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Background. Epidemiological studies point to the gut as a key reservoir of multidrug resistant Escherichia coli multilocus se-
quence type 131 (ST131), a globally dominant pathogenic clone causing urinary tract and bloodstream infections. Here we report a 
detailed investigation of its intestinal lifestyle.

Methods. Clinical ST131 isolates and type 1 fimbriae null mutants were assessed for colonization of human intestinal epithelia 
and in mouse intestinal colonization models. Mouse gut tissue underwent histologic analysis for pathology and ST131 localization. 
Key findings were corroborated in mucus-producing human cell lines and intestinal biopsy specimens.

Results. ST131 strains adhered to and invaded human intestinal epithelial cells more than probiotic and commensal strains. 
The reference ST131 strain EC958 established persistent intestinal colonization in mice, and expression of type 1 fimbriae mediated 
higher colonization levels. Bacterial loads were highest in the distal parts of the mouse intestine and did not cause any obvious pa-
thology. Further analysis revealed that EC958 could bind to both mucus and underlying human intestinal epithelia.

Conclusions. ST131 strains can efficiently colonize the mammalian gut and persist long term. Type 1 fimbriae enhance ST131 
intestinal colonization, suggesting that mannosides, currently developed as therapeutics for bladder infections and Crohn’s disease, 
could also be used to limit intestinal ST131 reservoirs.
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Uropathogenic Escherichia coli (UPEC)–derived urinary tract 
and bloodstream infections are one of the most common bac-
terial infections in the world and constitute a significant bur-
den on healthcare systems and the global economy [1]. Studies 
have shown that individuals with urinary tract infections carry 
the causative UPEC strain in their fecal microbiota [2]. With 
the recent global rise in antimicrobial resistance, the prev-
alence of multidrug-resistant (MDR) E.  coli, especially in the 
intestinal microbiota of healthy individuals, is also increasing 
[3, 4]. Many MDR E. coli belong to specific clonal groups, and 
E. coli belonging to multilocus sequence type 131 (ST131) rep-
resents a recently emerged pandemic clone [5, 6]. While most 
commonly reported as a cause of extraintestinal infections, an 
increasing incidence of ST131 isolates among fecal bacteria of 

healthy adults and children is now widely documented [4, 7, 
8]. Also worrying is the recent emergence of ST131 intestinal  
pathogens [9].

There is considerable diversity within the ST131 lineage with 
3 major sublineages denoted as clades A, B, and C [10]. Clade 
C strains are clinically predominant worldwide and associated 
with extensive resistance and virulence profiles [5, 10, 11]. Type 
1 fimbriae are one of few extraintestinal virulence factors con-
served across all ST131 strains [12, 13]. In fact, >90% of all E. coli, 
commensal or pathogenic, harbor type 1 fimbrial genes [14]. 
Type 1 fimbriae are hair-like projections present on the bacterial 
cell surface that aid in adhesion to various mucosal surfaces via 
interaction with mannosylated receptors [15]. Expression of type 
1 fimbriae is phase variable, and many ST131 strains (including 
EC958, the representative clade C UPEC strain studied here) pos-
sess a unique mode of regulatory control of this organelle owing 
to insertional inactivation of the fimB regulator gene [16]. In 
ST131, type 1 fimbriae promote attachment to the bladder epi-
thelium and intracellular colonization in a mouse urinary tract 
infection model [12, 17], as well as biofilm formation [18]. The 
role of type 1 fimbriae in mediating E. coli intestinal colonization 
is, however, less clear, with most studies investigating commen-
sals or strains associated with Crohn’s disease [19–22].

The intestinal reservoir of MDR UPEC clones such as 
ST131 has long been overlooked as a target for interventional 
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strategies, while the factors contributing to intestinal coloniza-
tion and persistence remain unknown. In this study, we showed 
that ST131 can successfully colonize the mammalian intestine 
and demonstrated a role for type 1 fimbriae in promoting ST131 
intestinal colonization and persistence.

METHODS

Ethics

Mouse experiments were approved by the Monash University 
Animal Ethics Committee (approval no. MARP/2013/117). 
Human intestinal biopsy work was approved by the University 
of East Anglia Faculty of Medicine and Health Ethics Committee 
(reference 2010/11–030; samples were registered at the Norwich 
Biorepository under NRES reference no. 08/h0304/85 + 5).

E. coli Culture Conditions

E.  coli strains (Supplementary Table  1) were cultured at 37°C 
in lysogeny broth under aerated or static conditions with 
gentamicin (20  µg/mL) or chloramphenicol (30  µg/mL), as 
required. EC958ΔfimH was constructed by our modified λ-Red 
recombinase gene replacement system as previously described 
for EC958Δfim [12, 23] (primers are listed in Supplementary 
Table  2). The native fimH30 allele was reintroduced into 
EC958ΔfimH to generate the chromosomally complemented 
strain EC958fimHC. Mutants were confirmed by polymerase 
chain reaction and sequencing.

Epithelial Cell Adhesion and Invasion Assays

Intestinal epithelial cells Caco-2 (ATCC HTB-37; in Dulbecco’s 
modified Eagle’s medium [DMEM]), T84 (ATCC CCL-248; in 
DMEM and Ham’s F-12 nutrient mixture), and LS174T (ATCC 
CL-188; in DMEM) were maintained in medium (Invitrogen) 
supplemented with 10% heat-inactivated fetal calf serum 
(Invitrogen). Bacterial strains were enriched for maximal type 
1 fimbriae production by 3 rounds of static subculture [12]. 
Adhesion and invasion assays were performed at a multiplicity 
of infection of 10, and bacterial colony-forming units (CFU) 
per milliliter were enumerated as previously described [12].

Type 1 Fimbriae

Type 1 fimbriae production was tested by yeast cell agglutina-
tion [12] and anti-FimA Western blot analysis as previously 
described [24]; α-FimA antibody was generated against FimA 
peptide AGSVDQTVQLGQVRT, which is 100% conserved 
in all the strains used in this study. Rabbit α-GroEL antibody 
(Invitrogen) was used as a loading control for calculating rel-
ative band intensities (FimA/GroEL) in Image Lab, version 5.1 
(BioRad).

Mouse Intestinal Colonization Models

Female C57BL/6 mice aged 6–7 weeks were pretreated with 
streptomycin (5 g/L) in drinking water for 3 days. Pretreatment 
ended 1 day prior to inoculation with varying doses of statically 

cultured EC958 WT or EC958Δfim (5 mice per group) by oral 
gavage. Dose range (low, 103 CFU; middle, 105 CFU; high, 107 
and 109 CFU) was based on previous mouse E.  coli intestinal 
colonization studies [21, 25, 26]. Mice were monitored daily 
for weight loss, and fresh fecal pellets were collected daily for 
up to 11 days after inoculation for CFU enumeration. On day 
11, mice in the high-dose group were euthanized to determine 
intestinal tissue bacterial loads. A  separate high-dose cohort 
was euthanized at 4  days after inoculation, and intestinal tis-
sues were preserved in 4% (w/v) phosphate-buffered formalde-
hyde for histologic analysis. To determine whether EC958 can 
overcome colonization resistance, groups of 5 mice (none of 
which received streptomycin) were inoculated with a high dose 
of EC958 WT or EC958Δfim and monitored for 21 days. Fecal 
pellets for CFU enumeration were collected daily for 11  days 
after inoculation and on alternate days thereafter.

Histologic and Immunohistochemical Analyses

Hematoxylin and eosin staining was performed on paraffin-em-
bedded tissue specimens for morphological analysis. For immu-
nohistochemical analysis, sections were incubated with rabbit 
α-O25 E. coli antibody (Abcam) at 4°C, treated with 3% H2O2 
to quench endogenous peroxidase activity, and incubated with 
horseradish peroxidase–conjugated α-rabbit immunoglobulin 
G (Invitrogen). A 3,3′-diaminobenzidine substrate (Invitrogen) 
was used for color development. Mucopolysaccharides were 
stained with 1% Alcian blue (pH 2.5; Australian Biostain), 
followed by Nuclear Fast Red (Australian Biostain) counter-
stain. Sections were dehydrated and mounted with Histomount 
(Invitrogen) for microscopy.

Infection of Human Intestinal Biopsy Specimens

Biopsy samples from the terminal ileum and transverse colon 
were obtained with informed consent during routine colonos-
copy of adult patients at the Norfolk and Norwich University 
Hospital. Samples were taken from macroscopically normal 
areas, transported in In vitro organ culture (IVOC) medium 
and processed within the next hour. IVOC was performed 
as described previously [27]. Briefly, biopsy specimens were 
inoculated with statically cultured 107 CFU EC958, incubated 
at 37°C in 5% CO2 for 7–8 hours, and washed twice in phos-
phate-buffered saline to remove the mucous layer and non-
adherent bacteria before processing for immunofluorescence 
staining and microscopy.

Immunofluorescence Staining

Cells and biopsy samples were fixed in 3.7% formaldehyde or in 
Carnoy’s fixative. Samples were permeabilized with 0.1% Triton 
X-100 and blocked with 0.5% bovine serum albumin. Coverslips 
and tissues were sequentially incubated with primary antibod-
ies (anti-MUC2 [Santa Cruz] and anti–E.  coli [Abcam]) for 1 
hour, followed by incubation in AlexaFluor-conjugated second-
ary antibodies (Life Technologies) for 30 minutes. Cell nuclei 
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and filamentous actin were counterstained with 4′,6-diamidi-
no-2-phenylindole (Roche) and fluorescein isothiocyanate–con-
jugated phalloidin (Sigma) for 30 minutes, respectively. Cells 
and biopsy samples were mounted with Vectashield mounting 
medium (Vector Labs) and analyzed using an Axio Imager M2 
motorized fluorescence microscope (Zeiss).

Statistical Analysis

Cell infection assay data were analyzed by the Kruskal-Wallis 
nonparametric test. Bacterial loads in mouse intestinal tissues 
were analyzed by repeated measures 2-way analysis of variance. 
Two-tailed P values are reported for both tests. Longitudinal 
trends of mouse fecal log10 CFU were analyzed using generalized 
additive mixed models (GAMM; for correlated data) and gener-
alized additive models (GAM) [28]. Since the overall trend over 
time was not linear and could not be readily described by fitting 
a power transformation, “additive” models that automatically fit-
ted the best curve(s) were necessary. Furthermore, the fact that 

we have correlated longitudinal data measured on the same mice 
had to be taken into account. Model selection was performed 
using the Akaike information criterion (AIC). All modelling was 
performed in R [29], using the mgcv package [28], and plots were 
created using the lattice package [30]. Models tested and their 
Akaike information criteria are listed in Supplementary Table 3.

RESULTS

ST131 and Non-ST131 UPEC Strains Can Adhere to and Invade Human 

Intestinal Epithelial Cells

We compared the adhesion and invasion capacities of the reference 
clade C ST131 UPEC strain EC958 to that of reference non-ST131 
UPEC strains UTI89 (ST95) and CFT073 (ST73), probiotic strain 
Nissle 1917, and commensal strains F-18 and MG1655, using 
the undifferentiated human intestinal cell lines T84 and Caco-2 
(Figure 1). EC958 performed as well as the other UPEC strains 
in T84 and Caco-2 cell adhesion and invasion assays but had 

A
107

106 * ** ***

T
ot

al
 A

dh
er

en
t B

ac
te

ri
a 

(C
FU

s/
m

L
)

105

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

B
105

104

103

102

** * ***

In
tr

ac
el

lu
la

r 
B

ac
te

ri
a 

(C
FU

s/
m

L
)

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

C
2.0

1.5

1.0
T84

0.5

0.0

*
In

va
si

on
 F

re
qu

en
cy

 (%
)

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

D

107

106
* **

**

T
ot

al
 A

dh
er

en
t B

ac
te

ri
a 

(C
FU

s/
m

L
)

105

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

E
105

104

103

102

* *

***

In
tr

ac
el

lu
la

r 
B

ac
te

ri
a 

(C
FU

s/
m

L
)

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

F
2.0

1.5

1.0

Caco-2

0.5

0.0

In
va

si
on

 F
re

qu
en

cy
 (%

)

EC95
8

UTI8
9

CFT
07

3
Niss

le 
19

17

F-
18

M
G16

55

Figure 1.  Adhesion to and invasion of T84 and Caco-2 human intestinal epithelial cells by uropathogenic Escherichia coli (UPEC) and commensal E. coli strains. T84 (A–C) 
and Caco-2 (D–F) monolayers were incubated with UPEC (strains EC958, UTI89, and CFT073), probiotic E. coli Nissle 1917, or commensal E. coli (strains F-18 and MG1655) 
for 1 hour (to determine the number of colony-forming units [CFU] of adherent bacteria) and then treated with gentamicin (to determine the number of CFUs of intracellular 
bacteria). Invasion frequencies are expressed as percentages of adherent bacteria invading the cells. Box plots summarize data from at least 4 experimental repeats. *P < .05, 
**P < .01, and ***P < .001, by the Kruskal-Wallis test, compared with EC958.
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significantly higher adherent and intracellular CFUs as compared 
to the 3 nonpathogenic strains. Intestinal cell invasion mirrored 
adhesion patterns by all strains, with the exception of a slightly 
higher invasion frequency for UTI89 in T84 cells.

ST131 Strains From Different Clades Exhibit Similar Intestinal Cell 

Adhesion and Invasion Levels In Vitro

To determine whether intestinal cell adhesion and invasion 
levels by EC958 are representative of ST131 strains, we tested 
clinical isolates from clades A, B, and C as described above 
(Figure 2). There was no significant difference in the ability of 
most ST131 strains from the different clades to adhere to and 
invade into T84 and Caco-2 cells. Only S1 (clade C) and S21 
(clade B) isolates had significantly lower adherent (and, for S21, 
intracellular) CFUs in both cell lines, but their invasion fre-
quency was not different from that of other clade C isolates.

Type 1 Fimbriae Levels Vary Across ST131 Strains

To determine whether adherence and invasion into Caco-2 
and T84 cells was correlated with production of type 1 fim-
briae, all 9 ST131 strains were analyzed by anti-FimA Western 

blots and for functional production of type 1 fimbriae by 
the FimH-mediated yeast agglutination assay (Figure  3A). 
Production of type 1 fimbriae varied among ST131 strains, 
with highest levels observed for clade C strains and the lowest 
observed for S21 (clade B), whereas S1 made no detectable 
FimA and tested negative for yeast cell agglutination, suggest-
ing a role for type 1 fimbriae in mediating intestinal cell adhe-
sion and invasion.

Type 1 Fimbriae Promote Intestinal Cell Adhesion and Invasion by EC958

To directly investigate the contribution of type 1 fimbriae in 
interactions between ST131 and intestinal cells, we constructed 
an EC958 type 1 fimbriae null mutant lacking the fimH adhesin 
gene (EC958ΔfimH) and a chromosomally complemented 
derivate carrying the WT fimH30 allele at its native locus 
(EC958fimHC). EC958ΔfimH and EC958fimHC were grown 
under type 1 fimbriae–enriching conditions (repeated static 
culture) similar to EC958 WT, confirming that EC958fimHC 
displayed WT type 1 fimbriae levels, while EC958ΔfimH had no 
detectable type 1 fimbriae expression (Figure 3B). EC958ΔfimH 
displayed significantly lower adhesion and invasion into T84 
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Figure 2. Adhesion to and invasion of T84 and Caco-2 human intestinal epithelial cells by different ST131 strains. T84 (A–C) and Caco-2 (D–F) monolayers were incubated 
with ST131 strains from clades A, B, and C for 1 hour (to determine the number of colony-forming units [CFU] of adherent bacteria; A and D) and then treated with gentamicin 
\for 1 hour (to determine the number of CFUs of intracellular bacteria; B and E). Invasion frequencies are expressed as percentages of adherent bacteria invading the cells (C 
and F). Box plots summarize data from at least 4 experimental repeats. *P < .05 and **P < .01, by the Kruskal-Wallis test, compared with EC958.
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and Caco-2 cells as compared to EC958 WT, and this attenu-
ation was restored in EC958fimHC (Figure  4). Interestingly, 
EC958ΔfimH displayed higher invasion rates in T84 and mar-
ginally in Caco-2 cells (P  =  .004 and P  =  .048, respectively). 
Thus, while an EC958ΔfimH mutant can still bind to and invade 
into human intestinal epithelial cells, production of type 1 fim-
briae significantly enhances this phenotype. Furthermore, addi-
tion of mannose significantly reduced EC958 WT adhesion to 
EC958ΔfimH levels (Supplementary Figure 1), further confirm-
ing the role of type 1 fimbriae in promoting EC958–intestinal 
cell interactions.

EC958 WT and the Type 1 Fimbriae Null Mutant Display Similar Patterns of 

Intestinal Passage in a Streptomycin-Pretreated Mouse Model

Since regulation of type 1 fimbriae expression in clade C ST131 
strains is significantly different from that for other non-ST131 
UPEC strains [12, 16], we used the representative EC958 strain 
and its corresponding type 1 fimbriae null mutant (EC958Δfim) 
[12] for in vivo colonization studies.

CFUs were measured daily for up to 11 days in fecal speci-
mens from groups of 5 C57BL/6 mice treated with streptomy-
cin prior to inoculation with varying doses of EC958 WT or 
EC958Δfim (Figure 5A). Longitudinal colonization (measured 

as log10 CFU per gram of feces) for each mouse cohort was 
analyzed using GAM, as no significant correlation was found 
between CFU measurements from the same mouse. Best-fit 
GAM models took account of the strain-dose combined effect 
and an additive component over time, which was found to be 
different for each strain-dose combination; thus, a different 
curve was fitted for each strain-dose (Figure 5A). Mice admin-
istered the low inoculation dose (103 CFU) were not colonized 
(data not shown). With middle (105 CFU) and high (107 and 
109 CFU) doses, the number of EC958 WT and EC958Δfim 
CFUs in fecal specimens followed an overall curve resembling 
that originally described for the intestinal passage of invader 
E.  coli strains by Freter et  al [31]. Differences in fecal CFU 
counts between the 2 strains were statistically significant over 
the tested time course, but their magnitude was relatively small 
and the overall curve pattern for each strain was qualitatively 
variable depending on dose, with the WT present in higher 
numbers than the Δfim mutant at lower doses and with this 
being reversed in higher doses. Despite differences in EC958 
WT and Δfim fecal loads at individual time points, by 11 days 
after inoculation group median CFUs remained high for both 
strains (>106 CFU/g feces) and ranged between 107 and 108 
CFU/g feces.
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EC958 Can Colonize the Mouse Intestine in the Presence of Resident 

Microbiota, and Type 1 Fimbriae Contribute to Higher Colonization Levels

To determine whether EC958 can overcome the colonization 
resistance offered by the native intestinal microbiota, mice 
(none of which received streptomycin pretreatment) were inoc-
ulated with a high dose of EC958 WT or EC958Δfim and mon-
itored for 21 days. The best-fit model in this case was a GAMM 
taking into account the correlated nature of the data (ie, a ran-
dom intercept for each mouse, which creates such correlation), 
as well as the strain and an additive effect for time (Figure 5B). 
This indicated that the differences in fecal CFU counts observed 
for the 2 strains were statistically significant, and while both 
strains showed qualitatively the same pattern of colonization 
there was no curve overlap, with the Δfim null mutant clearly 
displaying colonization levels approximately 2 logs lower than 
those expressed by the WT. Although the strains displayed 
100–1000-fold lower fecal CFU counts than those observed 
in the streptomycin-pretreated model, stable colonization was 
observed for both the WT and Δfim mutant for up to 21 days.

EC958 Burden Is Highest in the Distal Parts of the Mouse Intestine and 

Does Not Cause Any Obvious Pathology

Intestinal distribution of EC958 WT and EC958Δfim and as-
sociated tissue histopathology were investigated in high-dose 
mouse cohorts. Both strains displayed similar colonization 
patterns, with the highest bacterial loads detected in the cecum 
and colon, followed by the ileum (Figure  6A). No significant 
differences in tissue tropism between the WT and Δfim strains 
were observed except in the cecum, which had slightly higher 
numbers of EC958Δfim than WT (P  <  .05). No WT bacteria 
could be recovered from the duodenum.

To determine whether high bacterial loads of EC958 WT and 
EC958Δfim are detrimental to the host tissue, separate high-dose 
mouse cohorts were euthanized 4 days after inoculation, when 
tissue bacterial numbers were expected to be high and tissues 
from each cohort were used for CFU enumeration (n = 2) and 
histologic analysis (n = 3). Tissue bacterial loads ranged from 
102 to 1011 CFU/g, with highest numbers present in the colon 
and cecum (Figure 6B). Tissue sections displayed no significant 
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Figure 4. Role of type 1 fimbriae in EC958 adhesion and invasion of T84 and Caco-2 cells. T84 (A–C) and Caco-2 (D–F) monolayers were incubated with the EC958 wild-type 
(WT) strain, the type 1 fimbriae null mutant (EC958ΔfimH), or its complemented derivative (EC958fimHC) for 1 hour (to determine the number of colony-forming units [CFU] of 
adherent bacteria; A and D) and then treated with gentamicin for 1 hour (to determine the number of CFUs of intracellular bacteria; B and E). Invasion frequencies (C and F) 
are expressed as percentages of adherent bacteria invading the cells. Box plots summarize data from at least 4 experimental repeats. *P < .05 and **P < .01, by the Kruskal-
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markers of histopathology by hematoxylin and eosin staining 
(Figure 6C and Supplementary Figure 2). 3,3′-diaminobenzidine 
staining of tissue sections probed with an anti-O25 antibody 
(specific to ST131) did not detect any bacterial interaction with 
the intestinal epithelial surface in either EC958 WT (Figure 6D) 
or EC958Δfim tissues (data not shown), suggesting that bacteria 
most likely localized in the mucous layer of the mouse intestine.

EC958 Adhesion to Human Mucus-Producing Intestinal Cells and 

Intestinal Biopsy Specimens

To determine the mucus-binding capacity of EC958, we stud-
ied its adhesion to and invasion of LS174T, a human colorectal 
mucin-producing cell line [32]. EC958-infected cell monolayers 
were processed for adherent and intracellular CFU quantifica-
tion and were also stained for MUC2, the major secreted mucin 
in LS174T cells [32] (Figure  7A). A  heterogeneous MUC2 
expression profile was observed in confluent monolayers, with 
EC958 demonstrating high-level LS174T cell adherence irre-
spective of MUC2 production. Expression of type 1 fimbriae 

promoted adherence to LS174T cells, similar to the Caco-2 and 
T84 non–mucus-producing cell lines (Supplementary Figure 3).

Furthermore, adherence of EC958 to human intestinal mu-
cosa was evaluated using IVOC of human intestinal biopsy 
specimens [27]. Tissue explants from the small intestine (ter-
minal ileum) and transverse colon inoculated with EC958 for 
7 hours showed good morphological tissue preservation but no 
bacterial adherence to the epithelium (Figure  7B and 7C). In 
explants infected with EC958 for 8 hours, extensive shedding of 
the epithelium was observed for both ileal (Figure 7D) and co-
lonic (data not shown) samples. Adherent EC958 bacteria were 
detected on damaged areas where the basement membrane had 
been exposed but not on intact tissue.

DISCUSSION

The success of the pandemic E. coli ST131 clone as an extrain-
testinal pathogen has been widely documented. Recent stud-
ies suggest that host intestinal reservoirs are a major source of 
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dissemination of this MDR uropathogen within the commu-
nity [7, 33]. Here, we have examined the adhesion and invasion 
capacity of ST131 strains, including reference clade C strain 
EC958, showing that it is comparable to other reference UPEC 
strains and superior to commensal and probiotic E. coli strains 
known to be proficient gut colonizers [34].

Our analyses showed that the enhanced ability of EC958 to 
bind and invade intestinal epithelial cells was shared among iso-
lates from all ST131 clades and that this was influenced by type 
1 fimbriae. Interestingly, the lower level of adhesion observed 
for EC958ΔfimH was similar to that reported for 2 other ST131 
strains in a previous study investigating Caco-2 binding in the 
absence of type 1 fimbriae [35]. Collectively, these data provide 
evidence that type 1 fimbriae are required for enhanced ST131 

adhesion to the intestinal epithelium in vitro. Interestingly, type 
1 fimbriae were also recently shown to mediate UPEC translo-
cation through the intestinal epithelium [36].

Previous studies in the streptomycin-treated mouse model 
have shown that commensal E. coli upregulate type 1 fimbriae 
when bound to cecal mucus [19]. However, type 1 fimbriae 
were not essential for the establishment of long-term coloniza-
tion [20, 21]. In our streptomycin pretreatment mouse model, 
both EC958 WT and EC958Δfim exhibited similar colonization 
levels by the end of the study period, despite statistically sig-
nificant differences observed over time. Our findings are sup-
ported by results of an earlier study reporting similar intestinal 
colonization between the commensal F-18 strain and its type 1 
fimbriae mutant [20]. It was also reported that discontinuation 
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Figure 6. Bacterial loads in intestinal tissues and associated histologic findings. A and B, Streptomycin-pretreated mice were challenged with a high dose of either EC958 
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of streptomycin treatment after inoculation led to a drastic drop 
in bacterial numbers for both strains [20]. Additionally, another 
study reported that the TN03 ST131 strain could effectively out-
compete commensal E. coli in the gut [26], using a streptomycin 
pretreatment model similar to that used in our study that did 
not continue antibiotic administration over the time course of 
colonization, leading to regeneration of the native microbiota. 
Moreover, we found that antibiotic pretreatment was not a pre-
requisite for establishing persistent intestinal colonization by 
EC958, thus suggesting that ST131 strains are able to overcome 
colonization resistance offered by the resident gut microbiota. 
Overall, longitudinal trends exhibited by EC958 in both of 
our mouse models indicate that colonization is fairly dynamic 

from day to day but persistent and that the strain is able to 
cope well with potential changes in the resident gut microbiota. 
Interestingly, we found that EC958Δfim achieved an approxi-
mately 100-fold lower colonization burden in the presence of 
complete gut microbiota, with some mice even clearing the 
mutant from the gut. These findings have clinical implications 
as they support the use of mannosides [17] for clearing anti-
biotic-resistant E.  coli from the gut in circumstances such as 
before surgery or invasive diagnostic analyses or after return 
from a region of endemicity. Indeed, it was recently reported 
that a high-affinity mannoside can selectively deplete intestinal 
UPEC while simultaneously treating urinary tract infection in 
mice [37].
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Figure 7. EC958 adhesion and invasion of mucus-producing LS174T human colorectal epithelial cells and human intestinal biopsy specimens. A, LS174T monolayers were 
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Despite colonizing the distal parts of the mouse intestine in 
high numbers over an extended period, EC958 did not cause gut 
pathology that is often associated with enteric E. coli pathogens 
[38]. This niche-specific colonization has been previously re-
ported for Nissle 1917 and other pathogenic E. coli [25]. This is 
of importance as luminal localization may be an ideal niche for 
ST131 interactions with intestinal pathogens, potentially account-
ing for the recent emergence of E.  coli ST131 strains exhibiting 
enteroinvasive phenotypes and antibiotic resistance [9, 39].

Since recent epidemiological reports suggest extensive ST131 
carriage by healthy humans, we further investigated tissue tol-
erance to a high EC958 burden in the more physiologically 
relevant human intestinal IVOC model [27] and found that 
EC958 could not access the epithelium through the mucous 
layer. However, cytotoxicity was observed after extended incu-
bation, which led to epithelial shedding and EC958 adherence 
to exposed parts of the submucosal tissue. These observations 
are of particular relevance for individuals with preexisting con-
ditions that adversely affect epithelial barrier function, such as 
ulcerative colitis and Crohn’s disease [40, 41].

In summary, our study demonstrates that E.  coli ST131 
strains are proficient intestinal colonizers. We are the first to 
show that this clinically relevant lineage can effectively over-
come host colonization resistance to establish persistence 
within the gut. We report that type 1 fimbriae enhance long-
term colonization, a finding that supports the use of FimH 
inhibitors in lowering the ST131 intestinal burden in the com-
munity. However, colonization was not obliterated in the ab-
sence of type 1 fimbriae, suggesting the presence of additional 
factors that promote ST131 fitness in this niche. While ST131 
colonization did not cause any obvious histopathology in our 
mouse model, the ability of these strains to bind to and invade 
exposed human epithelia, coupled with recent reports of ST131 
intestinal pathogens [9, 39], warrant further investigation into 
ST131’s intestinal lifestyle, particularly in individuals with pre-
existing gut pathologies.
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