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Abstract 

Starch has a complex molecular structure, with properties dependent on the relative chain 

lengths and branching structure of its constituent molecules, which varies due to variation in 

starch biosynthetic genes. Here we present the application of ultra-high performance size 

exclusion chromatography to the separation of starch chains from plant seeds. Several methods, 

have been used to analyse chain length distributions in starch, all with limitations in terms of 

analysis time, sample preparation and molecular weight range. Here we demonstrate that chain 

length distributions can be obtained with dramatically reduced analysis time using ultra-high 

performance size exclusion chromatography. The method may also show improvements in 

resolution of some fine structural features. Understanding links between starch fine structure 

and biosynthetic genes will allow bioengineering of starches with tailored properties. This 

technique may have application to the size separation and resolution of a range of biopolymers 

of value to the food, drink and pharmaceutical industries.  

Key Words: Starch; UPLC; Size Exclusion Chromatography; molecular structure; chain 

length distribution  

 

1. Introduction 

Starch is one of the most important biopolymers on earth, forming the main source of energy 

in the human diet, as well as being an important feedstock for a range of industrial processes, 

from the food industry to biofuels and paper manufacture. Starch comprises two distinct 

biopolymers, amylose and amylopectin. Amylose is an essentially linear molecule formed from 

α-1→4- linked anhydroglucose residues with a molecular weight of 105 to 106 Da. Amylopectin 

is a far more complex molecule formed from short chains of α-1→4- linked anhydroglucose 

residues interspersed with α-1→6 branch points. These two polymers make up the complex, 
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hierarchical structure of the starch granule. The chain lengths, degree of branching and position 

of the branches within the molecule are all dictated by a complex system of biosynthetic 

enzymes including elongating starch synthases, starch branching enzymes, debranching 

enzymes and amylolytic enzymes. Plants possess several isoforms of each of these biosynthetic 

and degradative enzymes, which can play subtly different roles and act in concert to generate 

the final complex structure of the starch molecule.  

The most widely measured structural feature of starch polymers is the chain length distribution 

(CLD), which is the fundamental structural level of starch which determines a range of 

functionalities such as crystallinity, texture properties and digestion (Witt, Doutch, Gilbert, & 

Gilbert, 2012). To obtain this distribution, the starch is solubilised and treated with an enzyme 

(isoamylase or pullulanase) that cleaves the α-1→6 branch points, leaving linear chains of 

varying lengths. These chains can then be separated and quantified. This yields a characteristic 

distribution, which relates to the structure of the amylopectin and amylose molecules. Within 

the classic cluster model of amylopectin, the chains of the molecule can be classified by their 

branching and lengths. Each amylopectin molecule contains only a single C chain, which holds 

the sole reducing end of the molecule. B chains branch off another chain, and themselves have 

chains branching from them. B3 chains are the longest, and span multiple clusters, with a chain 

length >50 glucose residues. B2 chains span more than one cluster and are of intermediate 

length, 25-50 residues. B1 chains are the shortest, with a length of <25, similar in length to A 

chains which are the shortest, unbranched chains (Hizukuri, 1986). A schematic of this model 

of starch structure is shown in Figure 1. Amylose chains are much longer (100 to 10,000 

glucose residues in length), and their fine structure has received less attention, primarily due to 

the inherent technical difficulties in characterising such large molecules. The relative lengths 

of the amylopectin chains have important implications for the structure of the native starch 

granule with longer chains in the amylopectin clusters more able to form double helices, 
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resulting in higher granule crystallinity and wider crystalline lamellae regions (starch granule 

structure being composed of alternating crystalline and amorphous layers, termed lamellae) 

(O'Sullivan & Perez, 1999; Pfannemüller, 1987; Witt et al., 2012). CLDs of both amylopectin 

and amylose molecules also have important implications for end use functionality and starch 

properties, determining a wide range of different parameters including gelatinisation properties 

(Witt et al., 2012), brewing quality (Gous, Warren, Mo, Gilbert, & Fox, 2015), starch 

digestibility (Syahariza, Sar, Hasjim, Tizzotti, & Gilbert, 2013) and food sensory perception 

(Li, Prakash, Nicholson, Fitzgerald, & Gilbert, 2016). Analysis of CLDs has also become an 

important tool to understand the links between starch biosynthetic enzymes and starch structure 

in order to bioengineer starches with tailored properties, and to better understand starch 

biosynthesis (Carpenter et al., 2017; Cuevas, Daygon, Morell, Gilbert, & Fitzgerald, 2010; Wu, 

Morell, & Gilbert, 2013). 

Several different techniques have been used in attempts to characterise the CLD of the starch 

granule, which poses particular challenges in polymer characterisation due to the broad 

molecular weight distributions involved, and the fine structural variations between different 

CLD’s. The major separation techniques used include Fluorophore Assisted Capillary 

Electrophoresis (FACE) (Morell, Samuel, & O'Shea, 1998), HPLC-based Size Exclusion 

Chromatography (HLPC-SEC) (Ciric, Woortman, & Loos, 2014; Vilaplana, Hasjim, & Gilbert, 

2012) and asymmetric field flow fractionation (AF4) (Chiaramonte, Rhazi, Aussenac, & White, 

2012). HPLC-SEC is the most widely used technique, but it has several technical problems, in 

particular the extended run times required to separate the very broad range of molecular 

weights in the starch CLD, which leads to lengthy sample analysis times. HPLC-SEC also 

suffers from band broadening as a result of low plate counts which result in low efficiency and 

therefore inherently poor resolution. This loss of resolution is solved in FACE, which does not 

suffer from band broadening. However, FACE is limited to, at best, a degree of polymerisation 
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(D.P.) of approximately 140, meaning it cannot be used to analyse amylose chain 

distribution.(Wu et al., 2013) In theory, these limitations are overcome by the use of AF4, but 

in practice it has been found difficult to achieve the required resolution to identify fine 

structural features, using AF (Chiaramonte et al., 2012; Gidley et al., 2010).     

Over the last two decades, the field of liquid chromatography has been revolutionised by the 

introduction of Ultra-high Perfomance Liquid Chromatography (UPLC), which utilises very 

high pressures of 40 MPa and above, and column packing materials with a particle size of sub-

2 µm (MacNair, Lewis, & Jorgenson, 1997). The use of sub-2µm columns provides greater 

separation efficiency, and permits higher linear velocities which reduces analysis times 

(Swartz, 2005). However, the use of UPLC technology with SEC has been limited, as SEC 

columns require large, defined pore diameters, which are a challenge to obtain with packing 

materials that will be stable under UPLC conditions. Only recently have sub-2 µm packing 

materials been developed for SEC that have the requisite solvent stability and mechanical 

strength (Uliyanchenko, Schoenmakers, & Van der Wal, 2011). These systems have been 

shown to provide significant improvements in separation efficiency and resolution of synthetic 

polymers (Bouvier & Koza, 2014; Janco, Alexander, Bouvier, & Morrison, 2013). In this 

paper, we describe the application of a UPLC-SEC approach to the separation of starch CLDs. 

It is anticipated that, by demonstrating the applicability of UPLC-SEC to the more rapid chain 

length separation of starches, this methodology will find wider use in biopolymer separation 

and characterisation, as well as becoming an important tool for starch structural analysis. We 

demonstrate that starch CLDs can be obtained, covering the size distribution range range from 

6 to 10,000 D.P., identifying features in the amylopectin CLD which are normally only possibly 

observed in a FACE distribution, and revealing structural heterogeneity in the amylopectin 

region. 

2. Materials and Methods 
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Three different starches were used in this study. Barley (Hordeum vulgare) (cv. Tipple) was 

provided as a gift from Phil Howell (NIAB, UK). The grain sample was ground to a flour in an 

IKA MF 10 mill to pass a 150 µm mesh and starch was extracted from the flour following the 

method of Andersson et al.(Andersson, Andersson, & Åman, 2001). Pea (Pisum sativum) plants 

were grown at the John  Innes Centre (UK), using two smooth-seeded pea cultivars, BC1/19RR  

(derived from introgression of the wild-type SbeI (starch-branching enzyme I) allele into the 

wrinkled-seeded genotype, JI 430) and cv. Cameor. Pea seeds were manually dehulled and then 

ground in a coffee grinder to pass a 150 µm mesh. From all three samples the starch was then 

solubilised and debranched as described in  Wu et al.(Wu, Li, & Gilbert, 2014). Pullulan 

standards with peak molecular weights ranging from 342 to 708,000 Da (PSS-pulkit) were 

obtained from Kromatek (UK). All samples and standards were dissolved in DMSO containing 

0.5% (w/v) LiBr prior to analysis at a concentration of 1 mg/mL. All samples and standards 

were analysed using a Waters ACQUITY Advanced Polymer Chromatography system fitted 

with 3 columns in series; XT-450Å, XT-125Å and XT-45Å and a differential refractive index 

(DRI) detector. The flow rate was set to 0.3 mL/min and the column temperature was 90°C.  

Pullulan standards were used for calibration, using the method described by Cave et al.(Cave, 

Seabrook, Gidley, & Gilbert, 2009) to obtain a relationship between elution volume and 

hydrodynamic radius (Vh) for the linear glucans, based on Mark-Houwink parameters of K = 

0.0002427 dL g–1 and α = 0.6804 for pullulan in DMSO at 90°C. Using this calibration, DRI 

elution profiles of the debranched starch samples were converted to SEC weight distributions 

expressed as w(logVh) using the relationship: 

 𝑤(𝑙𝑜𝑔𝑉ℎ) = 𝑆𝐷𝑅𝐼(𝑉𝑒𝑙)
𝑑𝑉𝑒𝑙

𝑑𝑙𝑜𝑔𝑉ℎ
  

where Vel(Vh) is obtained from the calibration curve of the pullulan standards (Cave et al., 

2009). CLDs were normalised using standard normal variate normalisation. For linear 
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polymers, such as debranched starch, a number distribution (Nde(X)) can be obtained from the 

corresponding weight distribution obtained from the DRI signal through the relationship: 

𝑤(𝑙𝑜𝑔𝑋) = 𝑋2𝑁𝑑𝑒(𝑋) 

3. Results and discussion 

DRI responses for each of the standards and the associated standard curve are shown in 

Fig. 2. Separation of the standards was achieved in under 8 min, with good resolution 

of each standard. A direct comparison of the same standards using HPLC-SEC is shown 

in Figure S1, demonstrating that the same separation requires 45 min analysis time. 

From these standards, a standard curve was constructed, giving an upper limit of 

calibration of radius of hydration (Rh) ≤ 30 nm. This covers the amylopectin region of 

the size distribution, and a proportion of the longer amylose chains. It should be noted 

that beyond this calibration, an extrapolation of the standard curve is required, and the 

method should only be considered semi-quantitative for longer amylose chains.  

Figure 3 shows weight distribution CLDs for three different types of starch, two different pea 

genotypes and a common commercial barley variety. Each distribution is eluted in under 8 min, 

with a total analysis time per sample of ≤15 min. The resolution of structural features within 

the CLD is equal to, or greater than, that achieved with conventional HPLC-SEC. Within the 

amylopectin region, both pea starches show two distinct peaks, with the global maximum of 

the distribution at D.P. 16 and a second amylopectin peak appearing at D.P. 44. The peak at 

D.P. 16 comprises shorter chains which are no longer than a single crystalline lamella within 

the starch granule structure, while the longer chains of D.P. 30 to 100 span multiple lamellae. 

These two peaks replicate those observed by conventional SEC approaches for pea seed 

starches (Wang, Hasjim, Wu, Henry, & Gilbert, 2014). The barley starch amylopectin CLD 

shows a more complex structure with a major peak at D.P. 13, a shoulder at D.P. 21 and a 
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further peak at D.P. 44. The peaks at D.P. 13 and D.P. 44 are similar to those observed in the 

pea CLD, but the shoulder at 21 D.P. is a distinct feature of the barley CLD, which can also be 

observed in the number distribution in Figure 4a. Previous studies using HPLC-SEC derived 

total barley CLD’s (Gous, Warren, Gilbert, & Fox, 2017; Gous et al., 2015; Wang et al., 2014) 

have shown two peaks in the amylopectin region, but with the improvements in resolution 

available with UPLC-SEC we are also able to show the shoulder at D.P. 22. Figure S2 also 

shows this difference in resolution, for the same sample analysed by HPLC-SEC. This shoulder 

is a feature of the barley (and more generally cereal starch) CLDs, and has been observed in a 

number of previous studies using FACE (Wu et al., 2014; Wu et al., 2013), or analysis of 

purified amylopectins (Fredriksson, Silverio, Andersson, Eliasson, & Åman, 1998), and may 

contribute to structural differences between cereal starches and other (e.g. tuber) starches. The 

amylose distribution also varies between the different samples. The barley shows a bi-modal 

distribution of amylose with peaks at D.P. 300 and D.P. 1300 as has previously been observed 

for a range of cereal starches (Wang et al., 2014). The pea distributions show much lower 

molecular weights for their amylose fraction, as can been observed in the number distribution 

shown in Figure 4b. Cultivar Cameor has a large peak at 300 D.P., similar to the barley starch, 

but no second peak above 1000 D.P., while BC1/19RR has only a small peak at D.P. 300 and 

the majority of its amylose is below this molecular weight. While amylose is an important 

determinant of end use quality in starch, the biosynthetic origins of structural variation in 

amylose fine structure are not well understood (Wang et al., 2014). These results add support 

to previous authors suggestions that amylose biosynthesis is a regulated process, with structural 

variations between varieties (Wang et al., 2014). 

With the small particle size, narrow bore columns and elevated pressures used in UPLC-SEC, 

there is increased likelihood of both column overloading and shear scission of polymers 

occurring due to the elevated pressure in the column. To identify if either of these effects were 
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giving rise to artefacts in our results we re-analysed Tipple at three different injection 

concentrations (0.2, 0.5 and 1 mg/mL) and at three different flow rates (150, 200 and 300 

µL/min). 

Figure 5 shows the CLD for barley starch (Tipple) at three different concentrations. The 

distributions have been normalised using Standard Normal Variate (SNV) normalisation 

(Barnes, Dhanoa, & Lister, 1989; Fearn, Riccioli, Garrido-Varo, & Guerrero-Ginel, 2009) to 

correct for differences in signal intensity due to the differences in injection concentration. The 

three CLD’s closely overlap each other, with all of the same features present in each CLD, 

eluting at matching positions. At 0.2 mg/mL there is increased noise due to the sensitivity limits 

of the DRI detector, but all of the main features of the CLD are still clearly visible. 

The effect of flow rate on possible shear scission was also investigated by running injections 

at a range of flow rates. The results are shown in Figure 6. These data have also been pre-

processed with SNV normalisation to correct for differences in detector response at different 

flow rates. From the distributions these is very limited evidence for any effect of shear reducing 

molecular weight at high flow rates. Linear starch polymers, such as the debranched samples 

used in this study, are quite resistant to the effects of shear, unlike branched amylopectin (Cave 

et al., 2009). This is a slight evidence of a loss of the longest amylose chains at around D.P. 

10000 at 300 µL/min flow rate, but this is a relatively insignificant effect.  

 

Conclusions 

The results presented in this paper demonstrate that UPLC-SEC can be successfully applied 

for the rapid and efficient separation of biopolymers. Despite the very high pressures, and 

consequently shear rates, involved, CLDs produced by the system match very well with the 

molecular weights and distributions observed in a conventional HPLC-SEC set-up. The 

ACCEPTED M
ANUSCRIP

T



10 
 

resolution obtained in terms of structural features within both the amylose and amylopectin 

regions is comparable or superior to existing approaches such as HPAEC-PAD, AF4 or FACE 

with no limitations on the molecular weight range that can be analysed, no requirement for 

derivatization, and advantages of speed. The UPLC-SEC method presented here opens up the 

possibilities to carry out high-throughput phenotypic screening of starch structures, using 

germplasm collections to identify biodiversity, to correlate phenotypes with genomic and 

genetic data linked to variation in the underlying genes, and to facilitate breeding programmes 

aimed at specific food and feed uses. The method can also be applied to other biopolymers in 

applications where rapid determination of molecular weight distribution is beneficial. In 

conclusion, we present a rapid, flexible method for biopolymer molecular weight 

characterisation, particularly applicable to starch CLD, which overcomes many of the technical 

limitations of previous methods. 

Acknowledgments 

FJW and NP would like to acknowledge the support of the Biotechnology and Biological 

Sciences Research Council (BBSRC) Institute Strategic Programme Grant “Food & Health”. 

CD would like to acknowledge support from BBSRC (BB/J004561/1 and BB/P012523/1), the 

John Innes Foundation and The Department for Environment, Food and Rural Affairs (Defra) 

(CH0103, Pulse Crop Genetic Improvement Network). 

  

  

ACCEPTED M
ANUSCRIP

T



11 
 

Reference 

Andersson, A., Andersson, R., & Åman, P. (2001). Starch and by-products from a laboratory-scale 
barley starch isolation procedure. Cereal chemistry, 78(5), 507-513.  

Barnes, R., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-
trending of near-infrared diffuse reflectance spectra. Applied spectroscopy, 43(5), 772-777.  

Bouvier, E. S., & Koza, S. M. (2014). Advances in size-exclusion separations of proteins and polymers 
by UHPLC. TrAC Trends in Analytical Chemistry, 63, 85-94.  

Carpenter, M. A., Shaw, M., Cooper, R. D., Frew, T. J., Butler, R. C., Murray, S. R., . . . Timmerman-
Vaughan, G. M. (2017). Association mapping of starch chain length distribution and amylose 
content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes. BMC Plant 
Biology, 17(1), 132.  

Cave, R. A., Seabrook, S. A., Gidley, M. J., & Gilbert, R. G. (2009). Characterization of starch by size-
exclusion chromatography: The limitations imposed by shear scission. Biomacromolecules, 
10(8), 2245-2253.  

Chiaramonte, E., Rhazi, L., Aussenac, T., & White, D. R. (2012). Amylose and amylopectin in starch by 
asymmetric flow field-flow fractionation with multi-angle light scattering and refractive index 
detection (AF4–MALS–RI). Journal of cereal science, 56(2), 457-463.  

Ciric, J., Woortman, A. J., & Loos, K. (2014). Analysis of isoamylase debranched starches with size 
exclusion chromatography utilizing PFG columns. Carbohydrate Polymers, 112, 458-461.  

Cuevas, R. P., Daygon, V. D., Morell, M. K., Gilbert, R. G., & Fitzgerald, M. A. (2010). Using chain-length 
distributions to diagnose genetic diversity in starch biosynthesis. Carbohydrate polymers, 
81(1), 120-127.  

Fearn, T., Riccioli, C., Garrido-Varo, A., & Guerrero-Ginel, J. E. (2009). On the geometry of SNV and 
MSC. Chemometrics and Intelligent Laboratory Systems, 96(1), 22-26.  

Fredriksson, H., Silverio, J., Andersson, R., Eliasson, A.-C., & Åman, P. (1998). The influence of amylose 
and amylopectin characteristics on gelatinization and retrogradation properties of different 
starches. Carbohydrate Polymers, 35(3-4), 119-134.  

Gidley, M. J., Hanashiro, I., Hani, N. M., Hill, S. E., Huber, A., Jane, J.-L., . . . Striegel, A. M. (2010). 
Reliable measurements of the size distributions of starch molecules in solution: Current 
dilemmas and recommendations. Carbohydrate polymers, 79(2), 255-261.  

Gous, P. W., Warren, F., Gilbert, R., & Fox, G. P. (2017). Drought-Proofing Barley (Hordeum vulgare): 
The Effects of Stay Green on Starch and Amylose Structure. Cereal Chemistry, CCHEM-02-17-
0028-R.  

Gous, P. W., Warren, F., Mo, O. W., Gilbert, R. G., & Fox, G. P. (2015). The effects of variable nitrogen 
application on barley starch structure under drought stress. Journal of the Institute of Brewing, 
121(4), 502-509.  

Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. 
Carbohydrate research, 147(2), 342-347.  

Janco, M., Alexander, J. N., Bouvier, E. S., & Morrison, D. (2013). Ultra‐high performance size‐exclusion 
chromatography of synthetic polymers. Journal of separation science, 36(17), 2718-2727.  

Li, H., Prakash, S., Nicholson, T. M., Fitzgerald, M. A., & Gilbert, R. G. (2016). The importance of amylose 
and amylopectin fine structure for textural properties of cooked rice grains. Food chemistry, 
196, 702-711.  

MacNair, J. E., Lewis, K. C., & Jorgenson, J. W. (1997). Ultrahigh-pressure reversed-phase liquid 
chromatography in packed capillary columns. Analytical chemistry, 69(6), 983-989.  

Morell, M. K., Samuel, M. S., & O'Shea, M. G. (1998). Analysis of starch structure using fluorophore‐
assisted carbohydrate electrophoresis. Electrophoresis, 19(15), 2603-2611.  

O'Sullivan, A. C., & Perez, S. (1999). The relationship between internal chain length of amylopectin and 
crystallinity in starch. Biopolymers, 50(4), 381-390.  

ACCEPTED M
ANUSCRIP

T



12 
 

Pfannemüller, B. (1987). Influence of chain length of short monodisperse amyloses on the formation 
of A-and B-type X-ray diffraction patterns. International Journal of Biological Macromolecules, 
9(2), 105-108.  

Swartz, M. E. (2005). UPLC™: an introduction and review. Journal of Liquid Chromatography & Related 
Technologies, 28(7-8), 1253-1263.  

Syahariza, Z., Sar, S., Hasjim, J., Tizzotti, M. J., & Gilbert, R. G. (2013). The importance of amylose and 
amylopectin fine structures for starch digestibility in cooked rice grains. Food chemistry, 
136(2), 742-749.  

Uliyanchenko, E., Schoenmakers, P. J., & Van der Wal, S. (2011). Fast and efficient size-based 
separations of polymers using ultra-high-pressure liquid chromatography. Journal of 
Chromatography A, 1218(11), 1509-1518.  

Vilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition 
and validating experimental methods. Carbohydrate polymers, 88(1), 103-111.  

Wang, K., Hasjim, J., Wu, A. C., Henry, R. J., & Gilbert, R. G. (2014). Variation in amylose fine structure 
of starches from different botanical sources. Journal of agricultural and food chemistry, 
62(19), 4443-4453.  

Witt, T., Doutch, J., Gilbert, E. P., & Gilbert, R. G. (2012). Relations between molecular, crystalline, and 
lamellar structures of amylopectin. Biomacromolecules, 13(12), 4273-4282.  

Wu, A. C., Li, E., & Gilbert, R. G. (2014). Exploring extraction/dissolution procedures for analysis of 
starch chain-length distributions. Carbohydrate polymers, 114, 36-42.  

Wu, A. C., Morell, M. K., & Gilbert, R. G. (2013). A parameterized model of amylopectin synthesis 
provides key insights into the synthesis of granular starch. PLoS One, 8(6), e65768.  

 

  

ACCEPTED M
ANUSCRIP

T



13 
 

 

 

Figure 1. A schematic of the cluster model of amylopectin structure. Adapted from (Hizukuri, 

1986). 
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Figure 2. Example elution profiles for pullulan standards (A) and example standard curve (B) 

derived from the retention times of the pullulan standards 
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Figure 3. Chain Length Distributions for three different starches expressed as weight 

distributions as a function of degree of polymerization 
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Figure 4. Number distributions derived from DRI traces for three starches. Focusing on the 

amylopectin region up to D.P. 150 (A) and covering the whole size distribution (B). 
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Figure 5.  Chain Length Distribution of Tipple at three different injection concentrations, all 

analysed at a flow rate of 200 µL/min 
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Figure 6. Chain Length Distribution of Tipple measured at three different flow rates, at an 

injection concentration of 1 mg/mL 
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