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Abstract. Clustering time series is an active research area with appli-
cations in many fields. One common feature of time series is the likely
presence of outliers. These uncharacteristic data can significantly effect
the quality of clusters formed. This paper evaluates a method of over-
coming the detrimental effects of outliers. We describe some of the al-
ternative approaches to clustering time series, then specify a particular
class of model for experimentation with k-means clustering and a corre-
lation based distance metric. For data derived from this class of model
we demonstrate that discretising the data into a binary series of above
and below the median improves the clustering when the data has out-
liers. More specifically, we show that firstly discretisation does not sig-
nificantly effect the accuracy of the clusters when there are no outliers
and secondly it significantly increases the accuracy in the presence of
outliers, even when the probability of outlier is very low.

1 Introduction

The clustering of time series has attracted the interest of researchers from a wide
range of fields, particularly from statistics [36], signal processing [16] and data
mining [11]. This has resulted in the development of a wide variety of techniques
designed to detect common underlying structural similarities in time dependent
data. A review of some of the work in the field is given in Section 2. These
techniques have been applied to data arising from many areas, for example:
web mining [12,4]; finance and economics [42, 19]; medicine [22]; meterology [7];
speech recognition [16,27]; gene expression analysis [17,5] and robotics [44].
Our interest is primarily motivated by the desire to be able to detect common
patterns of behaviour in bidding strategies of agents competing in markets in
order to quantify adaptive agent performance [3].

Clustering is an unsupervised learning task, in that the learning algorithm
is not informed whether the assignment of a data to a cluster is correct or not.
For background into clustering see [24]. There are two main ways clustering has



been used with time series. Firstly, clustering can be applied to a single time
series, frequently using a windowing system, to form different generating models
of the single series [14]. Note that there is some controversy over the usefulness
of this approach (see [26]). The second problem involves forming k clusters for
m time series rather than from a single series. We are interested in the latter
problem, which can be described as follows:

Given m time series, S = {s1,...,8,} of length nq,...n,,, the problem
is to form k clusters or sets of time series, C' = {C1,...,Ck}, so that the most
“similar” time series are in the same cluster. £ may or may not be known a priori.
Also, cluster membership may be deterministic or probabilistic. To encompass
both we can generalise the clustering task to assigning a probability distribution
ps(J), to each time series which defines the probability that series s is in cluster
C;.

The obvious crucial question is what is meant by most “similar” time series.
This is usually model and problem dependent, but can be generalised as follows.
Suppose a distance function d(a,b) is defined on the space of all possible series,
D. A distance function d(s;,s;) : D x D — R is a metric if it satisfies the four
conditions

d(a,b) >0 if a#b
d(a,a) =0
d(a,b) = d(b,a)

d(a,c) <d(a,b)+d(b,c)V a,b,c € A.

The distance function may have a domain that is the space of all time series
or it may be embedded in a lower dimensional space formed through, for exam-
ple, fitting a parameterised model to each series. Given a distance metric, the
clustering task is to find the clusters that minimize the distance between the
elements within each cluster and maximize the distance between clusters. This
can be described by the introduction of a cost function. Suppose the cost for a
cluster C; is defined as

¢j= > pa(i) - pu(j) - d(a,b).

a,besS

The clustering problem for a given k is to find the partition that minimizes the
total cost, ¢ = Z;n:l ¢;j. If k is not given, then some weighting function has to
be included to encourage parsimonious clustering.

Clustering algorithms can be classified as two types, hierarchical methods
and partitioning methods. Hierarchical methods involve calculating all distances
then forming a dendrogram by using a linkage method such as nearest or fur-
thest neighbour. The second approach involves partitioning using an iterative
algorithm that attempts to optimize cluster assignation based on minimizing a
cost function.

The most commonly using partitioning method is the k-means algorithm [34].
This is an iterative local search method that attempts to minimize the distance



Choose the k cluster centroids randomly
while the convergence criteria is not met
Assign each data to the closest cluster centroid
Recompute the cluster centroids using the current membership

within the clusters. Assuming the number of clusters required, k, is known, then
k-means can be summarised as

The EM (Expectation Maximizing) algorithm is a generalisation of k-means [15].
Instead of assigning a data to a particular cluster, a probability of membership
of all clusters is maintained. In addition to a centroid recording the means of the
cluster, the EM algorithm also records a covariance matrix. A further alterna-

Initialise means and covariance matriz
while the convergence criteria is not met
Compute the probability of each data belonging to each cluster
Recompute the cluster distributions using the current
membership probabilities

tive is the k-medoids method, which bases centroids on the median values rather
than the means. A comprehensive description of clustering algorithms can be
found in [24].

The aim of this research is to demonstrate that discretizing time series data
can make clustering time series more robust to the presence of outliers without
significantly decreasing accuracy when outliers are highly unlikely. Our initial
approach to this is to define a simple class of underlying model similar to that
used by other researchers then measure the effect on performance of the intro-
duction of outliers. Section 2 provides background into some of the research into
clustering time series. Section 3 describes experimentation on simulated data
with a standard clustering technique (k-means) and a simple distance metric
based on correlation and provides evidence of a scenario under which clipping
allows the optimal clusters to be found. Section 4 summarises the results and
describes the next stages of this research.

2 Related Research

Most research assumes some underlying form of the model and performs the clus-
tering based on this assumption. [11] makes the case for a model based, or gener-



ative approach, which can be classified into three broad categories, discussed in
Section 2.1: AutoRegressive Moving Average (ARIMA) models, Markov Chain
and Hidden Markov models (MC and HMM) and polynomial mixture models.
Approaches that do not assume a model form, often called similarity based ap-
proaches, are summarised in Section 2.2. Focardi [19] provides good background
material on clustering time series.

2.1 Model Based Approaches

ARIMA Models: The main approach of statistics researchers to the problem
of clustering time series is to assume the underlying models are generated by an
ARIMA process [9]. The clustering procedure usually involves

1. fitting a model to each time series,
2. measuring distance between fitted models and
3. Clustering based on these distances.

This approach is adopted by Piccolo [43], Maharaj [35,36] and Baragona [6].
Tong and Dabas [47] cluster different ARIMA models that have been fitted to
the same data set, but the techniques used are also relevant to clustering models
from different data sets.

Fitting the model requires the estimation of the structure and parameters of
an ARIMA model. Structure is either assumed to be given or estimated using,
for example, Akaike’s Information Criterion or Schwartz’s Bayesian Imforma-
tion Criterion [9]. Parameters are commonly fitted using the generalised least
squares estimators. An order m ARIMA model can be fully specified by a set of
parameters

m={m,Te,... Tm}.

Some of the research based on assuming an ARIMA model derives the dis-
tance function from the differences between the estimates of these parameters.
Piccolo [43] uses the Euclidean distance between the parameters,

1

d(ﬂ—a; '/Tb) = (Z(ﬂ_i,a - 7Ti,b)2> .

i=1

Maharaj [35, 36] adjusts her measure of distance between parameter sets by the
correlation matrix estimated by the least squares to allow for dependent time
series. She uses the resulting statistic as a test for

Hy: w1y = mp vs

Hy: m, #

A function of the p-value of this test is used as a similarity mesasure (low p-
values making common cluster membership unlikely). An alternative approach
to forming a distance function, used in [47, 6], is to base distance on the residuals
of the model. Let e, be the residuals for model 7, and p, (%) be the correlation
between the residuals e, and ep,. Tong [47] uses the sample correlation coefficient
with lag 0, denoted p(0),



d(a,b) =1 —|p(a,b)(0)]

Baragona [6] uses a distance function that scales the zero lag correlation by
the sum of the lagged correlations,

(1- Pg,b(o))
Z?; (Pgb(z))

This function was proposed in [8], although in this case it was used on the time
series rather than the residuals of the models. A variety of clustering techniques
have been employed. For example, principle coordinates and multidimensional
scaling were used in [47, 43], hierarchical clustering with average linkage was used
in [35] and with single linkage, complete linkage and Ward’s method in [47] and
heuristic search techniques (genetic algorithms, simulated annealing and tabu
search) were employed in [6].

d(a,b) =

Hidden Markov Models (HMM): An alternative approach to the problem
has been adopted by researchers in speech recognition and machine learning.
Instead of an ARMA model, it is common to assume that the underlying gen-
erating models for each cluster can be accurately described as a markov chain
(MC) or hidden markov model (HMM). A HMM is a set of unobserved states,
each of which has an associated probability distribution for the random variable
being observed, and a transition matrix that specifies the probability of moving
from one state to another on any time step. A first-order HMM is an HMM
where T' is dependent only on the previous state. A MC also involves a set of
states, except that the states correspond to the set of observable values of the
random variable (and hence are not hidden).

For both approaches, the clustering algorithm generally involves the following
steps:

1. form an initial estimate of cluster membership;
2. form HMM models based on membership;
3. while there is some improvement in models

(a) adjust cluster membership;

(b) reform models;

The clustering may be hierarchical or partitional. One key difference in tech-
nique between the ARIMA and the MC/HMM methods is that the ARIMA
approach is to fit a model to each data before clustering, whereas most research
into HMMs involves forming the cluster models on each iteration of the clustering
algorithm.

MC models have been adopted by Ramoni et al [44] to model and cluster
discrete series. Each state is associated with each value a data can take, and
the problem becomes one of finding k transition matrices and identifying which
series originates from which matrix. Their algorithm, called Bayesian Clustering
by Dynamics (BCD), is a bottom up hierarchical agglomerative method, and
involves the following steps:



1. Assume each time series is in its own cluster;
2. fit an MC to each series;
3. while new cluster models more likely than old cluster models;

(a) merge the closets MC models;
(b) reform models;

Distance between models is measured using the Kullback-Leiber distance.

Cadez et al [11] also use a MC model in the context of a generalised proba-
bilistic EM based framework for clustering. In [12] they apply the technique to
web mining. Ridgeway [45] compares using EM against Gibbs resampling when
clustering Markov processes.

Smyth [46] clusters using HMM by fitting a model to each series, then uses
the log-likelihood as a distance for a hierarchical furthest neighbour technique.
Parameters for a given model structure are estimated with the Baum-Welch
procedure.

Oates et al [39,38,41,40] fit kK HMMs using the Viterbi algorithm to train
HMM on greedily selected subsets of series. In [40] they set the initial clustering
using Dynamic Time Warping. HMM are fitted to each cluster, a Monte Carlo
simulation is conducted on each model and series that are empirically unlikely
to have been observed from a model are removed from the cluster. The model is
then retrained and the process repeated until no more series can be removed. It
is then tested whether unassigned series can be placed into other clusters. If not,
they form their own, new clustering. They find that the hybridization of DTW
and HMM forms better clusters than either approach alone on simulated data
(which is also discretised) from models used in [46].

Zhong and Ghosh [52,49-51, 48] use a model-based k-means clustering al-
gorithm and a version of the EM algorithm. The also use a hierarchical model
similar to that of [44], using HMM instead of MC models. Li and Biswas [31, 32,
29, 30, 33] propose a Bayesian HMM clustering methodology that includes deter-
mining the number of clusters and the structure of the HMM. Cadez, Gaffney
and Smyth [11,12] use HMM within the context of a generalised probabilistic
framework. Alon et al [2] use the EM algorithm in HMM based clustering and
assess the performance of EM in relation to k-means.

Polynomial Models Another approach is to assume the underlying model is a
mixture of Polynomial functions. Gaffney and Smyth [20, 21] assume a mixture
regression model. The EM algorithm with MAP estimates is used to estimate
the cluster membership probabilities and weighted least squares used to fit the
models. The technique is applied to simulated data, environmental data and
video streaming data.

Bar-Joseph et al [5] adopt a mixture spline model for gene expression data,
again using the EM algorithm in conjunction with least squares.



2.2 Model Free Approaches

Rather than assume a model form and base similarity on fitted parameter es-
timates, an alternative approach is to measure distance with the original or
transformed data.

The simplest approach is to treat the time series as an N-dimensional vector
and use the L, Minkowsky distances. If a and b are series with IV data and a;, b;
are data at time ¢, then

N
L= () la; —bi|")s
=1

and

Lo, = max(|a; — b;])

The Euclidean distance metric is Lo

Ly = (Z la; — bi]?)? (1)

This measure is used by [1] in conjunction with fast fourier transforms. The
main problem with using an L, measure for time series similarity is that they
are effected by the scale of the two time series, thus shape characteristics can
be lost (A further problem is that it is required that data be available for the
same time steps, and this may not always be the case). [28] use a distance
metric based on the Euclidean distance but introducing an extra set of shape
parameters. An alternative is to use a metric that does capture the similarity
in shape, for example one based on the correlation between the series. If we let
C(a,b) be the correlation between the series a and b, i.e.

iy (a; — a)(bi — b)
VEN (@ - a2 S (b - b)?

then Equation 2 is a metric, as demonstrated by Ormerod and Mounfield [42].
Similar metrics were used by [8].

C(a,b) =

d(a,b) = \/2(1 — C(a, b)) 2)

Other researchers look for commonality measures based on common subse-
quences. For example [13] and [18] define measures based on common subse-
quences.

An alternative approach is to transform the data then use an associated
metric. Approaches used include: time warping [40]; fast fourier transforms [1];
wavelet transforms [37] and piecewise constant approximation [25].



3 Experimentation

The results presented in this paper demonstrate that, for a certain class of un-
derlying clustering model (described in Section 3.1), and with a particular exper-
imental set up and clustering algorithm (outlined in Section 3.2), transforming
the continuous time series into a discrete binary series

— does not significantly degrade clustering performance when there are no out-
liers and

— significantly improves the quality of the final clusters found when there are
outliers, even when the probability of an outlier is very low.

3.1 Experimental Model

We generate time series data from polynomial models of the form
m(t) =p(t) +€ ®3)
where ¢ is N(0,0) and o is constant. We assume the polynomial is order 1, i.e.
pt)=a+b-t

The purpose of these experiments is to demonstrate the robustness in the
presence of outliers of using a discretised time series rather than the the contin-
uous data for clustering. Hence, we add a further term to Equation 3 to model
the effect of outliers. A continuous time series is assumed to be generated by a
sequence of observations from the model

m(t)=a+b-t+e+r (4)
where
r=8-2-y.

s is a constant, x € {0,1} and y € {—1,1} are observations of independent
random variables, X and Y, where X has density

f@) =p (1 =p)

and Y has density

r is a random shock effect that can occur with probability p, and if it occurs
it has the effect of either adding or subtracting a constant s to the data (with
equal probability).

A continuous time series is a sequence of observations from a model, now
defined as

yt)=pt)+e+r t=1...n (5)



A binary data series is generated by transforming a continuous series into
series of above and below the median. If ¢, is the sample median of the data

series y(t),t = 1,...,n, then the associated discretised time series, z, is defined
as
iy >0,
2(t) = {0 otherwise (6)

A data set is parameterised as follows: there are & models of the form given in
Equation 5, each of which generates [ time series; each of the [ -k time series is of
length n and is sampled at the same points t = 1,2, ..., n; o defines the variabil-
ity of static noise, s the level of random shocks and p the probability of shocks.
From a data mining perspective, the clustering problem we are attempting to
solve has the following properties:

learning is unsupervised since cluster membership is not known a priori;
cluster sizes are equal (I the same for all clusters k);

there is no missing data (each series sampled at the same points);

The number of clusters, k, is known a priori;

the distribution of € is constant for all observations and all series.

3.2 Experimental Procedure

We use the k-means algorithm with the correlation based distance metric given
in Equation 2 for experimentation. We choose k-means as it is one of the most
popular and simple clustering algorithms. Further experimentation will involve
assessment of the clustering using alterative algorithms and distance metrics.

We initialise the centroids for k-means to a random data series. It is well
known that k-means is sensitive to initial conditions [10], hence we repeat the
classification algorithm with random initial conditions and then average over the
runs. For any data set D of [ - k time series derived from a particular set of k
models, the clustering algorithm is run u times. For any particular parameter
values, v different sets of k models are generated.

Clustering performance is measured by the classification accuracy, i.e. the
ratio of the percentage of the data in the final clustering that is in the correct
cluster. Note we are measuring accuracy on the training data rather than apply-
ing the data to a separate testing data set. We do this because wish to measure
the effects of outliers in the training data rather than assess the algorithm’s
ability to solve the clustering problem. We use this measure rather than some of
the alternatives (see [23]) since we know the correct clustering.

For a given clustering we measure the accuracy by forming a k X k contingency
matrix. Since the clustering label may not coincide with the actual labelling
(e.g. all those series in cluster 1 may be labelled cluster 2 by the clustering
algorithm) we evaluate the accuracy (number correctly classified divided by the
total number of series) for all possible k! permutations of the columns of the
contingency table. The achieved accuracy is the maximum accuracy over all
permutations.



We average the accuracy over the u repetitions to find the average accuracy
for a set of particular models, and average this data over the v different model
sets to find the average performance for a particular set of parameter values.
This average of averages we term the average correct classification.

All the parameters are given in Figure 1. Unless otherwise stated, th e pa-
rameter values used in all experimentation is given in brackets

Parameters Meaning Default value
experiment parameters

k Number of clusters k=2

n Time series length n =100
l Series per cluster =10
U Clusterings per model u =20
v Number of models v =20
D Data set consisting of [ - k series
m; A generating model

model parameters

ai,b;,, 1=1...k Linear parameters

o Model noise oc=10
P Outlier probability

s Random shock value s =100

Fig. 1. List of experimental parameters

3.3 Experimental Sequence

We demonstrate that the discretised data results in significantly better clusters
when there are outliers in the data by conducting 4 experiments.

— Experiment 1 shows that treating a time series as a multivariate clustering
problem can result in the failure to identify the correct underlying clustering
(Section 3.4).

— Experiment 2 shows that discretising the data to above and below the median
can mitigate against the effect of outliers for a particular model (Section 3.5).

— Experiment 3 shows that discretising the data does not significantly reduce
the accuracy of a class of models when there are no outliers or outliers are
very unlikely (Section 3.6).

— Experiment 4 shows that discretising the data does significantly increase the
accuracy of a class of models when outliers are more likely (Section 3.7).



3.4 Experiment 1: Basic Linear Model

It has frequently been observed that clustering time series with vector based
distance metrics (i.e. metrics that take no account of the ordering of the data)
will result in degradation of performance. We demonstrate this by comparing
performance of k-means using a Euclidean distance (Equation 1) with a cor-
relation based metric (Equation 2) with data arising from the model given in
Equation 3.1.

The parameters used were: by = 0.5; b = —0.5; a; and ag are uniformly
sampled in the range [100, 200] for each time series; and p = 0 (i.e. there are no
random shocks).

Using Euclidean distance, the average correct classification was 78.45%, whereas
the correlation based distance metric achieved 100% accuracy. This illustrates
that the differing scales (different a; values) can overwhelm the time based trends
(fixed b; values) and reinforces the point that vector based distance metrics can
fail to detect regularities in time series data.

3.5 Experiment 2: Random Shocks Linear Model

This experiment shows that if there are outliers (random shocks) in the data then
discretising can improve the accuracy of k-means clustering. Data was generated
from the model described in Equation 5 then the discrete series were formed using
Equation 6.

The parameters were as given in Figure 1 and in Section 3.4, except for the
fact that p, the probability of a random perturbation of the series, may vary.
Data was then generated with different values of p. Two example time series,
one from each cluster, for p = 0 and p = 0.5 are shown in Figure 2. Figure 2
illustrates how the overlap between data increases with the increased chance of
a random shock, and hence how the clustering task gets harder as p increases.

For each p value, p = 0 to 0.6 in increments of 0.01, 20 random models were
generated (i.e. v = 20) and k-means was run for 20 times (i.e. u = 20) on data
from each model. The average classification accuracy for each of the 61 different
p values is shown in Figure 3 for both the continuous and discrete data with a
random shock value of s = 100. Clearly the accuracy with the discretised data
results in significantly higher accuracy even when the probability of a random
shock is very low.

Figure 4 shows the even more dramatic effect on the accuracy of continuous
data when the level of random shock is increased to 1000. As would be expected,
increasing the level of random shock does not effect the accuracy of the clusters
formed from the discretised data.

This experiment demonstrates the potential benefit of discretising the data
for the model given. However, it would be of more interest to demonstrate the
benefits over a class of models. The next two experiments address the issue of
how discretising effects performance over a wider class of linear models than
considered in Experiment 2.



p=0 p=0.5

Fig. 2. Example data series on the left has no random shocks (p=0), the series on the
right has an overwhelming number of random shocks (p=0.5)
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3.6 Experiment 3: Showing that using z does not significantly
decrease accuracy

The objective of this experiment is to determine whether discretising the data
significantly reduces the accuracy of the classification of the k-means algorithm
using a correlation based distance metric. We perform this experiment with
a sample from a wider class of models than used in Experiments 1 and 2. The
format of the models is as given in Equations 5 and 6 and the default parameters
are used (Figure 1).

Let M be the set of all models considered in the experiment, with an instance
denoted m;. Let C be the set M x M of generators of the two cluster model.
¢y is the population median of the average classification accuracy of the k-
means algorithm (k known, random initial centroids) over the space of underlying
models C' and ¢, denotes the population median when using the discretised data.
tty and p, are the associated population means. Given a random sample of model
v, we wish to test Hy : ¢, = ¢, against the alternative H; : ¢, < ¢, for a wider



class of models. For each model, b; is now selected randomly on the interval
[—x, z], where  determines how likely given models are to be similar.
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Fig. 5. Average clustering accuracy for varying difference of gradient between gener-
ating models using continuous data and no random shocks

Thus the gradients of the models may be close, making the clustering task
very hard, or far enough apart to easily discriminate the series. Figure 5 shows
how the accuracy of the k-means algorithm improves as the gap between the
gradient of the generating models increases when there are no random shocks.
The accuracy data appears to be grouped into three clusters. When the difference
is below approximately 0.4 the algorithm is unable to properly distinguish the
clusters. When the gradient is above 1 the algorithm is almost always completely
accurate. In the region between k-means can have a wide range of accuracy.
The accuracy when using the discrete data shows a similar pattern. In order to
compare performance, we concentrate on the types of model where differences in
accuracy are most likely to be caused by the transformation of the data rather
than on poor initial conditions for the clustering algorithm, hence we restrict
the gradient range to [—0.5,0.5] (i.e. x = 0.5).

To reverify that this restriction is not masking a difference in performance
on discrete and continuous data, we examined the difference in accuracy using
paired samples (i.e. we evaluate k-means accuracy with the continuous and the



discrete data generated from the same underlying models) and a sample size of
v = 50 for a range of fixed gradients. The results, shown in Figure 6, suggest there
is little change in distribution, indicating that the effect of the discretisation is
independent of the difficulty of the classification problem for gradients less than
1.
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Fig. 6. Difference in average clustering accuracy against difference in gradient of the
underlying models. A positive data indicates the clustering accuracy on discrete data
was higher than that on continuous data

Table 1 summarises the results when the experiment was repeated with x =
0.5. Of the 50 trials, there were 24 trials with a positive difference (i.e. continuous

Table 1. Clustering accuracy summary for paired samples. The difference series is the
continuous data minus the discrete data

Continuous
Discrete

Difference

Mean
80.13%
79.84%

2.67%

Median

91.15%

86.30%
0%

Min
56.60%
57.80%

-5%

Max
100%
100%
8.7%

StDev
17.80
17.64

2.67

data resulted in a higher accuracy than the discrete data), 4 had no difference and
21 had negative difference. There is a positive mean difference but the median
difference is zero and we cannot reject the null hypothesis that Hy : ¢, = ¢,
for the alternative H; : ¢, < ¢, using the Wilcoxon’s test for matched pairs.



It is worth noting that we cannot rejected the hyptothesis Hg : ., = py in
favour of the alternative H;y : p, < p, using a t-test. Despite this result, we use
non-parametric tests due to the decidely non normal nature of the data.

To verify there is in fact no significant difference in the median clustering
accuracy for the models considered, we re-ran the experiment with unmatched
pairs and 100 models in each sample (v = 100).

Table 2. Accuracy summary for unmatched models

Mean [Median| Min |Max [StDev
Continuous|76.801%|73.00% [56.20%|100% | 16.96
Discrete |76.798%|72.85% (55.50%|100%| 15.83

Table 2 summarises the results. The difference in the mean is neglible, and
using the Mann-Whittley test we cannot reject the null hypothesis Hq : ¢, = ¢,
in favour of the alternative Hy : ¢, # ¢y.

These results clearly demonstrate that discretising the data does not decrease
the accuracy of the k-means clustering algorithm used to cluster data derived
from two models of the form given in Section 3.1 when there are no outliers in the
data. The next experiment shows that the accuracy of the clustering significantly
improves even when the probability of an outlier is very small.

3.7 Experiment 4: Showing Using a discretised series increases
accuracy

To demonstrate the desirability of discretising, we repeat experiment 3 for vari-
ous values of p with both paired and unpaired samples. All other parameters are
identical to those used in results presented in Section 3.6 (v = 50,z = 0.5). Fig-
ure 3.7 shows how the accuracy difference changes as the probability of an outlier
increases. Each data represents the median of 50 evaluations, where each evalu-
ation consists of 20 runs of the k-means algorithm. There is an initial dramatic
decrease in accuracy of clustering using the continuous data. As the probabil-
ity of an outlier increases the accuracy difference between using discretised and
continuous data decreases. This is because the noise eventually overwhelms the
algorithms ability to cluster correctly.

To illustrate the effect of outliers more clearly, Figure 8 shows the results for
the same experiment using a smaller range of p. Clearly the clustering algorithm
is performing much better with the discretised data even when the probability
of outlier is very low.

Figure 9 shows a repeat of the experiment described by Figure 8 with un-
paired samples. For contrast with Figure 8, the mean values rather than the
medians are shown, but the pattern in both averages is the same. A very small
probability of outliers results in a much improved performance when the discre-
tised data is used.
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Fig. 7. Difference in clustering accuracy for probability of an outlier between 0 and 0.5
with paired samples

Finally, to emphasise the point further, we fixed the number of outliers so
that each series of 100 data had exactly one outlier and repeated the paired
experiment. Of the 50 trials, 9 resulted in the continuous data having higher
accuracy, in 1 trial the accuracy was the same and in the remaining 40 the
accuracy was greater when the discrete data was used.

Using Wilcoxon’s signed-rank test for matched pairs, the null hypothesis
Hy : ¢4 = 0 can be rejected in favour of the alternative Hp : ¢g < 0 at the 1%
level

4 Conclusions and Future Direction

The clustering of time series is a field that has attracted the interest of researchers
from a wide range of disciplines. This report has provided a brief review of the
techniques used, including a description of the types of models assumed, the
distance metrics employed and the clustering techniques used. Many real world
time series have the unfortunate property that they contain outliers, and the
aim of this research is to demonstrate that if discretised series are used instead
of the continuous data then the effect of outliers can be lessened significantly.



bedian diff erence accuacy between discrete and continuous

0.3

0.25

02 r\
IZI1.5 L l r
. Ao flo NS L
005 - vj i \/V\] V\J ol \/\/\ \

I:I T T T T
1] 0.01 0.02 0.03 0.04 0.0

Fig. 8. Difference in clustering accuracy for probability of an outlier between 0 and
0.05 with paired data

We have demonstrated how, for a certain class of model, distance metric and
clustering algorithm, discretising the series into binary series of above and below
the median can improve the clustering accuracy when there are outliers in the
data, even when the probability of an outlier is very small.

Although there are benefits from using the binary series of above and below
the median when there are outliers, it obviously means some of the information
in the original data is discarded. It is worthwhile discovering how much this
effects the quality of clusters formed.

The obvious way of extending this work would be to assess the effect of
discretisation when the data arises from other models and when alternative
distance metrics and/or clustering algorithms are employed. It is also a logical
extension to apply the technique to real world data.

Working with binary series can often allow for significant speed improvements
with model fitting and clustering techniques, and this could be another benefit
of discretisation.
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