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The antioxidant activities of three new Schiff base compounds, 1 – 3, were studied through 

their direct scavenging ability to eliminate free radicals using DPPH and ABTS methods and 

also through their indirect antioxidant activity as measured using the ferric thiocyanate (FTC) 

method. The number of OH groups in the compounds and their positions play a role in the 

activity. The crystal structure of CH2{cyclo-C6H10-NH=CH-(2-O-naphth)}2.H2O (1), has 

been determined and proves the existence of intramolecular hydrogen-bonds and hydrogen-

bonded water molecules and reveals the keto-amine (N-H…O) tautomer of this compound. 

One cyclo-hexyl ring was found to be disordered, and was resolved in two orientations. 

Hydrogen atoms of the NH=CH groups were located in difference maps and were refined 

freely. Compounds 2 and 3 exhibit the enol-imine form. The UV-vis spectra of the three 

compounds have been studied in organic solvents of different polarity, and in basic and acidic 

media, and were found helpful in understanding the tautomeric forms in these compounds; 

the polarity was modified by adding (CF3COOH) or [(C2H5)3N] to the solvent. All three 

compounds have been characterized by elemental analysis, UV-vis, FTIR, NMR and MS. 

Keywords: UV-vis, crystal structure; hydroxyl Schiff bases; intramolecular H-bonding and 

tautomers; antioxidant activities; DPPH, ABTS and FTC methods. 
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The great importance of Schiff base compounds is due to their wide range of industrial 

applications and biological activities. They possess pharmacological activities such as 

antimicrobial, antifungal, anticancer, antiviral, anti-inflammatory, antiparasitic, antioxidant 

and more in industrial and auricular chemistry [1–4]. They also act as a basis for the synthesis 

of numerous organic compounds [5]. Schiff base compounds have an azomethine group (-

CH=N-) which is made by the condensation of a carbonyl compound with a primary amine. It 

seems that this group is accountable for the biological activities demonstrated by a variety of 

Schiff bases [6]. Usually, Schiff bases synthesized from aromatic amines and aromatic 

aldehydes are stable and have an effective conjugation arrangement. Their biological 

activities can vary, depending upon the types of substituents attached to the aromatic rings 

[7]. The UV–vis spectra of 2-hydroxy Schiff bases have been studied in various nonpolar and 

polar solvents [8,9]. The band appearing at >400 nm is observed in various solvents including 

acidified solvents, and is responsible for the keto-amine form of the Schiff base [10]. In this 

study we report the synthesis and crystal structure of CH2{cyclo-C6H10-NH=CH-(2-O-

naphth)}2.H2O (1) and the synthesis of compounds 2 and 3, Scheme 1. We also describe the 

keto-amine, enol-imine, EE and ZZ forms of these novel compounds based on NMR, IR, UV-

vis spectra and X-ray data. Interestingly, we aim here to demonstrate their potential 

antioxidant activities based on the position of the hydroxyl group in the Schiff base as shown 

in Scheme 1. 
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Scheme 1. Three different interesting forms found for compounds 1, 2 and 3.

Results and discussion

Schiff base compounds 1, 2 and 3 were synthesized by a one-pot condensation reaction in dry 

ethanol, without the use of an acid as a catalyst, in good yields using a slightly modified, 

previously reported procedure [8, 9]. 4,4'-Methylenedicyclohexanamine was mixed with the 

aldehyde in 1:2 ratio in ethanol at room temperature, and the mixture was refluxed for two 

hours. The solvent was reduced to 1/3 and the product was allowed to form at room 

temperature. The products were re-crystallized from hot ethanol at room temperature. All 1, 2 

and 3 are solid and melt at 178, 210 and 183 °C respectively. The characteristic feature of the 

IR absorption bands of the free Schiff bases with the wave numbers 1639-1620 cm-1 

corresponds to the C=N stretching vibration [10,13]. The delocalization in the п-electron 

pseudoaromatic six-membered ring (Fig 1), and the intramolecular hydrogen bonding may 
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Scheme 2. The possible pseudoaromatic six-membered ring involving H-bonding. 

Numbering corresponds to that in the X-ray structure.

have an effect on the keto-amine position [14]. Other expected vibration bands with the wave 

numbers in the 3440-3230 cm-1 region for v (OH, NH, H2O, Ar-OH) for 1 and 2, and ν(OH, 

Ar-OH) for 3 were not observed due to the intramolecular H-bonding.  Bands in the region of 

3075-2920 cm-1 v (CH, H-Ar) were apparently observed for 1-3. A small broad band for the 

second OH in compound 2 is clearer when compared to those for 1 and 3 due probably to the 

lack of involvement of the m-OH in the intramolecular H-bonding. The existence of 

intramolecular hydrogen bonding in 1 between the amine C=C-NH and the C=O (the keto-

amine form) is further confirmed by the X-ray structure Fig. 2. The presence of C=O (13C 

NMR ca. 177 ppm) in 1 and C=N (13C NMR ca. 160 ppm) in 2 and 3 with possible 

intramolecular hydrogen bonding has been confirmed by FTIR. The UV-vis (maxima < 400 

nm) and 13C NMR spectra (no C=O band) confirm the enol-form only for 3. The 1H NMR 

spectrum for 3 shows one peak for OH downfield (9.31 ppm) indicating the presence of EE 

or ZZ form, Scheme 1. Probably, the EE form is more favored [12] due likely to steric 

hindrance. An interesting variation of 13C NMR resonances for the carbons involved in the 

pseudoaromatic six-membered ring in Scheme 2 is presented in Table 1. The 1H and 13C 

NMR data (see Table1 and experimental section) of the compounds are in agreement with 

those 

Table 1. 13C and 1H chemical shifts in ppm of the pseudoaromatic six-membered ring
Compound NHO or 

ArOH

CHN C11 C1 C2

1 (Keto and Enol) 14.95/14.35 9.21/9.18 158.16/157.76 125.90/125.64 177.58

2 (EE and ZZ) 14.57 (broad) 8.54/8.51 169.15 127.14/127.14 158.86/157.86

3 (EE or ZZ) 9.31 8.26 159.01 130.01 158.02

reported for the tautomeric forms of naphthaldimine 1 and salicylaldimine 2 and 3 Schiff 

bases in solution [9–13,15–17]. The tautomeric forms of the 2-hydroxy Schiff bases depicted 

by 1H and 13C NMR spectroscopy are drawn in Scheme 1. In CDCl3 or DMSO-d6, the 1H 

NMR data for naphthaldimine show that both phenol-imine and keto-amine forms exist. The 

relative ratio of keto-amine/phenol-imine tautomers are estimated from the 1H NMR 

spectrum of 1 in 2.32:1. In contrast, salicylaldimine compounds 2 and 3 show the existence of 
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only phenol-imine tautomers. Interestingly, both keto-amine and phenol-imine forms have 

been observed for derivatives 2 in basic media (see UV-vis study). However, both the 

salicylaldimines 2 and 3 show no keto-amine tautomer in either CDCl3 and/or DMSO-d6. For 

instance, no evidence has been observed for Ar=O in 13C NMR for derivatives 2 and 3 in the 

region of 170-220 ppm, whereas this was not the case for derivative 1 (Table 1). Four signals, 

each appearing as a singlet, at 14.95, 14.35, 9.21 and 9.18 ppm can be ascribed to HC-NH, 

ArOH, HC=N and HC=N respectively.  The 1H NMR integration indicates that the 

tautomeric equilibrium in 1 favors the phenol-imine form in both CDCl3 and DMSO-d6, 

showing N...H–O hydrogen bonding and likely EE form. Whereas, for salicylaldimine 2, 

(Scheme 1) according to 1H NMR spectra, two geometric isomers are possible (EE and ZZ). 

In contrast to 1 and 2, compound 3 shows one geometric isomer (either EE or ZZ).  

The potential energy barrier between the keto and enol form varies with the solvent polarity 

[4]. Hence, it is expected that the keto form is more dominant than the enol form in a polar 

solvent. Therefore, UV-vis spectra of the compounds were measured within 200-600 nm 

range in DMSO, ethanol, chloroform and benzene solvents. In this study, the UV-Vis spectra 

of 1, 2 and 3 show mainly two maxima for the tautomeric forms of the 2-hydroxy Schiff base. 

A maximum appearing at more than 400 nm suggests that a keto form is present, while a 

maximum at less than 400 nm indicates that the enol form is present [18]. The characteristic 

UV–vis absorption bands of the compounds in DMSO, methanol, chloroform, THF and 

benzene are given in Table 2. There are three bands in the experimental spectra for 1 except 

for acidic and basic media, where there are two bands. Although 2 shows broad bands >400 

nm in CHCl3 and MeOH indicating the presence of the keto-amine form, a peak for C=O 

around 180 ppm in 13C NMR could not be found. A highly interesting different chemical 

behavior of 1, 2 and 3 in acidic and basic media is shown in Fig.2. Whereas 3 remains the 

same in both acidic and basic media, 2 changes in basic medium to show the keto-amine 

tautomer.  It is quite obvious that 1 significantly favors keto-amine tautomer in acidic 

medium with respect to pure CHCl3 

Table 2. The results obtained from UV-vis analysis of compounds 1, 2 and 3 in organic 

solvents, and acidic and basic media

___________________________________________________________________________

Solvent λ (nm) for 1 λ (nm) for 2 λ (nm) for 3

Benzene 248, 299, 426 248, 298 248, 299
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THF 262, 310, 424 261, 308 261, 302

CHCl3 248, 306, 419 249, 297, 425 249, 299

MeOH 260, 304, 423 264, 300, 428 260, 306

DMSO 265, 308, 421 259 264, 305

CF3COOH, pH 3 294, 427 284 285 

Et3N, pH 9 307, 421 297 305

Fig. 1. UV-vis spectra for 1, 2 and 3 in acidic (right) and basic (left) media, with CF3COOH, 

pH 3 and NEt3 pH 9, respectively, added to the CHCl3 solution. C = 5×10−5 M. 1:____, 2: ----, 

3: ……

solvent as can be seen in Fig. 1.  In general, bands around 350 nm are attributed to the п/п* 

transitions of –CH=N- group and n/п* transitions of the –C=O- group. It is noticed that as the 

solvent polarity increases, the keto/enol ratio increases, because the proton transfer can occur 

easily in acidic medium.

Experimental section

Chemicals were bought from Sigma-Aldrich. All commercial chemicals were used without 

further purification in open atmosphere and at room temperature. The melting points were 

taken on a Mel-Temp. Capillary melting point apparatus and are uncorrected. Carbon, 

hydrogen, nitrogen contents were estimated on a CHN Model CE-440 Analyzer and on an 

Elementar Vario EL III Carlo Erbo 1108. Infrared spectra (ν/cm-1) were recorded on an 

IRAffinity-1S Shimadzu instrument, using KBr disks. MALDI mass chromatograms were 
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obtained on a Microflex Bruker instrument. 1H- and 13C-NMR spectra were recorded on a 

Bruker 400 MHz NMR Spectrometer at 293 K in CDCl3 and DMSO-d6. Spectra were 

internally referenced to TMS for CDCl3. Peaks are reported in ppm downfield of TMS. The 

absorbance was measured on a Thermo Scientific Genesys 10s UV-vis spectrophotometer. 

Compounds 1, 2 and 3 were obtained in good yields following a published procedure [11,12]. 

The 4,4'-methylenedicyclohexanamine was mixed with the aldehyde in 1:2 ratio in ethanol (50 

mL) at room temperature, and the mixture was refluxed for two hours. The solvent was 

reduced to 1/3 and the mixture was allowed to cool down to room temperature. The solid 

products were collected, dried under vacuum and characterized (Tables 1 and 3).

CH2{cyclo-C6H10-NH=CH-(2-O-naphth)}2 (1), keto-enol forms ratio, 1:2.31: 1H NMR 

(CDCl3): 14.95 (s, C-NH), 14.35 (s, Ph-OH), 9.21, 9.18 (CH=N), 8.12-6.72 (m, Ph-H), 4.41 

(bs, N-CH), 3.93 (t, NCH), 3.55-0.98 (m, cyclohexyl-H and CHCH2CH). 13C NMR (DMSO-

d6): 177.82, 177.58 (C=O, C=O.H2O), 158.16, 157.73 (HC=N), 137.39-106.09 (aromatic), 

60.25 (N-CH), 33.78-27.97 (cyclohexyl and CHCH2CH). FT-IR cm-1: 3025, 2920, 2870, 

1630, 1525, 1330, 1190, 850, 750. MALDI-MS: 519.41 [M+]

CH2{cyclo-C6H10-NH=CH-(3-OH-2-O-Ph)}2 (2), EE to ZZ ratio 2.2:1: 1H NMR (DMSO-

d6): 14.57 (b, Ph-OH), 8.54, 8.51 (CH=N), 6.83-6.58 (m, Ph-H), 3.68 (bs, N-CH), 3.26 (t, 

NCH), 1.86-0.93 (m, cyclohexyl-H and CHCH2CH). 13C NMR (DMSO-d6): 169.15 (HC=N), 

158.86, 157.86 (C-OH), 127.29-122.02 (aromatic), 70.18, 66.39 (N-CH), 45.31-36.25 

(cyclohexyl and CHCH2CH).  FT-IR cm-1: 3420, 3231, 2934, 2862, 1643, 1543, 1491, 1413, 

1214, 1017, 893, 732. MALDI-MS: 451.20 [M+]

CH2{cyclo-C6H10-NH=CH-(3-OH-Ph)}2 (3), EE or ZZ: 1H NMR (DMSO-d6): 9.31 (b,Ph-

OH), 8.26 (CH=N), 7.24-6.84 (m, Ph-H), 3.14 (t, NCH), 1.79-0.97 (m, cyclohexyl-H and 

CHCH2CH). 13C NMR (DMSO-d6): 159.01 (HC=N), 158.02(C-OH), 138.17-144.07 

(aromatic), 69.18, 66.66 (N-CH), 40.58-39.05 (cyclohexyl and CHCH2CH). FT-IR cm-1: 

3440, 2911, 2853, 1620, 1405, 1283, 1208, 565, 772, 678. MALDI-MS: 419.22 [M+]  

Table 3. Physical data for compounds 1, 2 and 3

No. Amine 

(mmol)

Aldehyde 

(mmol)

Yield 

%

CHN analysis, Theo(actual)* M.p oC
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1 12.24 24.48 75% 81.05(80.89), 7.38(7.41), 

5.40(5.47)

175-78

2 12.5 25.0 79.9 71.97(72.11), 7.61(7.56), 

6.22(6.33)

205-210 

3 10.46 20.92 86.3 77.48(77.39), 8.19(8.08), 

6.69(6.75)

180-183

*Samples were subjected to vacuum under heating (oil bath, 50 oC) for two hours. 

Structural commentary

Crystals of compound 1 were analysed by X-ray diffraction methods and have the structure 

shown in Fig. 2 and Fig. 3. Working out from the central methylene group of C(20), there are 

cyclohexyl groups in both directions; each of these has a chair conformation, with the bond 

from the central group in an equatorial arrangement in each case. From the ring of C(32-37), 

the C(32) – N(31) bond is axial and leads into an essentially planar NH=CH-(2-O-naphth) 

group.  The hydrogen atoms on C(31) and N(31) were located clearly in trigonal planar 

positions and both were refined freely and well; there is a good N(31)–H(31a)…O(22) 

hydrogen bond which completes a planar six-membered ring with C(31,21,22).  Bond 

dimensions in Table 4 in this ring indicate that C(31) = N(31) is a double-bond and C(22) – 

O(22) is too long to be a ketone bond. This indicates that this is a Zwitter-ion type group, 

with a positive charge on N(31) and a negative charge on O(22). 

The cyclohexyl group of C(12-17), however, is disordered in two orientations, with a site 

ratio of 0.89:0.11. The C(12)-N(11) bond is common to both disorder components and is an 

equatorial bond from both component cyclohexyl rings. The remainder of this half of the 

molecule is very similar to that of the first half described above, viz good location and 

refinement of the H atoms on C(11) and N(11), formation of the N(11)-H(11a)…O(2) 

hydrogen bond and planar six-membered ring with C(1,2,11), similar short C(11) = N(11) 

and longer C(2) – O(2) bond lengths, and a similar Zwitter-ion system.

Table 4.  Molecular dimensions.  Bond lengths are in Ångstroms, angles in degrees.  E.s.ds 
are in parentheses.
___________________________________________________________________________

C(11)-N(11)           1.303(3) C(31)-N(31)           1.307(3)
C(11)-H(11)           1.03(2) C(31)-H(31)           1.02(2)
N(11)-C(12)           1.462(3) N(31)-C(32)           1.467(3)
N(11)-H(11A)          0.97(3) N(31)-H(31A)          0.93(3)
C(14)-C(15)           1.526(4) C(35)-C(20)           1.523(3)
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C(15)-C(20)           1.511(3) C(35)-C(36)           1.538(3)
C(15)-C(16)           1.522(4) C(22)-C(23)           1.430(3)
C(20)-C(35)           1.523(3)         O(9W)-H(9WA)          1.14(3)
C(22)-O(22)          1.291(3) O(9W)-H(9WB)          0.91(4)

N(11)-C(11)-C(1)      123.5(2) C(28)-C(27)-C(26)     121.0(2)
N(11)-C(11)-H(11)     114.4(12) C(27)-C(28)-C(29)     121.5(2)
C(1)-C(11)-H(11)      122.1(12) C(28)-C(29)-C(30)     117.4(2)
C(11)-N(11)-C(12)     123.7(2) N(31)-C(31)-C(21)     123.7(2)
C(11)-N(11)-H(11A)    112.0(17) N(31)-C(31)-H(31)     117.0(12)
C(12)-N(11)-H(11A)    123.9(17) C(21)-C(31)-H(31)     119.3(12)
N(11)-C(12)-C(17)     108.4(2) C(31)-N(31)-C(32)     124.4(2)
N(11)-C(12)-C(13)     109.89(19) C(31)-N(31)-H(31A)    113.0(15)
O(22)-C(22)-C(21)     122.6(2) C(32)-N(31)-H(31A)    121.9(15)
O(22)-C(22)-C(23)     119.6(2) N(31)-C(32)-C(37)     111.51(18)
C(24)-C(23)-C(22)     120.9(2) N(31)-C(32)-C(33)     109.1(2)
C(23)-C(24)-C(30)     123.2(2) N(11)-C(62)-C(67)     129.0(10)
C(26)-C(25)-C(30)     121.5(2) H(9WA)-O(9W)-H(9WB)   98(3)
C(25)-C(26)-C(27)     119.0(2)

__________________________________________________________________________________

The oxygen atoms, O(2) and O(22), differ, however, in their intermolecular contacts; O(22) is 

the acceptor of hydrogen bonds from two water molecules, related about a centre of 

symmetry and which therefore also link up with O(22’) of a neighboring molecule, Table 5, 

to form a hydrogen-bonded dimer. O(2) does not appear to have any close intermolecular 

contacts. Other short intermolecular contacts are at van der Waals’ distances.  Fig. 3 shows 

the dimer unit and neighboring molecules.

Table 5.  Hydrogen bonds, in Ångstroms and degrees.
_______________________________________________________________________

 
D-H...A                d(D-H)      d(H...A)    d(D...A)    <(DHA)
 

C(11)-H(11)...O(9W)#1     1.03(2)     2.29(2)     3.286(3)    163.7(17)
N(11)-H(11A)...O(2)       0.97(3)     1.75(3)     2.574(3)    141(2)
N(31)-H(31A)...O(22)      0.93(3)     1.77(3)     2.555(2)    140(2)
O(9W)-H(9WA)...O(22)      1.14(3)     1.66(3)     2.796(2)    179(3)
O(9W)-H(9WB)...O(22)#2    0.91(4)     1.98(4)     2.883(3)    171(4)

    
_______________________________________________________________________

 
    Symmetry transformations used to generate equivalent atoms:
       #1 : x-1, y, z    #2 : 2-x, 1-y, 1-z
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Fig. 2. View of the molecules of CH2{cyclo-C6H10-NH=CH-(2-O-naphth)}2,H2O (1), 

indicating the atom numbering scheme; the superscript i indicates the symmetry 

operation: 2-x, 1-y, 1-z.  Hydrogen atoms (except for those involved in hydrogen 

bonds) and the minor component atoms of the disordered ring of C(12-17) have been 

omitted for clarity.  Thermal ellipsoids are drawn at the 50% probability level.

Fig. 3.  View of the packing of compound 1 along the a axis.
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Antioxidant investigation

The antioxidant activities of 1, 2 and 3 were investigated through their direct scavenging 

ability to remove free radicals using 1,1-diphenyl-2-picrylhydrazine (DPPH) and 2,2'-

azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods [1,19] and also through 

their indirect antioxidant activity as measured using the ferric thiocyanate (FTC) method 

[1,20]. The direct ability of the synthesized compounds to neutralize free radicals (DPPH. 

and ABTS.+) was monitored spectrophotometrically at 517 nm and 734 nm, respectively. 

Results shown in Table 6 indicate that 2 has the highest antioxidant activity as measured by 

each of the three methods.

Table 6. Antioxidant activity measurement using different methods 

No. Compound DPPH ABTS FTC
1 1 19.21±1.11 73.00±8.08 50.00±2.20
2 2 85.11±1.52 89.80±1.14 70.07±2.65
3 3 40.66±5.63 87.58±1.01 67.47±0.80

P.C. Vit. C 91.83±1.42 - 51.72±1.11
P.C. Trolox - 94.62±0.64 -

According to the DPPH method, 2 has very high antioxidant activity (85.11%), while other 

samples 1 and 3 show low (40.66%) to very low (19.21%) antioxidant activity, respectively.  

On the other hand, the results of antioxidant activity as measured by ABTS method were 

increased from 73.00 to 89.80 % in the order 2 ˃ 3 ˃ 1, respectively. These findings could be 

attributed to the presence of hydroxyl groups attached to aromatic rings which might be 

responsible for the antioxidant activity of these Schiff bases. It is thus shown that 2, 

containing two hydroxyl groups attached to each aromatic ring, has the highest antioxidant 

activities as measured by three methods (Table 6). It appears probable that this arrangement 

increases the conjugated systems and as a result increases the antioxidant activity of this 

compound. These results were in agreement with findings obtained by other researchers for 

compounds with di-hydroxy-phenyl groups [1,20]. The mechanism which occurs here could 

be similar to that which occurs in hydroxy chalcones and hydroxy flavonoid derivatives [21].

The indirect antioxidant activities of the synthesized compounds were measured using the 

ferric thiocyanate (FTC) method. This in vitro study measures the amount of peroxide 

produced during the initial stages of lipid peroxidation using linoleic acid. This method 
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mimics the process that occurs in vivo, where the presence of transition metals and high 

concentrations of membrane-associated polyunsaturated fatty acids (PUFAs), under oxidative 

stress, largely act as triggers to initiate the process of lipid peroxidation (LPO). The new 

findings showed that the indirect antioxidant activity (the ability to prevent the Fenton 

reaction, Fe2+ + H2O2 → Fe3+ + HO. + HO-) of the tested compounds as measured by the FTC 

method was in the order 2 (70.07%) ˃ 3 (67.47%˃ 1 (50.00%), respectively. Again, 2 showed 

the highest ability to prevent the formation of HO. free radical, which is considered to be the 

most destructive free radical in biological systems.

The results in Table 7 show that the percentage inhibition of tyrosinase activities by our 

Schiff bases (1, 2, and 3) were very low (21.72- 32.33 %). Therefore, it is likely that none of 

these compounds can be used in cosmetics for whitening and depigmentation after sunburn. 

Table 7. The effect of the synthesized compounds on tyrosinase and cholinesterase activity 

 On the other hand, the extent of inhibition of cholinesterase activity ranged from low to very 

high (35.75 to 79.05 %). Thus, the compound containing two hydroxyl groups attached to 

aromatic ring (2) can be considered as promising in the treatment of Alzheimer's disease 
(AD).   

Biological activities

Enzyme inhibition:  

a)  The inhibition of acetylcholinesterase (AChE)

Inhibition of AChE was assessed by a slightly modified colorimetric method of Ellman et al. 

[22].  2 mL PBS (Na2HPO3, 50 mM, pH = 7.7) and 0.1 mL of the Schiff base sample 

dissolved in DMSO (1mg/mL) were mixed in a test-tube.  0.3 mL of enzyme solution (0.005 

U/mL) were added, and the mixture was incubated at 37 °C for 10 min. Then, 0.3 mL of 

acetylthiocholine iodide (0.5 mM, substrate) and 0.3 mL of DTNB (0.5 mM) were added. 

No. of compound Tyrosinase Inhibition (%) Cholinesterase Inhibition (%)

1 25.42±1.77 65.98±6.29

2 21.72±0.35 79.05±4.39

3 32.33±1.07 35.75±2.20
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After a further 30 min of incubation at 37 °C, absorbance was measured at 412 nm.  Each 

sample was assayed in triplicate. Then: Inhibitory rate (%) = (Ac – At)/100.Ac, where Ac is 

the absorbance of control (without samples) and At is the absorbance in the presence of the 

Schiff base [22].

b)  Tyrosinase activity assay

Tyrosinase activity assay was performed as previously described with modification [23]. The 

tyrosinase activity was measured using L-DOPA as a substrate. Samples dissolved in DMSO 

(1mg / mL), and L-DOPA (2 mM) in 50 mM Na2HPO4–NaH2PO4 buffer (pH 6.8) were 

incubated at 30 °C. Then, 2.8 mL L-DOPA was mixed with 0.1 mL sample. After 1 min, 0.1 

mL of the aqueous solution of tyrosinase was added to the mixture and the absorbance was 

immediately monitored at 475 nm for 7 min. All measurements were performed in triplicate. 

The inhibitory rate was calculated according to the formula:

Inhibitory rate (%) = (Ac – At)/100.Ac, where Ac is the absorbance of control (without 

samples) and At is the absorbance in the presence of the samples [23].

Measurement of antioxidant activities 

a)  DPPH method

The assay was conducted following a previously described procedure with slight 

modification [24]. 2.0 mL of 0.3 mM DPPH solution was mixed with 0.1 mL of Schiff base 

dissolved in DMSO (1mg / mL). The mixture was then shaken vigorously and left for 30 min. 

in the dark. The absorbance was measured at 517 nm against a blank. Trolox was used as a 

positive control. These measurements were run in triplicate. The percentage of the 

scavenging activity is calculated: 

Scavenging activity (%) = (Ac – As) /100.Ac, where Ac is the absorbance of DPPH without 

the test sample and As is the absorbance of DPPH in the presence of the test sample (or 

positive control).

b)  ABTS method 

This method was carried out as described by Arnao et al. [19], with slight modifications. A 

working solution was prepared by mixing equal volumes of 7.4 mM ABTS solution and 2.6 

mM of potassium persulfate solution. This mixture was allowed to react for 14-16 h at room 

temperature in the dark to obtain ABTS.+. This solution was then diluted by mixing 1 mL of 
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ABTS.+ solution with 60 mL of phosphate buffer solution (pH = 7.4) to obtain an absorbance 

of 1.10±0.02 units at 734 nm using a UV/VIS spectrophotometer. This final ABTS.+  

solution was prepared for each assay, in which 0.1 mL of Schiff base solution (1mg/mL in 

DMSO) was added to 3.0 ml of ABTS.+ final solution, incubated for 2 h in the dark before 

measuring the absorbance at 734 nm. Trolox (1mg/mL in DMSO) was used as a positive 

control [19].  

c)  FTC method 

This method was used to study the inhibition of lipid peroxidation as described by Kikuzaki 

and Nakatani with slight modifications [25]. Into a 20 mL-vial with a screw cap, were 

transferred 4 ml of Schiff base (1 mg/ mL in DMSO), 4.1 mL of linoleic solution (2.51 %, in 

absolute ethanol), 8 mL of phosphate buffer (pH = 7), and 3.9 mL distilled water. This 

mixture was kept in an oven at 40 °C in the dark. This is the sample solution. 0.1 mL of the 

sample solution was transferred into a new 20 mL vial with a screw cap. 9.7 mL of 75% 

ethanol, 0.1 mL of ammonium thiocyanate (30 %) and 0.1 mL of ferrous chloride (20 mM in 

3.5 % HCl) were added. After 3 minutes, the absorbance of the red colour was measured at 

500 nm. Measurement of the absorbance was repeated at 24h intervals until one day after the 

absorbance of the control (without sample) reached maximum. Vit. C (1mg/ mL) was used as 

the positive control. The Inhibition (%) of lipid peroxidation was calculated:

Inhibition of lipid peroxidation (%) = (Ac – As) / 100.Ac , where As is the absorbance of the 

sample (or positive control) on the day when the absorbance of the control is maximum, and 

Ac is the absorbance of the control (without sample) on the day when it achieved its 

maximum [25].

Crystal structure analysis

Crystal data, data collection and structure refinement details are summarized in Table 8. 

The structure was determined by the direct methods routines in the SHELXS program [27] 

and refined by full-matrix least-squares methods, on F2's, in SHELXL [28]. The cyclo-

hexanyl ring of C(12-17) was found to be disordered, and resolved, in two orientations. The 

non-hydrogen atoms (except for the minor component atoms of the disordered ring) were 

refined with anisotropic thermal parameters.  Hydrogen atoms of the NH=CH groups and the 
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water molecule were located in difference maps and were refined freely and well; all 

remaining hydrogen atoms were included in idealized positions and their Uiso values were 

set to ride on the Ueq values of the parent carbon atoms. 

 

Table 8. Crystal data and structure refinement for  CH2{cyclo-C6H10-NH=CH-(2-O-
naphth)}2.H2O, 1
__________________________________________________________________________
 
Elemental formula                   C35 H38 N2 O2, H2 O
Formula weight                        536.69
Crystal system, space group Monoclinic, P 21/c
Temperature 140(1) K
Unit cell dimensions              a = 12.1597(6) Å     

b = 22.1632(8) Å   β = 101.859(5) °                          
c = 10.9781(6) Å    

Volume 2895.4(2) Å3

Z, Calculated density 4, 1.231 Mg/m3

Radiation type Mo Kα
µ (mm−1 ) 0.08
Wavelength 0.71073 Å
Crystal colour, shape Colourless block
Crystal size 0.20 x 0.17 x 0.14 mm
Crystal mounting: on a glass fibre, in oil, fixed in cold N2 stream
Theta range for data collection      3.545 to 24.998 °
Data collection Diffractometer Oxford Diffraction Xcalibur 3/Sapphire3 CCD 

diffractometer
Absorption correction Multi-scan CrysAlis PRO, Agilent Technologies, 

Version 1.171.37.35 (2014) Empirical absorption 
correction using spherical harmonics, implemented in 
SCALE3 ABSPACK scaling algorithm

Tmin, Tmax 0.841, 1.000

No. of measured, independent and observed [I > 2σ(I)] 
reflections

40072, 5083, 3370

Rint 0.070
(sin θ/λ)max (Å −1 ) 0.595
Refinement, R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.126, 1.04
No. of reflections 5083
No. of parameters 402
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and 

constrained refinement
Δρmax, Δρmin (e Å −3 ) 0.37, −0.26
 ______________________________________________________________________  

Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.37.35 [26], 
SHELXS97 [27] , SHELXL [28], ORTEP [29] and WinGX [30].

Conclusion 

Antioxidant activities of the three Schiff bases were measured and it was concluded that the 

activities of these Schiff bases can be improved by introducing OH groups in their core 
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structure. The results of antioxidant activity as measured by ABTS method were increased 

from 73.00 to 89.80 % in the order 2 ˃ 3 ˃ 1. Compound 2 has the highest antioxidant 

activity probably because it has two hydroxyl groups. From the title structure which reveals 

the keto-amine (N-H…O) tautomer and other characterization methods of the compounds, we 

conclude that salicylaldimines favor the enol form and naphthaldimines prefer the keto form. 

Acidic medium has a positive effect on the salicylaldimine and naphthaldimine forms which 

makes them favor the keto form, whereas basic medium did not have the same strong effect.  

The tautomeric equilibria of the Schiff bases have also been studied in polar and non-polar 

solvents by using mainly UV-vis and NMR data.  

Supplementary data

CCDC 1813994 contains the crystallographic data for CH2{cyclo-C6H10-NH=CH-(2-O-

naphth)}2.H2O, compound 1. These data can be obtained free of charge via 

 www.ccdc.cam.ac.uk/data_request/cif or from the Cambridge Crystallographic Data Centre, 12 

Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail: 

deposit@ccdc.cam.ac.u.k. Supplementary data associated with this article can be found, in 

the online version, at http://dx.doi.org/10.1016/j.poly.2013.08.015.
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