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RESEARCH ARTICLE

Interindividual Variability in Use-Dependent Plasticity Following
Visuomotor Learning: The Effect of Handedness and Muscle
Trained
Mark van de Ruit 1, Michael J. Grey2
1Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands. 2Acquired Brain Injury
Rehabilitation Alliance, School of Health Sciences, University of East Anglia, Norwich, United Kingdom

ABSTRACT. Motor learning has been linked with increases in
corticospinal excitability (CSE). However, the robustness of this
link is unclear. In this study, changes in CSE associated with
learning a visuomotor tracking task were mapped using transcra-
nial magnetic stimulation (TMS). TMS maps were obtained before
and after training with the first dorsal interosseous (FDI) of the
dominant and nondominant hand, and for a distal (FDI) and proxi-
mal (biceps brachii) muscle. Tracking performance improved fol-
lowing 20 min of visuomotor training, while map area was
unaffected. Large individual differences were observed with
18%–36% of the participants revealing an increase in TMS map
area. This result highlights the complex relationship between
motor learning and use-dependent plasticity of the motor cortex.

Keywords: handedness, motor learning, motor mapping, plasticity,
TMS

Introduction

Learning or relearning a motor skill has been linked with

use-dependent plasticity in the human motor system

(Butefisch et al., 2000; Plautz, Milliken, & Nudo, 2000;

Sanes & Donoghue, 2000). Use-dependent plasticity can be

explored by assessing changes in excitability of the cortico-

spinal pathway, considered a marker of plasticity (Siebner

& Rothwell, 2003). Transcranial magnetic stimulation

(TMS) is often used to study changes in corticospinal excit-

ability (CSE), e.g., by quantifying the peak-to-peak ampli-

tude of the motor-evoked potential (MEP) elicited when

stimulating the primary motor cortex (Barker, Jalinous, &

Freeston, 1985; Rossini et al., 2015). Whereas early studies

suggested a strong link between increases in CSE and

improved motor performance following motor learning

(Jensen, Marstrand, & Nielsen, 2005; Muellbacher, Zie-

mann, Boroojerdi, Cohen, & Hallett, 2001), more recently

this relationship has been challenged and labelled as con-

siderably variable across participants (Bologna et al., 2015;

Vallence, Kurylowicz, & Ridding, 2013).

Variability in changes of MEP amplitude following

motor learning may explain the equivocal results in the lit-

erature regarding changes in excitability following motor

learning with (1) the dominant vs. the nondominant hand or

(2) a proximal muscle vs. a distal muscle of the arm. The

greatest changes in MEP amplitude following motor learn-

ing have been suggested for the dominant hand by some

(Hammond & Vallence, 2006), but nondominant hand by

others (Cirillo, Rogasch, & Semmler, 2010). Other

researchers reported no difference in MEP facilitation

between hands (Gallasch, Christova, Krenn, Kossev, &

Rafolt, 2009; Garry, Kamen, & Nordstrom, 2004). More-

over, these studies have not found a consistent relationship

between changes in motor performance and MEP ampli-

tude. When comparing motor learning of a proximal and

distal muscle, Krutky and Perreault (2007) reported a pro-

gressively smaller increase in MEP amplitude for a proxi-

mal wrist and upper arm muscle compared with a distal

hand muscle. Yet, equivalent changes in TMS-evoked

movement direction of the index finger, wrist, and elbow

following training were observed. They reported small

MEP changes following training the biceps muscle, which

confirm findings by Ziemann, Muellbacher, Hallett, and

Cohen (2001) who were first to report little to no change in

MEP amplitude following training. In contrast, Jensen,

Marstrand, and Nielsen (2005) reported a significant

increase in biceps MEP amplitude following a visuomotor

tracking learning.

These contradicting results raise questions about vari-

ability in use-dependent plasticity across different muscles

in both the dominant and nondominant arm. The expression

of changes in excitability has many determinants (Ridding

& Ziemann, 2010), (e.g., age, attention, genetics, sex, time

of the day, physical activity, and prior voluntary muscle

activity) and is therefore variable across participants as

some factors are difficult to control. To capture some of

this variability, a recent trend has been to categorize partici-

pants as either responders or nonresponders to the training.

Those participants for whom MEP amplitude increases are

grouped together and categorized as responders, whereas

those participants for whom MEP amplitude does not

change or decreases are categorized as nonresponders (e.g.,
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Wiethoff, Hamada, & Rothwell, 2014). It is possible that a

discrepancy in the number of responders and nonresponders

is a major contributor to the conflicting results regarding

changes in CSE and motor performance following learning

with the dominant and nondominant hand or for different

muscles in the arm.

Therefore, this study was designed to investigate use-

dependent plasticity following a visuomotor tracking learning

task with the dominant and nondominant hand; or distal vs.

proximal muscle. We aimed to quantify the number of res-

ponders and nonresponders with regard to changes in CSE

across all trained muscles. Changes in CSE are assessed using

a novel TMS mapping technique (van de Ruit, Perenboom, &

Grey, 2015), rather than averaging a set of single MEPs to

quantify CSE bymeanMEP amplitude. TMSmaps allow one

to draw the same conclusions as the more commonly used

stimulus-response curve (Ridding & Rothwell, 1997), while

providing the additional ability to expose uneven expansions

of the cortical map or changes in the distribution of excitabil-

ity which can otherwise not be detected. This study comprises

two experiments. In the first experiment, the number of res-

ponders and nonresponders were studied by comparing learn-

ing with the dominant and nondominant hand, as quantified

by changes in TMS map area. In the second experiment, the

number of responders and nonresponders were studied by

comparing learning with a proximal and distal muscle, as

quantified by changes in TMSmap area. Furthermore, in both

studies we tested whether changes in TMS map area were

related to changes in performance.

Methods

Participants

We conducted two experiments involving 40 healthy par-

ticipants (Experiment 1: 20 participants—22 § 3 y, range

18–29, 12 female; Experiment 2: 20 participants—22 § 5 y,

range 18–37, 13 female). The samples were independent,

with different participants taking part in each experiment.

All participants provided written informed consent before

participating in the study. Participants were screened for

contraindications to TMS using a modified version of the

TMS adult safety questionnaire originally suggested by

Keel, Smith, and Wassermann (2001), and handedness was

assessed using the Edinburgh Handedness Inventory (Old-

field, 1971). The study was approved by the University of

Birmingham’s Science, Technology, Engineering and

Mathematics ethics committee (ERN_11-0444), and all

experiments were performed in accordance with the Decla-

ration of Helsinki.

Electromyography

Bipolar surface electrodes (Blue Sensor N, Ambu, Den-

mark) were used to record the electromyographic (EMG)

activity of the first dorsal interosseous (FDI) or biceps

brachii (BB) with only one muscle recorded for each exper-

imental session. All EMG signals were amplified (FDI: 1k;

BB: 2k), band pass filtered (20–1000 Hz), and digitally

sampled at 5 kHz to be stored for offline analysis.

Transcranial Magnetic Stimulation (TMS)

A custom-made polyurethane coated 90 mm figure-of-8

coil (type: batwing; type no. 15411) was used to deliver

magnetic stimuli to the primary motor cortex using a Mag-

stim Rapid2 (Magstim Ltd, Dyfed, United Kingdom). The

coil was held at 45� to the sagittal plane, with the handle in

the posterior direction, to induce biphasic currents in the

lateral-posterior to medial-anterior direction. The site evok-

ing the largest MEPs, the “hotspot”, was found by visual

inspection of the EMG. Subsequently, resting motor thresh-

old (RMT) was determined as the threshold intensity

at which at least 5 out of 10 stimuli evoked MEPs when

stimulating at the hotspot with a peak-to-peak amplitude

> 50 mV (Rossini et al., 1994). Coil position and orienta-

tion were monitored throughout the experiment using

frameless stereotaxy (BrainSight 2, Rogue Research Inc,

Montreal, Canada).

TMS Mapping

CSE was assessed using TMS maps acquired with a novel

rapid mapping procedure that takes advantage of frameless

stereotaxy together with a reduced interstimulus interval

(van de Ruit, Perenboom, & Grey, 2015). After finding the

motor hotspot and motor threshold of the muscle studied, a

square 6 £ 6 cm grid was positioned over the hemisphere

studied. The grid was aligned such that the motor hotspot

would be roughly central in the map to ensure full mapping

of the cortical representation was possible. For each TMS

map, 80 stimuli were delivered at 120% of RMT. Stimuli

were applied at pseudorandom locations within the grid with

each site receiving a single stimulus. It was ensured that

each stimulus was delivered at a different location. The

interstimuls interval (ISI) was set to 1.5 s as this frequency

of stimulus delivery together with the small number of stim-

uli required for the protocol does not depress cortical excit-

ability (Mathias, Barsi, van de Ruit, & Grey, 2014) as has

been shown with longer protocols. To compare across differ-

ent participants, MEPs were normalized before the maps

were constructed (see Experimental Protocol for details).

Experimental Protocol

Experiment 1: Dominant vs. Nondominant Hand Training

In the first experiment, we compared the number of res-

ponders and nonresponders, quantified by changes in TMS

map area, following visuomotor tracking learning for both

the dominant and nondominant hands. Participants visited

the lab twice, during which visuomotor tracking learning
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was performed with either the FDI muscle of the dominant

or nondominant hand. Sessions were separated by at least

7 days but performed at the same time of the day. The order

in which training was performed with dominant and non-

dominant hand was counterbalanced across participants.

Three TMS maps were acquired before and after the visuo-

motor tracking learning task. MEPs were normalized to the

electrically evoked maximal M-wave (Mmax) in order to

compare across different participants. To obtain the Mmax,

a bipolar probe was used to stimulate the ulnar nerve at the

level of the elbow using a constant current stimulator (Digi-

timer DS7A, Digitimer Ltd, Welwyn Garden City, UK).

The visuomotor tracking learning task used in this study

is based on a method successfully applied by others (Jen-

sen, Marstrand, & Nielsen, 2005; Perez, Lungholt, Nyborg,

& Nielsen, 2004). Figure 1 shows the experimental setup

for Experiment 1. Participants were seated comfortably,

with a monitor in their direct line of sight. Participants were

asked to rest the hand that was tested palm down on a table

20 cm in front of them. The distal phalanx of the index fin-

ger was lined up with a force transducer (NL 62–50 kg,

Digitimer Ltd, Welwyn Garden City, UK). To ensure an

isolated contraction of the FDI muscle, the wrist and other

finger were immobilized using Velcro straps. The measured

force exerted by FDI contraction (measured by the force

transducer) was displayed as a circular cursor on the com-

puter screen. The cursor moved automatically from the left

to the right. Participants were able to control the movement

of the cursor by activating and relaxing the FDI muscle.

When contracting the FDI muscle the cursor moved to the

top of the screen, while when relaxing the cursor moved to

the bottom of the screen (based on design of Perez, Lun-

gholt, Nyborg, & Nielsen, 2004). The force signal was high

pass filtered by 30 Hz, amplified by 500–2 k and sampled

at 4 kHz to be stored for offline analysis.

Participants were presented with five different wave-

forms to familiarize them with the task. Each waveform

was 12 s long, including a 1 s rest period at the start and

end. The waveforms were scaled between 0% and 20% of

the participants maximal voluntary contraction (MVC),

determined before the start of the learning task. The famil-

iarization period was followed by five training blocks con-

sisting of 20 waveforms, making each training block take

4 min. After each training block, participants were allowed

a 2-min break to minimize the possibility of muscle fatigue.

The same waveforms were presented in each training block,

although the order of presentation was randomized. Visual

feedback of the absolute tracking error was provided after

each waveform. The online feedback on performance

served to keep participants motivated, to reduce their track-

ing error and to stabilize their attention.

Experiment 2: Distal vs. Proximal Muscle Training

In the second experiment, we compared variability in

changes in TMS map area following visuomotor tracking

learning for a proximal and distal muscle of the dominant

arm. The setup and experiment were identical to that for

the previous experiment except with visuomotor tracking

performed with either the BB or FDI muscle of the domi-

nant arm. Again, the order in which training was performed

with proximal and distal muscle was counterbalanced

across participants. As finding Mmax in the proximal BB

muscle was found too uncomfortable for the participants,

MEPs for this experiment were normalized to the mean

maximal MEP (MEPmax) amplitude in response to 10 stim-

uli at maximal stimulator output over the motor hotspot.

When visuomotor tracking learning performance of the

BB muscle was tested, participants rested the dominant arm

in a rig that held the arm with the elbow at approximately

120� and adjusted to a height that would prevent strain in

the shoulder and neck (Figure 1: bottom). The arm was

immobilized by a Velcro strap at the level of the wrist and

just below the elbow. Participants were instructed to always

keep the hand midway between pronation and supination

with the thumb up. A torsion bar attached to the Velcro

strap was used to record the forces exerted by a biceps con-

traction. During the learning task, participants repetitively

FIGURE 1. Experimental protocol and setup during the
visuomotor tracking learning task. Participants were seated
with a monitor in direct line of sight on which the wave-
forms were presented. The task was performed by either
activating or relaxing the first dorsal interosseous muscle
(FDI) (top panel) or biceps brachii (BB) muscle (bottom
right panel). Training was performed for a total of 20 min
(five blocks of 4 min) with 2 min rest between each block.
TMS was used to probe changes in excitability using TMS
mapping of the FDI or BB muscle before and after training.

Variability in Use-Dependent Plasticity
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activated the BB muscle to track the presented waveforms.

When training with the distal FDI muscle, the same proce-

dures as in Experiment 1 were followed.

Data Analysis

Visuomotor Tracking Performance

Tracking performance was quantified by the root mean

square (RMS) error between the target waveform and the

tracked path. The effect of the training was examined by

comparing the mean RMS error over all training blocks. A

lower RMS would be indicative for increased performance

and a decreased tracking error with respect to the target

waveform.

TMS Maps

To create the TMS map, data were analyzed offline

with a bespoke MATLAB script (MATLAB Release

2012b, The MathWorks, Inc., Natick, Massachusetts,

United States). All stimuli positions were projected in a

2D plane. Accordingly, each position was matched with

its corresponding MEP peak-to-peak (MEPpp) value

extracted from the EMG 20–50 ms after stimulation. All

EMG recordings with a background EMG over 30 mV

(peak-to-peak) in a window from 5 to 50 ms before

stimulation were excluded.

Maps were quantified by the map area and center of grav-

ity (COG). MEPpp values were used to approximate a

6 £ 6 cm grid composed of 2500 pixels using MATLAB’s

“gridfit” function (D’Errico, 2005). The number of pixels

with an approximated MEPpp amplitude greater than 10%

of the maximum MEPpp value (Uy, Ridding, & Miles,

2002) was calculated and expressed as total map area (in

mm2). If the 10% threshold was smaller than 100 mV peak-

to-peak, 100 mV was taken as the threshold for calculating

the area. The x- and y-coordinate of the COG was calcu-

lated from the MEPpp amplitude and its position on the

map, thus creating an amplitude weighted mean of the map.

Full details of this process are described in van de Ruit, Per-

enboom, and Grey (2015).

To quantify changes in the position of the COG, the x

and y components of the translation in COG were calcu-

lated by taking the difference in x and y position of the

COG before and after the visuomotor tracking learning task

(Dx and Dy). In this way a negative value would indicate a

shift in anterior (x) or lateral (y) direction and a positive

value a shift posteriorly (x) or medially (y).

The absolute displacement was calculated by taking the

Euclidian distance (ED) between COG of the median TMS

map before and after learning:

EDD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yCOGpre ¡ yCOGpost

� �2 C xCOGpre ¡ xCOGpost

� �2q
:

Statistical Analysis

Statistical testing was conducted with IBM SPSS

Statistics 21. Tests were considered significant at

a D 0.05. The data were tested for normality (Shapiro-

Wilk test), sphericity (Machly’s test), and examined

for significant outliers. When the assumption of covari-

ance matrix circularity was violated a Geisser–Green-

house adjustment was made (denoted by GG following

the F test). Data are reported as mean § 1 SD unless

otherwise noted.

Learning

To examine visuomotor tracking learning performance

during the training a three-way repeated measures analysis

of variance (3w-rmANOVA) was used with factors MUS-

CLE (left, right) £ BLOCK (block 1–5) £ WAVEFORM

(Waveform 1–20). This statistical analysis was performed

on the tracking performance data (i.e. RMS errors). The

factor WAVEFORM was included to test for heterogeneity

in the difficulty of the waveforms.

TMS Maps

To assess learning induced changes in CSE the effect of

learning on the TMS map area was studied. First, the map

with the median map area of the three maps acquired

before and after learning was selected. In case only two

baseline measures were considered, for example, when

data were missing for one map, the map with the lowest

mean background EMG was used. Subsequently, the

difference in map area between the pre- and postmeasure-

ment was taken (Darea D areaPOST ¡ areaPRE). A negative

Darea would thereby indicate a decrease in map area, a

positive Darea an increase. The Darea data were then

tested for statistical significance with respect to the fixed

value of 0 using a one sample t-test. A paired t-test was

used to study any differences in learning induced changes

in map area between the two muscles used in each experi-

ment. The same analysis was performed for the translation

of the COG (Dx and Dy).
To quantify the response rate to visuomotor tracking

learning three groups of responders were defined. Baseline

variance was calculated by calculating the difference of the

median map with respect to the two other maps collected

before training commenced. The standard deviation of the

baseline variance of all participants was used to classify

participants as either positive responders, nonresponders or

negative responders. Participants were classified as positive

responders if Darea of the median map before and after

learning > 1 SD of the baseline variance in map area. In

contrast, negative responders were classed as participants

with a decreased map area < –1 SD of baseline map vari-

ance. All other participants were classified as

nonresponders.

4 Journal of Motor Behavior
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Relationship between Motor Learning and Changes in

Corticospinal Excitability

A linear regression was performed on the tracking perfor-

mance data and changes in map area to determine if a

greater improvement in tracking performance could predict

the change in map area. To quantify the improvement in

tracking performance the percentage improvement between

different blocks was calculated. Based on the improvements

in tracking performance over training blocks linear regres-

sion was performed between the improvement from block 1

to block 3, the early learning phase, and block 3 to block 5,

the late learning stage, separately with the change in map

area. Finally, the Pearson correlation was used to determine

if there was any association between the changes in map

area (Darea) in the dominant vs. nondominant hand (Exper-

iment 1) or the proximal vs. distal muscle (Experiment 2).

RESULTS

All participants that completed the study tolerated TMS

well and none of the participants reported any muscle

fatigue following visuomotor tracking learning. The data

were normally distributed and had no significant outliers.

Experiment 1: Dominant vs. Nondominant Hand

In total 19 of the 20 recruited participants completed both

sessions of the experiment. One participant did not attend

the second experimental session and was removed from the

study.

Visuomotor Tracking Learning

For analysis of the visuomotor tracking learning data, 17

of the 19 available data sets were included. Two data sets

were omitted from processing due to errors with the force

recordings.

All participants successfully completed 20 min of visuo-

motor tracking learning. Figure 2A displays tracking per-

formance in the first and last block of training with the

dominant hand for one single waveform. Here, tracking has

become much more controlled following learning. Overall,

a progressive decrease in tracking error over the five blocks

for both the dominant and nondominant hand was found

(Figure 2B). This was confirmed by the three-way repeated

measures ANOVA (within factors: MUSCLE, BLOCK,

and WAVEFORM), that showed a significant effect for

BLOCK (p D 0.03). Bonferroni post hoc testing indicated

significant differences between block 1 and 2 and block 1

and 3, but not any of the other blocks. Moreover, a

significant main effect for WAVEFORM (p < 0.01) and

BLOCK £ WAVEFORM interaction was found

(p < 0.01), indicating there was a different learning rate for

the different waveforms, some being more difficult than

others.

TMS Mapping

Analysis of the TMS map data was performed on 17 par-

ticipants. Two data sets had to be discarded as a result of

measurement noise in the MEP recordings, these data were

not from the same two participants excluded for the visuo-

motor task. The maps included in the analysis for all ses-

sions were constructed out of 66 § 12 stimuli.

No significant difference was observed in RMT between

the dominant (50% § 7% MSO) and nondominant

(49% § 7% MSO) hand (t(16) D 0.75, p D 0.47). The stan-

dard deviation of the Darea in the baseline recordings (with

respect to the median map) was 343 mm2 for the dominant

hand and 330 mm2 for the nondominant hand. Based on 1

FIGURE 2. Effect of training a visuomotor tracking learning task with the FDI muscle of either the dominant and nondom-
inant hand on tracking performance. (A) Example of a single waveform for which tracking performance improved from the
first block (blue line) to last block (red line) with respect to the target waveform (black line). (B) Overall, tracking perfor-
mance improved over the five training blocks (shaded bars), for either the dominant (solid line) or nondominant index fin-
ger (dotted line). Tracking performance significantly improved with training (*p < 0.05) from block 1 to 3, after which
performance stabilized.

2018, Vol. 0, No. 0 5
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SD of the baseline Darea, a positive responder was defined

as Darea > 343 mm2 (dominant) or > 330 mm2 (nondomi-

nant), negative responder if Darea < –343 mm2 (dominant)

or < ¡330 mm2 (nondominant) and else a nonresponder.

Figure 3 shows TMS maps before and after training for

the dominant and nondominant hand. In this example, the

map area increased for the dominant hand whereas there is

no change in map area for the nondominant hand.

The maps provided are representative for the results,

with some participants exhibiting an increase in map

area following learning, for some participants map area

remained the same and in others it decreased. The

mixed response was accentuated by a nonsignificant

effect for both the dominant and nondominant hand

when comparing the difference in map area before and

after training to 0 using a student t-test (dominant:

t(16) D 0.84, p D 0.41; nondominant: t(16) D 0.21,

p D 0.84) (Figure 4A). Moreover, a paired t-test indi-

cated no difference in the response size between the two

hands (t(16) D 0.64, p D 0.54). Classifying responders

and nonresponders based on map area revealed six posi-

tive responders, nine nonresponders and two negative

responders after training with the dominant hand. Three

positive responders, eleven nonresponders and three

negative responders were found following training with

the nondominant hand.

Similarly no significant displacement of the COG was

found for either the x- or y-coordinate in both hands (domi-

nant—Dx: t(16) D 0.62, p D 0.54; Dy: t(16) D 0.91,

p D 0.38; nondominant—Dx: t(16) D 0.50, p D 0.62;

Dy: t(16) D 1.63, p D 0.12) (Figure 4B). The COG dis-

placement following learning was for the dominant hand

5.5 § 2.5 mm and the nondominant hand 5.6 § 2.7 mm.

Relationship between Learning and Change in Map Area

As there was no significant improvement in performance

during the training after block 3, the training data were split

up by analyzing the improvement from block 1 to 3 and 3

to 5 separately (early and late learning). The relationship

between the improvement in tracking performance and the

change in map area was assessed using a linear regression

(Figure 5A). For block 1–3 and both hands, improvement

in tracking performance and change in MEP area tended to

be positively correlated (dominant: r D 0.09; nondominant:

r D 0.20); however, these regressions were nonsignificant

(dominant: p D 0.76; nondominant: p D 0.47). In addition,

the regression analysis for both hand and block 3–5

revealed no significance for either the dominant (r D 0.03,

p D 0.93) or nondominant hand (r D 0.41, p D 0.13). More-

over, there was no association between changes in map

area of the dominant and nondominant hand (Pearson corre-

lation: r D 0.31, p D 0.23) (Figure 5B).

Experiment 2: Distal vs. Proximal Muscle

All 20 participants completed both sessions of the

experiment.

Visuomotor Tracking Learning

For analysis of the visuomotor tracking learning data all

data sets were included. All participants successfully com-

pleted the 20-min visuomotor tracking learning task. Fig-

ure 6A displays tracking performance in the first and last

block of training for one single waveform when training

with the BB, illustrating that tracking has become more

accurate following learning. Overall, a progressive decrease

in tracking error over the five blocks for both the distal and

proximal muscle was found (Figure 6B). This was con-

firmed by the three-way repeated measures ANOVA

(within factors: MUSCLE, BLOCK, and WAVEFORM),

that showed a significant effect for BLOCK (p D 0.04).

Bonferroni post hoc testing indicated significant differences

between block 1 and 2 and block 1 and 3, but not any of the

other blocks. Moreover, a significant main effect for

WAVEFORM was found (p < 0.01), indicating some

waveforms were more difficult than others.

TMS Mapping

Analysis of the TMS map data was performed on 17 par-

ticipants. Two data sets had to be discarded as a result of

FIGURE 3. Individual examples of TMS maps before
and after learning for both the dominant (top row) and
nondominant hand (bottom row). In this case, the top
row represents a positive responder (increase in map
area), while the bottom row represents a nonresponder
following the visuomotor tracking learning task. All
black open circles represent one stimulation and the
black cross (£) highlights the COG. Red indicates the
biggest MEPs, in contrast to small or no MEPs which
are indicated by blue.
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technical difficulties. The maps included in the analysis for

all sessions were constructed out of 73 § 4 stimuli. MEP-

max, used to normalize the MEPs, was on average

4.2 § 2.3 mV (range: 1.5–9.8 mV) for FDI and

0.8 § 0.7 mV (range: 0.1–1.7 mV) for BB.

There was a significantly higher RMT for the proximal

(57% § 10% MSO) compared with distal (44% § 7%

MSO) muscle (t(16) D 4.8, p < 0.01). The SD of the Darea
in the baseline recordings (with respect to the median map)

was 239 mm2 for the proximal muscle and 254 mm2 for

the distal muscle. Therefore, a participant was defined as a

positive responder if Darea > 239 mm2 (proximal) or

> 254 mm2 (distal), negative responder if Darea
< ¡239 mm2 (proximal) or < ¡254 mm2 (distal) and else

a nonresponder.

Figure 7 shows TMS maps before and after training for

both muscles. In this example, the map area decreased for

the distal muscle whereas an increase in map area for the

proximal muscle is present.

The maps provided are representative for the results, with

some participants exhibiting an increase in map area fol-

lowing learning, in some participants map area remained

the same while in others it decreased. The mixed response

was accentuated by a nonsignificant effect for both the

proximal and distal muscles when comparing the difference

in map area before and after training to 0 using a student t-

test (distal: t(16) D 1.04, p D 0.32; proximal:

t(16) D 0.74, p D 0.47) (Figure 8A).

Moreover, a paired t-test indicated no difference in the

response size between the two muscles (t(16) D –0.27,

p D 0.79). Classifying responders and nonresponders based

on map area revealed six positive responders, eight nonres-

ponders and three negative responders after training with

the distal muscle. Five positive responders, seven nonres-

ponders and five negative responders were found following

training with the proximal muscle.

No significant displacement of the COG was found

for the x-coordinate in the distal muscle and x-coordi-

nate of the proximal muscle (distal—Dx: t(16) D 0.20,

p D 0.84; Dy: t(16) D –1.04, p D 0.31; proximal—t(16)

D 0.14, p D 0.89). However, a significant displacement

in the COGs y-coordinate was found for the proximal

muscle (t(16) D 2.44, p D 0.03) (Figure 8B). The COG

displacement following learning was for the distal mus-

cle was 4.1 § 3.0 mm and the proximal muscle

3.8 § 2.3 mm.

Relationship between Learning and Change in Map Area

As there was no significant improvement in performance

during the training after block 3 the training data was split

up by analyzing the improvement from block 1 to 3 and 3

to 5 separately (early and late learning). The relationship

between the improvement in tracking performance and the

change in map area was assessed using a linear regression

(Figure 9A). For both the proximal and distal muscles,

there was a poor relationship between performance

improvement in block 1–3 and change in map area. There-

fore, both regressions were found not to be statistically sig-

nificant (proximal: r D 0.36, p D 0.19; distal: r D 0.08, p D
0.78). In addition, the regression analysis for both hand and

block 3–5 revealed no significance for either the proximal

(r D 0.04, p D 0.89) or distal muscle (r D 0.21, p D 0.47).

There was no association between changes in map area of

the proximal and distal muscle (Pearson correlation:

r D –0.04, p D 0.89) (Figure 9B).

FIGURE 4. Effect of training a visuomotor tracking learning task with the FDI muscle of either the dominant or nondominant hand
on TMS map area and COG. (A) Change in map area (Darea D areaPOST ¡ areaPRE) was not significantly different from 0 for either
hand; however, there are great interindividual differences with some participants showing an increase, decrease, or no change in
map area (black dots). Based on baseline variability of the map area, all participants with a change in map area within the range as
marked by the shaded rectangle in the background were classified as nonresponders. (B) No change was found for either the dis-
placement of the x- or y-coordinate of the COG for any hand.
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Discussion

This study investigated response variability in changes

to CSE following a 20 min visuomotor tracking learning

task performed either with the dominant or nondominant

hand and with distal vs. proximal muscle in healthy par-

ticipants. TMS mapping was used to explore changes in

CSE, and the map area used to categorize participants as

either responders or nonresponders. No significant group

differences in map area were found between the domi-

nant and nondominant hands or between proximal and

distal muscles. This is in line with recent reports on

response variability to various noninvasive brains stimu-

lation protocols. Overall, only 18%–36% of the partici-

pants were classified as responders, revealing an increase

in TMS map area following the visuomotor tracking

learning task, despite all participants demonstrating a sig-

nificant increase in tracking performance.

Response Variability

Anatomical and physiological differences between and

within hemispheres (Hammond, 2002; Palmer & Ashby,

1992; Schambra et al., 2011; Serrien & Spape, 2009;

FIGURE 5. Results of the linear regression performed to investigate whether improvement in tracking performance could
predict change in TMS map area. A correlation analysis was performed to find out if changes in map area of both hand are
correlated. (A) Linear regressions were performed to see if the improvement in tracking error (expressed as % improve-
ment) during either the early (block 1–3) or late (block 3–5) phase of training could predict change in map area, as overall
performance was found to not improve significantly after block 3. The improvement in tracking error in either the early or
late phase of motor learning could not predict change in map area for either the dominant or nondominant hand. (B) A cor-
relation analysis revealed changes in map area for the dominant hand could not predict change in map area of the nondom-
inant hand, or vice versa.
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Wassermann, Mcshane, Hallett, & Cohen, 1992) have been

suggested to explain discrepancies in use-dependent plas-

ticity when performing a motor learning task with either

the dominant vs. nondominant hand or proximal vs. distal

muscle (Cirillo, Rogasch, & Semmler, 2010; Krutky & Per-

reault, 2007). In this study, no significant changes in TMS

map area following a challenging visuomotor tracking

learning task were found for the dominant and nondominant

hand using TMS mapping, despite an increase in visuomo-

tor tracking performance for both. Nonetheless, a higher

number of positive responders, participants with an increase

in TMS map area, were found for the dominant hand (6)

than the nondominant hand (3). Similarly, tracking perfor-

mance improved significantly with no significant changes

in TMS map area observed following learning with both

the distal finger muscle (FDI) and proximal muscle (BB).

An increased TMS map area was found for five participants

when training the proximal muscle, and six participants

when training the distal muscle.

There is ample evidence that not every participant will

display similar responses to a noninvasive brain-stimulation

protocol that aims to enhance or suppress CSE (Hamada,

Murase, Hasan, Balaratnam, & Rothwell, 2013; Lopez-

Alonso, Cheeran, Rio-Rodriguez, & Fernandez-Del-Olmo,

2014; Muller-Dahlhaus, Orekhov, Liu, & Ziemann, 2008;

Wiethoff, Hamada, & Rothwell, 2014). In fact, the pre-

dicted response only occurs for 1/3–2/3 of the healthy par-

ticipants. Moreover, it was also recently shown that the

response may not be consistent within participants across

different testing sessions (Horvath, Vogrin, Carter, Cook,

& Forte, 2016). This is not surprising given that, the

response is mediated by numerous factors such as age, gen-

der, attention, and history of synaptic activity (for review:

Ridding & Ziemann, 2010). These factors likely also affect

use-dependent plasticity, and yet very few motor learning

studies report on interindividual variability. Only a study

by Vallence, Kurylowicz, and Ridding (2013) demonstrates

increased MEP amplitude in 75% of the participants fol-

lowing a ballistic thumb abduction task. Moreover, they did

not observe associations between plasticity induced follow-

ing motor learning or noninvasive brain stimulation proto-

cols in the same participants. This signifies the importance

FIGURE 6. Effect of training a visuomotor tracking learning task with the distal FDI muscle or proximal BB muscle on tracking
performance. (A) Example of a single waveform for which tracking performance improved from the first block (blue line) to last
block (red line) with respect to the target waveform (black line). (B) Overall, tracking performance improved over the five training
blocks (shaded bars), and for either the distal (solid line) or proximal muscle (dotted line). Tracking performance significantly
improved with training (*p < 0.05) from block 1 to 3, after which performance stabilized.

FIGURE 7. Individual examples of TMS maps before and
after learning for both a distal muscle (top row) and a prox-
imal muscle (bottom row). In this case, the top row repre-
sents a negative responder (decrease in map area), while
the bottom row represents a positive responder following
the visuomotor tracking learning task (increase in map
area). All black open circles represent one stimulation and
the black cross (£) highlights the COG. Red indicates big
MEPs, in contrast to small MEPs which are indicated by
blue.

2018, Vol. 0, No. 0 9

Variability in Use-Dependent Plasticity



of interindividual variability, as common mechanisms are

thought to underlie both brain stimulation and use-depen-

dent plasticity.

In this study, a homogenous group of young and active

healthy participants (18–29 years) were recruited to the

study and factors like attention en time of day tested were

well controlled. The finding that despite these precautions

to limit variability, fewer than 40% of the participants in

the present study exhibited an increase in TMS map area

following the visuomotor tracking learning task raises the

question about the adequacy of training volume. Between

12 and 32 min of training has been performed (Jensen,

Marstrand, & Nielsen, 2005; McAllister, Rothwell, & Rid-

ding, 2011; Perez, Lungholt, Nyborg, & Nielsen, 2004;

Willerslev-Olsen, Lundbye-Jensen, Petersen, & Nielsen,

2011) and linked with increases in MEP amplitude. In this

study, training within a single session was limited to five

blocks and a total of 20 min to prevent overlearning but

allow us to quantify changes in TMS map area following

the fast phase of learning (Floyer-Lea & Matthews, 2005;

Luft & Buitrago, 2005). The significant improvement only

up to block 3, matched the findings of Floyer-Lea and Mat-

thews (2005) for single session learning but not those of

Jensen, Marstrand, and Nielsen (2005), who reports contin-

uous improvement over all blocks in the first training ses-

sion. Our findings suggest there was no further

improvement in performance after block 3, potentially as a

result of a lack of focus or that the skill had been mastered.

Overlearning was first reported by Muellbacher, Ziemann,

Boroojerdi, Cohen, and Hallett (2001) who found that after

an initial learning stage associated with rapid MEP facilita-

tion, with further learning the MEP size returned to base-

line. To ensure the great variety in changes in TMS

map area following learning was not mediated by partici-

pants rate of learning a linear regression between the

improvement in performance from block 3 to block 5 and

the change in map area was performed. The regression was

not significant, suggesting that improvement during the last

training blocks could not predict the change in map area.

However, with only this result and the fact that TMS map

area was not measured after block 3 the possibility that

overlearning has affected our results cannot be excluded.

An important additional factor mediating the effect of

learning on changes in excitability is if the visuomotor

tracking learning task sufficiently engages the primary

motor cortex. Compared with a ballistic motor task, which

involves primarily feedforward control, feedback control

plays a critical role in a visuomotor tracking learning task.

Baraduc, Lang, Rothwell, and Wolpert (2004) demon-

strated that 1 Hz rTMS applied to the motor cortex can dis-

rupt ballistic learning, but it does not disrupt learning of

novel dynamics imposed by a force field, suggesting that

the motor cortex is essential in ballistic learning, but it

might be less engaged in more complex tasks. Evidence for

widely distributed cortical activity during visuomotor track-

ing learning was also provided by Floyer-Lea and Matthews

(2004). They reported learning associated changes in brain

activity in prefrontal areas, supplementary- and premotor

area, parietal areas, cerebellum and basal ganglia (Catalan,

Honda, Weeks, Cohen, & Hallett, 1998; Hardwick, Rott-

schy, Miall, & Eickhoff, 2013; Mitz, Godschalk, & Wise,

1991; Wise, Moody, Blomstrom, & Mitz, 1998). In conclu-

sion, in more complex learning tasks, learning-induced

plasticity might rely more on other areas of the cortical net-

work than the primary motor cortex, which we are unable

to detect using TMS.

One may question whether the TMS mapping method

applied in this study has affected the response rate. Few

studies have used TMS mapping to explore changes in

excitability following motor learning. The classic motor

FIGURE 8. Effect of training a visuomotor tracking learning task with a distal (FDI) and proximal (BB) muscle on TMS map area
and COG. (A) Change in map area (Darea D areaPOST ¡ areaPRE) was not significantly different from 0 for either muscle; however,
there are great interindividual differences with some participants showing an increase, decrease, or no change in map area (black
dots). Based on baseline variability of the map area, all participants with a change in map area within the range as marked by the
shaded rectangle were classified as nonresponders. (B) No change was found in x-coordinate of the COG for any muscle, while a
significant displacement of the y-coordinate for the proximal muscle was found but not the distal muscle.
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learning paper by Pascual-Leone et al. (1995) was the first

to demonstrate increases in TMS map area following learn-

ing a complex motor task. The complexity and time con-

suming nature of the traditional mapping method reduces

its sensitivity to detect changes in CSE. The used mapping

method in this study allows obtaining all data within the

same time window as during which, routinely, 20–30 MEPs

are acquired to quantify CSE using the mean MEP ampli-

tude. The cortical representation that the TMS map area

reflects is affected by current spread of the magnetic stimu-

lus (Thickbroom, Sammut, & Mastaglia, 1998). Thus, if

cortical excitability is increased locally near the motor hot-

spot, reflected as an increase in MEP amplitude, this should

also be detected in the TMS map as stimuli further away

from the motor hotspot will also exceed stimulation thresh-

old. At present, there is no reason to assume TMS mapping

would provide different results than just using the mean

MEP amplitude at the motor hotspot.

Mono- and biphasic TMS pulses result in different pat-

terns of descending motor output (Di Lazzaro et al., 2001)

and very recently this has been suggested to affect the TMS

map (Stephani, Paulus, & Sommer, 2016). The use of novel

controllable TMS stimulators have revealed that not only

pulse waveform but also current direction and pulse dura-

tion determine the specific interneuronal circuitry activated

(D’Ostilio et al., 2016; Goetz et al., 2016; Hannah &

FIGURE 9. Results of the linear regression performed to investigate whether improvement in tracking performance could predict
change in TMS map area. A correlation analysis was performed to find out if changes in map area of the proximal and distal muscle
are correlated. (A) Linear regressions were performed to see if the improvement in tracking error (expressed as % improvement)
during either the early (block 1–3) or late (block 3–5) phase of training could predict change in map area, as overall performance
was found to not improve significantly after block 3. The improvement in tracking error in either the early or late phase of motor
learning could not predict change in map area for either the dominant or nondominant hand. (B) A correlation analysis revealed
change in map area for the dominant hand could not predict change in map area of the nondominant hand, or vice versa.
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Rothwell, 2017). This may affect both the neuroplastic

response when TMS is employed to induce plasticity (Han-

nah, Rocchi, Tremblay, & Rothwell, 2016) and the specific

circuitry assessed when TMS is used to probe changes in

excitability (Sommer et al., 2006). Therefore, a limitation

of our study results is that TMS mapping using monophasic

TMS pulses with any current direction may reveal a differ-

ent response rate than we have observed with the biphasic

Magstim Rapid2 TMS stimulator used in the present study.

Differences in Use-Dependent Plasticity across Muscles

The finding of no difference in change in TMS map area

following learning with the dominant or nondominant hand

is in line with the findings of Gallasch, Christova, Krenn,

Kossev, and Rafolt (2009); Garry, Kamen, and Nordstrom

(2004). They reported no difference in MEP amplitude fol-

lowing learning, suggesting similar capacity for use-depen-

dent plasticity for both hemispheres. Both studies reported

significant changes in performance for both hands follow-

ing motor learning of a complex tasks (goal-directed move-

ment task or Purdue pegboard task) (Gallasch, Christova,

Krenn, Kossev, & Rafolt, 2009; Garry, Kamen, & Nord-

strom, 2004). However, not all studies that compared use-

dependent plasticity for the dominant and nondominant

hand have come to a similar conclusion. Studies where a

ballistic motor learning task was employed have produced

much less clear results. While Cirillo, Rogasch, and Semm-

ler (2010) found a greater improvement in thumb peak

acceleration for the dominant hand, Ridding and Flavel

(2006) report a larger improvement for the nondominant

hand. These hemispheric differences in learning have been

linked to a larger increase in MEP size in the nondominant

hemisphere (Cirillo, Rogasch, & Semmler, 2010) or no dif-

ference in MEP changes when induced by paired associa-

tive stimulation (Ridding & Flavel, 2006). In another study,

training a ballistic pinch movement led to similar behav-

ioral gains but greater MEP changes for the dominant motor

cortex (Hammond & Vallence, 2006). Different results may

be explained by the discrepancy in learning task, being a

simple ballistic motor task vs. complex goal-directed or

visuomotor tracking learning task. Indeed, task complexity

is linked with increased cortical activity (Datta, Harrison,

& Stephens, 1989) for complex motor tasks. It may be con-

cluded that is there is an asymmetry in use-dependent plas-

ticity, this only holds for simple learning tasks.

Previous research has also suggested that the capacity of

proximal and distal muscles to undergo use-dependent plas-

ticity may be due to differences in task complexity. How-

ever, the present study does not support this view. Krutky

and Perreault (2007) reported minimal change in peak

acceleration following a ballistic motor learning task with

the upper arm while Ziemann, Muellbacher, Hallett, and

Cohen (2001) observed no change in performance at all. In

both studies this was accompanied with minimal changes in

MEP amplitude. In contrast, significant long-lasting

changes in peak acceleration, movement direction, and

MEP amplitude have been reported for the same task when

the FDI muscle was tested (Krutky & Perreault, 2007;

Muellbacher, Ziemann, Boroojerdi, Cohen, & Hallett,

2001). Krutky and Perreault (2007) explain their findings

by evidence that proximal muscles have a smaller cortical

representation and less monosynaptic connections than dis-

tal muscles (Palmer & Ashby, 1992; Penfield & Boldrey,

1937; Wassermann, Mcshane, Hallett, & Cohen, 1992).

Whereas this might suggest there is minimal change in

motor performance in proximal muscles compared with dis-

tal muscles following similar training, this is not supported

by findings that significant improvement in motor perfor-

mance occur in a force-field adaptation task (Shadmehr &

Mussa-Ivaldi, 1994) and a similar visuomotor tracking

learning task as performed here (Jensen, Marstrand, & Niel-

sen, 2005). The latter study also reported significant

changes in MEP amplitude. Although difference in use-

dependent plasticity between proximal and distal muscles

may exist, this may only be important when training simple

ballistic motor learning tasks.

Conclusion

This study highlighted variability of use-dependent plastic-

ity for learning a visuomotor tracking learning task, with only

18%–36% of the participants showing an increased TMSmap

area despite significant tracking improvement. A dissociation

exists between changes in TMS map area and improvement

in tracking performance in both experiments, confirming

other reports (Bologna et al., 2015; Delvendahl et al., 2011;

Jung & Ziemann, 2009). In conclusion, this study highlights

the complex relationship between different motor learning

tasks and changes in TMS measures and the importance of

considering response variability in use-dependent plasticity

when investigating differences across muscles.
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