and T is a triplet cover of T such that T −x is a triplet

cover of T − x. If T −x is (T − x)-shellable, then T is T -shellable.

(ii) Suppose that T , T ′ are triplet covers of T and that T ′ ⊆ T . If T ′ is

T -shellable, then so is T .

Let M be a finite set. A hierarchy on M is a collection H of non-empty

subsets of M which satisfies the property that for all A,B ∈ H, A ∩ B ∈
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{∅, A,B}. The hierarchy H is maximal if there is no element H of 2M −H such

that H ∪ {H} is a hierarchy.

From [1], a collection P of subsets of M forms a patchwork if it satisfies the

following property

A,B ∈ P and A ∩B 6= ∅ ⇒ A ∪B ∈ P.

A patchwork P on M is called ample if M is in P, for all m ∈M , {m} is in P,

and P contains a maximal hierarchy on M .

If T is a triplet cover of T and C is a section of C(T ), we define P(C) to be

the collection of non-empty subsets C′ of C that satisfy |⋃ C′| = |C′| + 2. Note

that since C is of Hall-type by Proposition 3.6(c-ii), and since by [4, Lemma

1.2] a collection K′ of non-empty subsets of a set K of Hall-type that satisfies

|⋃K′| = |K′| + 2 is a patchwork, it follows that P(C) is a patchwork. For

example, with the triplet cover T considered in Fig. 1 we have

P(C(T )) = C(T ) ∪ {{abc, bce}, {bce, cde}}.

Note that for the sparse minimal triplet cover T of T in Fig. 4, T is T -

shellable, but P(C(T )) is not an ample patchwork.

Proposition 5.2. Suppose that T a triplet cover for T and C is a section of

C(T ).

(i) If Co(C) shellable, then so is T .

(ii) If C′, C′′ ∈ P(C) and C′ ∩ C′′ = ∅, then |⋃ C′ ∩ ⋃ C′′| ≤ 2. Moreover, if

C′ ∪ C′′ ∈ P(C) also holds, then |⋃ C′ ∩⋃ C′′| = 2.

Proof: Part (i) follows by Lemma 5.1(ii). For Part (ii), let C′, C′′ ∈ P(C) be such

that C′ ∩ C′′ = ∅ and let Y =
⋃ C′ and Z =

⋃ C′′. Then since C is a section of
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C(T ) and C′ ∪ C′′ ⊆ C we obtain

|Y |+ |Z| − |Y ∩ Z| = |Y ∪ Z|

= |
⋃

(C′ ∪ C′′)|

≥ |(C′ ∪ C′′)|+ 2

= |C′|+ |C′′|+ 2

= (|Y | − 2) + (|Z| − 2) + 2 = |Y |+ |Z| − 2

where the inequality follows because C is a section of C(T ) and so C is of Hall

type (by Proposition 3.6(c–ii)), and since C′ ∪ C′′ is a non-empty subset of C,
the Hall-type condition ensures that |⋃(C′ ∪ C′′)| ≥ |C′ ∪ C′′|+ 2. Moreover, if

C′ ∪ C′′ ∈ P(C), then equality holds in the third line.

Suppose T is a triplet cover for T . For A a non-empty subset of X of size

at least three, we define T |A to be the subtree of T spanned by the leaves in A

(suppressing degree 2 vertices). Clearly, T |A is a phylogenetic A-tree. We also

define T |A to be the subset of T consisting of those cords xy ∈ T with x, y ∈ A.

Lemma 5.3. Suppose T is a triplet cover for T and that C is a section of C(T ).

(i) If C′ ∈ P(C) then, for Y =
⋃ C′, T |Y is a triplet cover for T |Y .

(ii) Suppose C′, C′′ ∈ P(C), A =
⋃ C′, B =

⋃ C′′, A ∪ B = X and A ∩ B =

{x, y} for some x 6= y ∈ X. If a ∈ A−{x, y} and b ∈ B−{x, y}, then the

quartet tree induced by T on {a, b, x, y} is either ax|yb or ay|bx.

Proof: Part (i): Note that (considering T |Y as a subtree of T )

(3) {v ∈ V̊ : v = medT (x, y, z) and xyz ∈ C′} ⊆ V̊ (T |Y ).

But |V̊ (T |Y )| = |Y | − 2 (since T |Y is a phylogenetic Y –tree), and, since C is a

section of C(T ) and C′ ∈ P(C) we have:

|{v ∈ V̊ : v = medT (x, y, z) and xyz ∈ C′}| = |C′| = |
⋃
C′| − 2 = |Y | − 2.
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Therefore, equality holds in (3), from which Lemma 5.3(i) immediately follows.

Part (ii): Suppose that C′, C′′ ∈ P(C), A =
⋃ C′, B =

⋃ C′′, A ∪ B = X and

A ∩ B = {x, y} for some x 6= y ∈ X. If a ∈ A − {x, y} and b ∈ B − {x, y},
then we claim that the quartet tree induced by T on {a, b, x, y} is either ax|yb
or ay|bx.

Proof of Claim: Let v 6= x, y be any vertex in T on the path between x and y

in T . Let u ∈ V (T ) be the vertex in T that is adjacent to v but not on the

path between x and y. Consider the subtree Tu of T which is the component

obtained by removing the edge {u, v} from T that contains u. We will show

that either V (Tu) ∩ X ⊆ A or V (Tu) ∩ X ⊆ B. The statement then follows

immediately.

Consider Tu as being a directed rooted tree with root u and all edges directed

away from u. For w ∈ V (Tu), let Tw denote the directed, rooted subtree of Tu

with root w, and let Yw = V (Tw) ∩ X. We show by induction on |Yw| that

Yw ⊆ A or Yw ⊆ B for all w ∈ V (Tu).

If |Yw| = 1, then since A∪B = X, clearly Yw ⊆ A or Yw ⊆ B. Suppose that

|Yw| > 1. Let w′, w′′ be the children of w in Tw. Then, by induction, Yw′ is a

subset of A or B and so is Yw′′ . Suppose without loss of generality that Yw′ is

a subset of A. We need to show that Yw′′ is also a subset of A. Since T is a

triplet cover of T , there must exist a cord pq ∈ T with p ∈ Yw′ and q ∈ Yw′′ ,

and some r ∈ X − {p, q} with pqr ∈ Sw(T ). Hence, pqr ∈ B or pqr ∈ A. But

since p ∈ A−{x, y} and A∩B = {x, y} it follows that q ∈ A. Hence, Yw′′ ⊆ A.

We can now state our third main theorem.

Theorem 5.4. If T is a triplet cover of T and there exists a section C of C(T )

such that P(C) is an ample patchwork, then T is shellable.

Proof: Since P(C) is an ample patchwork, there exists a maximal hierarchy M

in P(C). Suppose that C′ ∈ P(C), C′ 6= {t}, some t ∈ C, and C1, C2 are the

children of C′ in M . Let Y =
⋃ C′, and Yi =

⋃ Ci, i = 1, 2, so that in particular
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Y = Y1 ∪ Y2. By Lemma 5.3(i), T |Y is a triplet cover for T |Y , and T |Yi is a

triplet cover of T |Yi
, for i = 1, 2. We now show that if T |Yi

is T |Yi
-shellable, for

i = 1, 2, then T |Y is T |Y -shellable. This will complete the proof of Theorem 5.4

since induction can be used in a bottom-up fashion on M to see that T is

shellable.

Since T |Yi
is T |Yi

-shellable, for i = 1, 2, it follows that for each i there must

be some ordering of the cords in T |Yi
which satisfies the definition of T |Yi

-

shellability. Hence we can assume that we have added all cords in
(
Yi

2

)
, i = 1, 2

into T |Y to obtain a new set of cords T ′.
Now, by Proposition 5.2 (applied with C′ = C1 and C′′ = C2), |Y1 ∩ Y2| = 2.

Let Y1∩Y2 = {y, z}, y, z ∈ X. Note that yz ∈ T ′ by our assumption on T ′. Now

if p ∈ Y1−{y, z} and q ∈ Y2−{y, z} and pq 6∈ T ′, then {yz, yp, yq, zp, zq} ⊆ T ′,
and so by Lemma 5.3(ii) applied to T |Y and the sets Y1, Y2, we can add the

cord pq into T ′. This can be repeated until we obtain all cords in
(
Y
2

)
, in such

a way that it follows that T |Y is T |Y -shellable.

Corollary 5.5. If T is a sparse triplet cover of T such that P(C(T )) is ample,

then T is shellable.

Corollary 5.6. If T is a triplet cover for T for which Γ(T ) has a strict 2-tree

decomposition into 2 or fewer blocks then T is shellable.

Proof: First note that, by Theorem 4.1(b) and Proposition 3.6(c-iv), C(T ) is

the unique section of C(T ). Now suppose that Γ(T ) has one block. Then Γ(T )

is a 2-tree. Pick some ordering t1, t2, . . . , tp, p ≥ 1, of the triangles in Γ(T ) so

that Γ(T ) can be constructed by adding in one triangle at a time in the given

ordering. Then it is straightforward to see that the set

{{t1}, . . . , {tp}, {t1, t2}, {t1, t2, t3}, . . . , {t1, t2, . . . , tp}}

is a maximal hierarchy in P(C(T )). Now apply Theorem 5.4.

If the 2-tree decomposition of Γ(T ) has two blocks, let t1, t2, . . . , tp and

t′1, t
′
2, . . . , t

′
q be orderings of the triangles in each of the blocks so that each

32



block can be constructed by adding in one triangle at a time in the given or-

dering. Put C′ = {{t1}, . . . , {tp}, {t1, t2}, {t1, t2, t3}, . . . , {t1, t2, . . . , tp}}, p ≥ 1,

and C′′ = {{t′1}, . . . , {t′q}, {t′1, t′2}, {t′1, t′2, t′3}, . . . , {t′1, t′2, . . . , t′q}}, q ≥ 1. Note

that {t1, t2, . . . , tp} ∪ {t′1, t′2, . . . , t′q} ∈ P(C(T )) by Theorem 3.4(ii) and Propo-

sition 5.2(ii). Now it is straightforward to see that the set

C′ ∪ C′′ ∪ {{t1, t2, . . . , tp, t′1, t′2, . . . , t′q}}

is a maximal hierarchy in P(C(T )). Now apply Theorem 5.4 again.

Note that the case for one block in the last corollary was also shown to hold

in [6].
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