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Abstract 

Electroactive microorganisms have attracted significant interest for the development 

of novel biotechnological systems of low ecological footprint. These can be used for the 

sustainable production of energy, bioremediation of metal-contaminated environments 

and production of added-value products. Currently, almost 100 microorganisms from 

the Bacterial and Archaeal domains are considered electroactive, given their ability to 

efficiently interact with electrodes in microbial electrochemical technologies. Cell-

surface exposed conductive proteins are key players in the electron transfer between 

cells and electrodes. Interestingly, it seems that among the electroactive organisms 

identified so far, these cell-surface proteins fall into one of four groups. In this review, 

the different types of cell-surface conductive proteins found in electroactive organisms 

will be overviewed, focusing on their structural and functional properties. 
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1. Introduction 

Microbial electrochemical technologies (METs) have become the focus of intense 

fundamental and applied research to harness the vast metabolic versatility of 

microorganisms towards sustainable industrial processes (Logan and Rabaey, 2012). 

The versatility of the concept has spawned a veritable zoo of device designs among 

which microbial fuel cells (MFC) and microbial electrosynthesis (MES) are the most 

prominent examples (Wang and Ren, 2013). Microorganisms in MFCs are used as 

biocatalysts to produce bioenergy from organic matter, while in MES electroactive 

microorganisms collect electrons from the electrode to generate useful chemical 

compounds. In both cases, the microorganisms have to perform extracellular electron 

transfer (EET), i.e. transfer electrons across the cell envelope and establish an electrical 

contact with the electrode, or vice-versa. The study of EET has been mainly focused on 

two model organisms, Shewanella oneidensis MR-1 and Geobacter sulfurreducens 

PCA, both Gram-negative mesophilic bacteria that are able to transfer electrons to 

extracellular substrates during respiration. However, electroactivity is not limited to 

organisms with an outer-membrane since the ability to transfer electrons to electrode 

surfaces was also observed for some Gram-positive bacteria, Archaea, microalgae and 

even fungi (Koch and Harnisch, 2016; Logan, 2009; Salar-García et al., 2016). Indeed, 

recently it was shown that the hyperthermophile iron-reducing archaea Ferroglobus 

placidus and Geoglobus ahangari present electroactive behavior in single-chamber 

microbial electrolysis cells (Yilmazel et al., 2018). Moreover, thermophilic Gram-

positive bacteria that belong to Thermincola genus were identified as the dominant 

organisms in the anode of an operating microbial fuel cell operating at high temperature 

(Mathis et al., 2008; Wrighton et al., 2008).  
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From the extensive studies on S. oneidensis MR-1 and G. sulfurreducens PCA, it is 

now established that the general mechanism for EET involves multiheme c-type 

cytochromes (MHC) that are responsible for linking the cellular metabolism to the 

electrode, or vice-versa (Breuer et al., 2015b; Santos et al., 2015; Shi et al., 2012).  

Two general mechanisms for EET are now recognized: direct electron transfer 

(DET) and indirect electron transfer (IET) (Gralnick and Newman, 2007). In DET 

microorganisms establish direct contact with the insoluble electron acceptor (e.g. 

electrode or insoluble substrates) via proteins that decorate the cell surface (David J. 

Richardson et al., 2012), or through cellular appendages such as pili or nanowires 

(Gorby et al., 2006). In several organisms these appendages are also covered with c-type 

cytochromes (Leang et al., 2010; Pirbadian et al., 2014). On the other hand, IET relies 

on the ability of microorganisms to use soluble redox active compounds as electron 

shuttles to mediate the electron transfer between cell-surface exposed conductive 

proteins and insoluble electron acceptors, such as electrodes in METs (Brutinel and 

Gralnick, 2012).   

Cell-surface exposed cytochromes are among the most prevalent proteins in EET 

pathways of electroactive organisms being responsible for both DET and IET (Beliaev 

et al., 2001; Coursolle et al., 2010; Leang et al., 2010; Liu et al., 2014; Myers and 

Myers, 1997; Richter and Ludwig, 2009). Due to their cellular position and functional 

role, these proteins form one of the most important classes of proteins to be targeted for 

genetic manipulation (Teravest and Ajo-Franklin, 2015). This review focusses on the 

insights gained over the years on the role of surface exposed proteins, mainly MHC in 

mediating EET in METs (Table 1).  

 

2. Cell-surface exposed conductive proteins of electroactive organisms 
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Besides the cytoplasmic membrane, which is the primary barrier to the external 

environment, the microbial cell envelope often includes other structural features, such 

as the peptidoglycan, the outer-membrane and the S-layer. Microorganisms have 

evolved specialized cellular components to overcome this physical barrier for EET 

reactions. So far, four types of proteins have been identified to be responsible for the 

transfer of electrons across the cell-surface of electroactive bacteria (Scheme 1): 

(i) Porin-cytochrome complexes, typically composed by one porin protein and one 

or more redox proteins, mainly MHC;  

(ii) Cell-surface exposed cytochromes, which can be lipoproteins or cytochromes 

loosely bound to the cell surface; 

(iii) Conductive nanowires, typically pili composed by protein filaments anchored 

to the cell; 

(iv) Other redox proteins, including copper and iron-sulfur proteins. 

 

2.1.  Porin-cytochrome complexes 

Up to date, porin-cytochrome complexes were only found in Gram-negative bacteria 

(Shi et al., 2014), where a -barrel protein is long and wide enough (White et al., 2013) 

to cross the outer-membrane and incorporate redox proteins, most commonly MHC. 

These complexes are responsible for conducting electrons across the outer-membrane 

for the reduction of extracellular electron acceptors outside of the cell (David J. 

Richardson et al., 2012). One of the most intensely studied, and also the most 

understood porin-cytochrome complex is MtrCAB from S. oneidensis MR-1 

(Hartshorne et al., 2009; Ross et al., 2007). This complex is composed of the outer-

membrane decaheme cytochrome MtrC, the periplasmic decaheme cytochrome MtrA, 

and the -barrel MtrB where the cytochromes are embedded (Hartshorne et al., 2009; 
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Ross et al., 2007). The arrangement of these proteins in the complex MtrCAB that spans 

the ~40 Å of the outer-membrane of Shewanella, enables the transfer of electrons from 

one side of the lipid bilayer to the other through a chain of 20 hemes that is formed 

between the two cytochromes (David J. Richardson et al., 2012). S. oneidensis MR-1 

contains a series of paralogs of these porin-cytochrome complexes: the MtrDEF, highly 

homologous to the MtrCAB complex; the DmsEFABGH responsible for DMSO 

reduction (Gralnick et al., 2006) and the SO4362-SO4357 cluster that was shown to 

function as a terminal reductase at the cell surface (Schicklberger et al., 2012) (Figure 

1). 

Comparative analysis of Shewanella spp. revealed that MtrCAB are well conserved 

among all analyzed species capable of mineral reduction (Fredrickson et al., 2008), and 

that mtrAB homologs can be found in numerous other organisms (Shi et al., 2012). 

Indeed, MtrAB has become a model system for electron transfer to occur across the 

bacterial outer-membrane (Hartshorne et al., 2009; Shi et al., 2012). This type of 

complex was found in numerous other electroactive organisms, such as in the iron-

reducing organisms G. sulfurreducens PCA, Aeromonas hydrophila, Rhodoferax 

ferrireducens and Desulfuromonas acetoxidans (Alves et al., 2011; Liu et al., 2014; 

David J. Richardson et al., 2012; Risso et al., 2009; Shi et al., 2014, 2012), and in the 

iron-oxidizing bacteria Rhodopseudomonas palustris TIE-1, Sideroxydans 

lithotrophicus ES-1, and Acidithiobacillus ferrooxidans (Jiao and Newman, 2007; Shi et 

al., 2012; Yarzábal et al., 2002) (Figure 1 and Table 1). 

Geobacter sulfurreducens PCA contains two highly similar porin-cytochrome 

complexes: the OmaB/OmbB/OmcB and the OmaC/OmbC/OmcC, that are composed 

by the -porin proteins OmbB(C), the outer-membrane dodecaheme cytochromes 

OmcB(C) and the periplasmic octaheme cytochromes OmaB(C) (Liu et al., 2014; Shi et 
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al., 2014). Although the observed similarities between these porin-cytochrome 

complexes and MtrCAB from S. oneidensis MR-1 suggest a common mechanism for 

EET (Liu et al., 2014; Shi et al., 2014), they are phylogenetically unrelated (Liu et al., 

2014). This has led to the proposal that they must have evolved independently to 

provide a similar function (Shi et al., 2014). 

The porin-cytochrome complexes in iron-reducing organisms are mainly formed by 

three or more proteins, while in iron-oxidizing organisms, such as S. lithotrophicus and 

R. palustris only two proteins are required to mediate electron transfer from the cell-

surface (Figure 1 and Table 1). These include the -porin protein and a MHC that is 

embedded in the pore (see Scheme 1A). The genome of S. lithotrophicus ES-1 contains 

the mtoA gene that encodes for the decaheme cytochrome MtoA and the mtoB gene that 

is predicted to encode a porin protein. These two proteins form a porin-cytochrome 

complex in the membrane of S. lithotrophicus ES-1, that together with MtoD and CymA 

form a conductive pathway that couples the extracellular oxidation of iron to the 

reduction of quinone to quinol in the cytoplasmic membrane (Beckwith et al., 2015; Shi 

et al., 2012). Homologous MtoAB clusters were also identified in the genomes of the 

iron-oxidizing organisms Dechloromonas aromatica RCB and Gallionella 

capsiferriformans ES-2 (Shi et al., 2012). 

The pioABC operon found in the genome of R. palustris TIE-1 encodes for the 

periplasmic decaheme c-type cytochrome PioA, the outer membrane porin PioB, and 

the periplasmic high-potential iron protein Pio C (Jiao and Newman, 2007). This 

phototrophic iron-oxidizing bacterium is able to use light as an energy source and iron 

as electron source to fix CO2 (Jiao et al., 2005). While PioAB form the porin-

cytochrome complex responsible to receive electrons from insoluble iron complexes and 

transfers them across the outer-membrane, PioC was proposed to transfer these 
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electrons to the photoreaction center in a light-dependent way (Bird et al., 2014; Saraiva 

et al., 2012). 

In contrast to the other porin-cytochrome complexes, Cyc2 from A ferrooxidans is a 

single protein that belongs to a fused porin-cytochrome family, where the N-terminus 

contains the heme domain and the C-terminus is a porin domain of 18 -strands 

(Yarzábal et al., 2002). This protein is the first electron carrier in the iron oxidation 

respiratory pathway of this organism, being co-transcribed with three other proteins: a 

aa3 cytochrome c oxidase, a rustacyanin and a c4-type cytochrome. It is proposed that 

the porin domain wraps around the heme domain with a single CXXCH c-type heme-

binding motif, forming a fused porin-cytochrome in the outer-membrane of A. 

ferrooxidans (Yarzábal et al., 2002). This protein is responsible for transferring 

electrons from the oxidation of iron to rustacyanin in the periplasmic space (Valdés et 

al., 2008). 

 

2.2.  Cell-surface exposed cytochromes 

Besides porin-cytochrome complexes, electroactive organisms contain a large 

number of cell-surface exposed cytochromes that are important for EET to electrodes 

(Santos et al., 2015; Shi et al., 2012) (Table 1). One example is the outer-membrane 

decaheme cytochrome OmcA from S. oneidensis MR-1 that is associated with the porin-

cytochrome complex MtrCAB (Hartshorne et al., 2009; Shi et al., 2006). OmcA, like 

MtrC, is considered to be the terminal extracellular reductase in Shewanella, being 

responsible for both DET and IET to insoluble electron acceptors or electrodes (Ross et 

al., 2009). Analysis of Shewanella spp. genomes showed that OmcA is highly 

conserved among species, and that in some strains the omcA gene is replaced by undA 
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that codes for an undecaheme cytochrome highly homologous to OmcA (Fredrickson et 

al., 2008; Shi et al., 2012).  

The genome of G. sulfurreducens PCA contains genetic information for at least 30 

outer-membrane cytochromes. Besides OmcB and OmcC, which are part of porin-

cytochrome complexes, five were shown to play important roles in iron and electrode 

reduction: the monoheme cytochrome OmcF, the hexaheme cytochromes OmcT and 

OmcS, the tetraheme cytochrome OmcE and the octaheme cytochrome OmcZ (Mehta et 

al., 2005). While OmcE is loosely attached to the outer-membrane of G. sulfurreducens 

PCA, OmcS was proposed to be localized along pili (Holmes et al., 2006; Lovley, 

2008). Both proteins were shown to facilitate electron transfer to iron oxides and 

electrodes (Holmes et al., 2006; Leang et al., 2010). OmcZ is crucial for current 

production in MFCs (Richter and Ludwig, 2009), and it was shown to accumulate at the 

biofilm-electrode interface in METs (Inoue et al., 2011). This protein is particularly 

important for long-distance electron transfer in biofilms, facilitating electron transfer 

between the biofilm and the anode (Inoue et al., 2010). Although the omcF deficient 

mutant of G. sulfurreducens PCA was impaired in iron reduction and electricity 

production, it was found that this monoheme protein is required for the appropriate 

transcription of outer-membrane cytochromes involved in EET (Kim et al., 2005, 2008).  

Gram-positive bacteria were found to generate more current than the representative 

electroactive mesophilic organisms S. oneidensis MR-1 and G. sulfurreducens PCA in 

the same type of MET (Wrighton et al., 2011, 2008). Unlike Gram-negative bacteria, 

Gram-positive bacteria lack the outer-membrane and contain a thick cell wall (10 to 80 

nm) and a glycoprotein S layer. Although these structural features were previously 

considered to prevent Gram-positive bacteria to perform DET to electrodes (Wrighton 

et al., 2011), genome sequencing of Thermincola potens JR revealed the presence of 
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genes that code for MHC (Byrne-Bailey et al., 2010) that were shown to be involved in 

EET (Carlson et al., 2012). From these, the nonaheme cytochrome TherJR_2595 was 

predicted to be associated with the cell-surface, and together with the hexaheme 

cytochrome TherJR_1122 that is embedded in the cell wall, mediate the electron 

transfer from the cellular metabolism to insoluble electron acceptors outside of the cell 

(Carlson et al., 2012). 

Hyperthermophilic Archaea are capable to couple anaerobic acetate or benzoate 

oxidation with the reduction of insoluble electron acceptors, including iron (Holmes et 

al., 2011; Lovley, 2011; Manzella et al., 2013) and electrodes in MFCs (Yilmazel et al., 

2018). Although a mechanistic understanding of microbial iron reduction performed by 

these organisms is still lacking, genome analysis has identified several MHC as 

promising candidates for EET (Table 1) (Kletzin et al., 2015; Smith et al., 2015). 

Interestingly, F. placidus contains more MHC than any other hyperthermophilic 

archaeon, with several of them being highly expressed during EET (Smith et al., 2015).  

 

2.3.  Conductive nanowires 

Bacterial pili have been found as electrically conductive nanowires during iron and 

electrode reduction in G. sulfurreducens PCA (Reguera et al., 2006, 2005). After this 

discovery, bacterial nanowires were observed in numerous other electroactive 

organisms, including in S. oneidensis MR-1 (Gorby et al., 2006). While in Geobacter 

sp. nanowires are composed by type IV pilin proteins (Reguera et al., 2005) mainly 

comprised by one subunit protein, the pilA, nanowires from Shewanella are essentially 

membrane extensions that include the porin-cytochrome complexes and outer-

membrane MHC responsible for EET in this organism (Pirbadian et al., 2014). 
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Geobacter spp. nanowires are essential for iron reduction (Malvankar et al., 2011), 

for electricity production in MFCs (Reguera et al., 2006) and for direct interspecies 

electron transfer (Rotaru et al., 2014a). Indeed, it was shown that PilA is essential for G. 

metallireducens to participate in direct interspecies electron transfer (Rotaru et al., 

2014b). It was proposed that the aromatic amino acids of PilA are organized in the pili 

in close proximity to allow the transfer of electrons by a metallic-like electron transfer 

mechanism (Malvankar et al., 2011). An alternative model suggests that electron 

transfer along pili in Geobacter spp. may occur through a multistep hopping mechanism 

(Feliciano et al., 2015; Lampa-Pastirk et al., 2016). It has also been hypothesized that 

OmcS may facilitate the nanowire electron transfer, since OmcS was shown to be 

distributed along the pili and to facilitate electron transfer from pili to iron oxides 

(Leang et al., 2010). The significance of OmcS in electroactive biofilms is still 

questionable by the fact that the separation between these outer-membrane cytochromes 

in the nanowire is too long for DET between two proteins to occur (Leang et al., 2010), 

and because the deletion of omcS gene had no effect in biofilm growth and current 

production (Richter and Ludwig, 2009). 

 

2.4.  Other redox proteins 

Besides MHC, electroactive bacteria may employ other redox proteins to transfer 

electrons to extracellular electron acceptors (Gralnick et al., 2006; Schicklberger et al., 

2012), including electrodes in METs (Deutzmann et al., 2015; Mehta et al., 2006).  

G. sulfurreducens PCA mutant in the pseudopilin oxpG gene involved in the type II 

secretion pathway has led to the identification of the multicopper protein OmpB as an 

outer-membrane protein involved in EET (Mehta et al., 2006). It was suggested that 
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OmpB may be involved in the association of the bacterial cell with insoluble electron 

acceptors. 

Genetic and biochemical studies revealed that the electromethanogenic archaeon 

Methanococcus maripaludis produces surface-associated redox enzymes, such as 

hydrogenases and formate dehydrogenases to mediate direct electron uptake during 

electrosynthesis in METs (Deutzmann et al., 2015). This organism releases these 

proteins during growth, being responsible to catalyze the formation of H2 or formate. 

 

3. Understanding the role of cell-surface exposed conductive proteins through in 

vivo experiments 

3.1.  Potential pitfalls with in vivo experiments 

Transcriptomic and genomic studies have demonstrated that electroactive organisms 

contain many more genes for c-type cytochromes than would be necessary to transport 

electrons from the cytoplasmic membrane to the cell surface (Bretschger et al., 2007). 

Indeed, the model organisms S. oneidensis MR-1 and G. sulfurreducens PCA contain 41 

and 111 c-type cytochrome encoding genes, respectively (Methé et al., 2003; Romine et 

al., 2008). However, many of these genes are (i) simultaneously expressed, (ii) present 

in the same cellular location and (iii) seem to have overlapping functions (Beliaev et al., 

2005). Hence, many deletion mutants do not show clear phenotypes and the genomic 

plasticity of the organisms can lead to suppressor mutants that hide the phenotype of the 

targeted mutation  (Bücking et al., 2012; Cordova et al., 2011; Schicklberger et al., 

2012). This is the reason why the gold standard for the physiological analysis of the 

function of c-type cytochromes seems to be the development of mutants lacking all 

genes that could encode for c-type cytochromes with a similar function. In G. 

sulfurreducens PCA, seven outer-membrane cytochrome encoding genes 
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(omcBCESTVW) had to be deleted to lead to a strain that is almost completely unable 

to reduce ferric citrate (Ueki et al., 2017). In another study, five omc genes were deleted 

to produce a strain that could not reduce the humic acid analogue AQDS 

(omcBCSTEZ) (Voordeckers et al., 2010). A similar S. oneidensis MR-1 mutant is also 

available. In this organism, all five putative outer-membrane cytochrome encoding 

genes (mtrC, omcA, mtrF, SO_1659, SO_2931) were deleted (Bücking et al., 2010). 

Another factor that has to be considered in all experiments with outer-membrane 

cytochrome mutants is the potential for polar effects. For instance, deletion of the 

membrane associated cytochrome MacA in G. sulfurreducens PCA lead to a strain with 

highly reduced capacity to reduce ferric citrate. Still, later experiments revealed a polar 

effect of the macA mutation that resulted in drastically reduced production of the outer-

membrane cytochrome OmcB (Bücking et al., 2012; Kim and Lovley, 2008). 

 

3.2. S. oneidensis MR-1 cell-surface exposed protein mutants affected in electrode 

reduction rates 

A S. oneidensis MR-1 mutant devoid of all outer-membrane cytochromes (MtrC, 

OmcA, MtrF, SO_1659, SO_2931) is almost unable to reduce ferric citrate or birnessite 

(a manganese oxide mineral) but still retains 25% of the current production rate of the 

wild-type when using graphite electrodes (Bücking et al., 2012, 2010). A similar 

observation was made with mutants that are only mtrC and omcA negative (Bretschger 

et al., 2007). Mutants in mtrA or mtrB, in which periplasmic electron transfer is totally 

separated from the extracellular site of the outer-membrane, are more affected with 

regard to current production than a mtrC/omcA double mutant. Nevertheless, the impact 

of outer-membrane cytochrome deletion is more severe regarding flavin reduction than 

current production.  
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Expression of either SO_1659 or SO_2931 in the quintuple mutant did not lead to a 

detectable extracellular respiration activity (Bücking et al., 2010). OmcA production in 

this mutant had only an effect on manganese oxide but not on ferric iron reduction rates. 

Expression of mtrC in these mutants from a plasmid rescued the phenotype of the 

mutation almost completely, while expression of MtrF could only partially restore the 

wild type current production rates (Bücking et al., 2010). This was surprising, as its 

expression sustained similar or even superior ferric iron reduction rates compared to 

MtrC. Hence, although MtrC and MtrF are highly similar, and MtrF might be the more 

effective ferric citrate reductase, it seems to be less suited for microbe-electrode 

electron transfer.  A variation of the production rate of either MtrC or MtrF in the 

quintuple mutant affected over a wide range of inducer concentration the rate of ferric 

iron reduction. Moreover, insertion of mtrF in an operon consisting also of mtrA and 

mtrB that is under control of an arabinose inducible promoter could be used as a 

biosensor as the current production rate of this strain linearly correlated with the 

arabinose concentration in the medium (Golitsch et al., 2013). Using a similar strategy, 

Webster et al. constructed a Shewanella based biosensor for arsenic by placing the mtrB 

gene under control of an inducible promoter (Webster et al., 2014).  

 

3.3.  G. sulfurreducens PCA cell-surface exposed conductive protein mutants affected in 

electrode reduction rates 

The transcriptomic comparison of G. sulfurreducens PCA cells grown on an anode 

surface compared with cells grown on the same biofilm substratum but with fumarate as 

electron acceptor revealed that only two outer-membrane cytochromes were upregulated 

if respiratory electrons had to be transported to the electrode surface. These two 

cytochromes were OmcB and OmcZ (Nevin et al., 2009). Interestingly, deletion of the 
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omcB gene had no impact on electrode reduction, while omcZ deletion lead to 90% 

reduced current production at graphite electrodes (Richter et al., 2009). It was 

demonstrated that omcZ-deficient mutants form thinner biofilms, but that the pili 

production is not affected (Nevin et al., 2009). It seems that OmcZ is the terminal 

electrode reductase, although, besides this cytochrome, two other electron transfer 

systems to the electrode exist that operate at higher anode potentials (Peng and Zhang, 

2017). This is in agreement with the study of Peng and Zhang, in which the authors 

observed that, unlike to the study by Richter et al., the omcZ phenotype is less severe 

when higher anode potentials are applied (Peng and Zhang, 2017). OmcZ seems to be 

ubiquitously distributed in G. sulfurreducens PCA biofilms on anodes (Franks et al., 

2012). Interestingly, its expression or localization seems to be affected by the 

composition of the extracellular polymeric matrix of G. sulfurreducens PCA (Rollefson 

et al., 2011). Indeed, deletion of a gene in a cluster for polysaccharide production lead 

to cells that were severely affected in biofilm production, but that also contained a 

reduced amount of OmcZ at the cell surface. It might be that polysaccharides arrange 

OmcZ at the cell surface in a way that allows for efficient hopping of extracellular 

electrons from the biofilm towards the electrode (Rollefson et al., 2011). In contrast to 

the above mentioned, an earlier study by Nevin and colleagues, revealed that the gene 

with the greatest transcription increase during the initial growth on electrodes compared 

to growth with ferric citrate is omcS (Holmes et al., 2006). It was proposed that this 

cytochrome together with OmcE might play a crucial role in the initial phase of current 

production on graphite electrodes (Holmes et al., 2006). OmcS is associated with 

nanowires and it facilitates electron transfer from pili to iron oxides (Leang et al., 2010). 

Nevertheless, the phenotype of omcS or omcE deletion mutants was almost undetectable 



  

16 

 

in the later study by Nevin et al. Hence, it seems possible that these mutations can be 

complemented by a redundant activity of OmcZ. 

Deletion mutants on PilA prevented the production of the abundant type IV pili, and 

inhibited electron transfer to iron oxides and electrodes in METs (Reguera et al., 2006, 

2005). It was shown that deficient mutants on PilA form thinner biofilms on electrodes, 

and that the amount of dead cells increases with the distance to the electrode (Nevin et 

al., 2009; Reguera et al., 2006), indicating that pili are required for long-range electron 

transfer across the multilayer biofilms on anodes. It is however not understood by which 

underlying mechanisms this occurs, being this an area of open investigation. 

The higher conductivity observed for G. sulfurreducens KN400 biofilms were 

shown to be associated with a higher abundance of electrically conductive pili and a 

lower outer-surface cytochrome content (Malvankar et al., 2012, 2011). In order to alter 

biofilms properties, a deletion mutant on the gene GSU1240 predicted to encode PilZ 

domain, has led to a strain with a highly cohesive biofilm that were six times more 

conductive that wild-type biofilms, and produced higher current densities than the wild-

type strain (Leang et al., 2013).  

Interestingly, although deletion of several cell-surface exposed proteins in G. 

sulfurreducens decreases electron transfer to electrodes, it has an opposite effect on 

electron transfer from electrodes. Indeed, it was shown that individual deletion mutants 

on PilA, OmcZ, OmcB and OmcS show increased current consumption in a dual 

chamber electrode system (Strycharz et al., 2011).  

 

4. Structural studies of cell-surface exposed conductive proteins 

In contrast to the large number of genes expressing putative cell-surface exposed 

conductive proteins, the number of structurally resolved proteins remains limited.  This 
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is due to the challenges involved either in obtaining sufficient amount of proteins for 

their structural characterisation or in obtaining structural data on membrane associated 

proteins. 

 

4.1. Structure of S. oneidensis MR-1 cell-surface exposed conductive proteins  

The proteins used by S. oneidensis MR-1 to transfer electrons across the outer-

membrane and into extracellular acceptors are the best understood of all the 

extracellular electron transport systems (Richardson et al., 2012b). Phylogenetic 

analysis of the outer-membrane cytochromes reveals that they can be differentiated into 

four clades: the MtrC, OmcA, MtrF and UndA clades (Edwards et al., 2012a; Edwards 

et al., 2015). 

Crystal structures of representatives for each of these clades have been obtained:  

MtrF, OmcA and MtrC from S. oneidensis MR-1, and UndA from Shewanella sp. 

HRCR-6 (Clarke et al., 2011; Edwards et al., 2014; Edwards et al., 2012b; Edwards et 

al., 2015).  The structures are well conserved between the members of the clades, 

despite poor amino acid sequence homology. Each cell-surface exposed cytochrome is 

comprised of 4 domains (domains I-IV). The N-terminal domain is a 7-strand -barrel 

structure (domain I) that is connected to the pentaheme domain (domain II). An -helix 

links domain II to a second 7 strand -barrel (domain III), which is linked to the C-

terminal multiheme domain (domain IV). This last domain contains 5 c-type hemes in 

MtrC, OmcA and MtrF, and 6 hemes in UndA. The domains are arranged such that both 

heme domains II and IV associate at the center of the structure, bringing hemes 1 and 6 

within 6 Å of each other.  

The two -barrel domains that are characteristic of the Shewanella outer-membrane 

cytochromes share a common core structure. The -strands are folded barrels with 7 -
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strands arranged in an antiparallel Greek-key fold, that is a common topology of soluble 

-barrel proteins. A flexible N-terminal membrane anchor is connected to the first -

barrel that, when removed, causes the soluble proteins to dissociate from the cell-

surface (Edwards et al., 2012b). Comparative alignment of the amino acid sequences 

revealed a completely conserved CX8-15C motif in the second -barrel (domain IV). A 

second motif CX2-8C sequence was conserved in the N-terminal region of all sequenced 

OmcA, MtrF, UndA and approximately half of all known MtrC. The currently available 

structures of OmcA, UndA and MtrC show that the two cysteines of these motifs form 

disulfide bonds between adjacent -strands. In MtrF the 3.2 Å resolution precluded 

defining the CXXC of the N-terminal -barrel domains, however a recent molecular 

dynamics simulation generated an MtrF structure with both CXxC motifs forming 

disulphide bonding (Watanabe et al., 2017).  

The hemes of domains II and IV are arranged in a cross-like configuration in the 

structure of every outer-membrane cytochrome. The cross consists of two intersecting 

chains of 8 and 4-5 hemes with distances of 4-6 Å between adjacent hemes, allowing 

for rapid electron exchange. The eight heme chain spans the entire length of the protein 

with terminal hemes 5 and 10 (11 for UndA) exposed at the edges of the protein. The 

second chain consists of four hemes arranged edge to edge across a distance of 45 Å in 

MtrC, OmcA and MtrF. The terminal hemes are not exposed, but are positioned at the 

interface of the -barrel domains.  In UndA the chain is five hemes across due to an 

extra heme in domain IV. After co-crystallisation with soluble iron nitrilotriacetic acid 

and iron citrate, soluble iron chelates were identified bound close to the extra UndA 

heme, indicating a possible substrate binding site.  Indeed, kinetic studies on UndA 
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show that it is faster at reducing soluble iron chelates than other Shewanella 

cytochromes (Shi et al., 2011).  

Superposition of the hemes from all four structures shows that the overall heme 

positions are heavily conserved, with the biggest differences in the structures being the 

extra heme in UndA and the position of heme 5 in domain I. In OmcA, heme 5 is 

displaced compared to MtrC and MtrF, while in UndA heme 5 is both displaced and 

rotated. The variation observed in heme 5 position would significantly affect the 

properties around the area of the heme, and could be responsible for the observed 

differences in respiration of manganese and iron oxides or soluble iron chelates (Shi et 

al., 2011).  The position of heme 5 is conserved between MtrC and MtrF, which are 

proposed to form stable porin-cytochrome complexes with MtrAB and MtrDE 

respectively (Richardson et al., 2012b).  This structural conservation would be 

consistent with a conserved protein-protein interface within the porin-cytochrome 

complex. A hematite binding motif close to heme 10 of MtrC and OmcA was 

previously identified through peptide phage display technology (Lower et al., 2008).  

This S/T-hyd/aro-S/T-P-S/T motif was found to bind hematite strongly and was 

observed in MtrC and OmcA but not in UndA or MtrF.  

 

4.2. Structure of G. sulfurreducens PCA cell-surface exposed proteins  

There is very little structural information about the cell surface cytochromes of G. 

sulfurreducens PCA. Only the structure of a solubilised form of OmcF has been 

reported, which has been solved by both X-ray crystallography and solution state NMR 

(Dantas et al., 2017; Pokkuluri et al., 2009). This monoheme cytochrome is anchored to 

the membrane via an N-terminal lipid anchor and has significant similarity to 

cytochrome c6, the electron transfer partner within photosystem I of plants and 
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cyanobacteria. OmcF contains a c-type heme cofactor where the hexacoordinate iron 

atom ligands are histidine and methionine.  

The nanowires from G. sulfurreducens  PCA are polymeric assemblies of proteins 

that belong to the type IV family of pilin proteins (Reardon and Mueller, 2013). The 

structure of these proteins was determined by NMR spectroscopy, that showed that PilA 

consists of a N-terminal -helix composed by 52 amino acid residues (~75 Å long) 

combined with a short and flexible C-terminal region. It was demonstrated that the 

aromatic residues present in this protein are highly conserved among species that utilize 

similar EET mechanisms (Vargas et al., 2013). It is the clustering of these amino acid 

residues that plays an important role in electron transfer along the nanowire (Malvankar 

et al., 2011; Reardon and Mueller, 2013). Indeed, substitution of these aromatic amino 

acids with alanine, makes the nanowires non-conductive, impairing the reduction of iron 

oxides and production of current in MFCs (Vargas et al., 2013).  

 

5. Functional properties of cell-surface exposed conductive proteins 

5.1. Redox properties of cell-surface exposed conductive proteins 

The redox characterization of cell-surface exposed proteins is not a straightforward 

process due to the high number of cofactors present in most of these proteins (Paquete 

and Louro, 2014). While the redox properties of a protein with only one redox center 

can be determined directly from the application of the Nernst equation, in multicenter 

redox proteins this requires the discrimination of the reduction potential of each 

individual center (Paquete and Louro, 2014). This usually depends on experimental 

techniques that allow to monitor the titration of each redox center individually (Fonseca 

et al., 2009).  
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For the monoheme cytochrome OmcF from G. sulfurreducens PCA, the fit of the 

redox titrations followed by visible spectroscopy with a Nernst equation with n=1 

allowed to determine the values of reduction potentials of the soluble form of OmcF of 

+180 mV and +127 mV (vs standard hydrogen electrode, SHE) at pH 7 and 8, 

respectively (Pokkuluri et al., 2009). The midpoint potential is significantly higher than 

other surface exposed cytochromes, making it unlikely to be directly involved in 

extracellular electron transfer, as has been demonstrated (Kim et al., 2008).  

The complexity of the other cell-surface exposed proteins, with a high number of 

hemes, and the absence of data that discriminates their individual hemes, has precluded 

the determination of the detailed characterization of their redox properties. Up to date, 

only a macroscopic characterization of their redox properties has been achieved. 

Potentiometric titrations monitored by visible spectroscopy and electron paramagnetic 

resonance spectroscopy, revealed that the hemes in MtrC from S. oneidensis MR-1 

titrate over a broad potential range that spans between ~+100 mV and ~-400 mV (vs 

SHE) (Hartshorne et al., 2007). This potential window was also observed by protein 

film voltammetry, that also demonstrated that MtrC presents redox-Bohr effect (Firer-

sherwood et al., 2008; Hartshorne et al., 2007).  

The titration envelope observed for OmcA is very similar to the one observed for 

MtrC (Firer-sherwood et al., 2008). Furthermore, it was also demonstrated that this 

decaheme cytochrome also exhibits redox-Bohr effect within physiological pH (Firer-

sherwood et al., 2008). Modelling of titration curves of OmcA from S. frigidimarina 

NCIMB400 led to the identification of two sets of near iso-potential components 

centered at -243 mV and -324 mV (vs SHE) with contributions of 30% and 70 %, 

respectively (Field et al., 2000), while modelling of titration curves of OmcA from S. 

oneidensis MR-1 with the sum of two Nernst curves with equal contribution led to two 
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groups of hemes with -73 mV and -243 mV (vs SHE) (Bodemer and Antholine, 2010). 

In the case of OmcA from S. oneidensis MR-1, the reduction potential of two hemes 

appear to shift in the presence of detergents, suggesting that two hemes are more 

exposed to the solvent than the remaining hemes, that are more buried in the protein and 

therefore less affected by changes in the external environment (Bodemer and Antholine, 

2010). The X-ray structure suggests that these are most likely hemes 5 and 10 that are at 

opposite ends of the eight heme chain across the OmcA structure. 

The characterization of MtrF revealed that this cell-surface exposed protein behaves 

similarly to MtrC, although the titration envelope is shifted to more positive values 

(David J. Richardson et al., 2012). Computational methods were used to determine the 

redox potentials of the ten hemes of MtrF in aqueous solutions (Breuer et al., 2012). 

The free energy landscape obtained for this protein revealed that there is no significant 

potential bias along the protein, suggesting that under aqueous conditions this protein 

works as a reversible two-dimensional conductor (Breuer et al., 2012). Recently, 

Watanabe and co-workers determined the reduction potential for the ten hemes in MtrF 

by solving the linear Poisson-Boltzmann equation and taking in consideration the 

protonation states of all titratable residues and heme propionic groups (Watanabe et al., 

2017). This study revealed that the electron transfer pathway may proceed from domain 

IV to II, but when MtrF is reduced, the direction of the electron transfer pathway 

switches and FMN, in domain I and III, becomes the terminal electron acceptor 

(Watanabe et al., 2017).  

The redox behavior of OmcZ from G. sulfurreducens PCA revealed that it titrates in 

a broad range from -60 mV to -420 mV (vs SHE). This large potential range was 

attributed to the wide range of the redox potentials of the eight hemes in the molecule 

(Inoue et al., 2010). The potential range of OmcZ covers the lowest anode potential 
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observed in MFC of this organism, suggesting that it has a low enough potential to 

directly transfer electrons to the anode (Inoue et al., 2010). 

The apparent midpoint reduction potential of OmcS from G. sulfurreducens PCA at 

pH 7 was -212 mV (vs SHE), determined by electrochemical redox titrations (Qian et 

al., 2011). The low apparent redox potential of this hexaheme cytochrome suggested 

that it could react with a wide range of electron acceptors, including soluble and 

insoluble compounds (Qian et al., 2011). 

 

5.2.  Kinetic studies of cell-surface exposed conductive proteins 

Electron transfer between cell-surface exposed proteins and electrodes can be 

determined through the measurement of interfacial electron transfer kinetics (Léger et 

al., 2006). This was performed for MtrC giving an estimated rate of 200-300 s
-1 

(Firer-

sherwood et al., 2008; Hartshorne et al., 2009). The value is very similar to that 

observed for the MtrCAB complex (Hartshorne et al., 2009), suggesting that MtrC is the 

cytochrome that interacts primarily with the electrode surface.  

Kinetic studies showed that OmcA and MtrC are kinetically competent to catalyze 

the reduction of soluble iron in whole cells of Shewanella, but are not responsible for 

direct electron transfer to insoluble iron-containing minerals (Ross et al., 2009). It was 

shown that addition of flavins increased the reaction rates of these proteins, 

demonstrating the importance of electron shuttles in the reduction of solid iron 

compounds (Ross et al., 2009). 

For MtrF, computational simulations were used to explore the microscopic kinetics 

of each heme pair (Breuer et al., 2014). These studies showed that electron flow through 

solvated MtrF can occur at 10
4
-10

5
 s

-1
, which is consistent with the measured rate for 

the related multiheme protein complex MtrCAB (White et al., 2013).  
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Despite the similar three-dimensional structure of the outer-membrane cytochromes, 

kinetic studies have shown that the undecaheme outer-membrane cytochrome UndA 

reduces soluble iron chelates faster than its homologues, MtrC and OmcA from S. 

oneidensis MR-1. It was proposed that this cytochrome serves as an extracellular metal 

reductase, being involved in iron and uranium reduction in Shewanella sp. strain 

HRCR-6 (Shi et al., 2011). 

 

5.3. Interactions studies with physiological partners (electron shuttles and other 

proteins) 

The availability of the structure of the outer-membrane cytochromes from S. 

oneidensis MR-1 prompted the study of the molecular details of their interaction with 

electron shuttles, including flavins (Paquete et al., 2014). NMR spectroscopy revealed 

that despite the common architecture of the heme core of these outer-membrane 

cytochromes, there are substantial differences in their interactions with soluble redox 

shuttles. Whereas OmcA, MtrC and UndA bind AQDS in the vicinity of hemes, this 

does not occur in the case of MtrF (Paquete et al., 2014). For the case of FMN, the 

monitoring of its phosphorous atom revealed that it does not bind to MtrF nor UndA, 

but binds to OmcA and MtrC with dissociation constants of 29 and 256 uM, 

respectively (Paquete et al., 2014). Interestingly, the binding stoichiometry to these two 

outer-membrane cytochromes matches the number of redox-active disulfide bonds 

found in these proteins (Edwards et al., 2015, 2014). These disulfide bonds are proposed 

to be redox active under physiological conditions leading to conformational changes in 

the outer-membrane cytochromes upon reduction and enhanced affinity for redox 

shuttles such as flavins (Edwards et al., 2015). Molecular docking simulations using 

Autodock 4 showed that the lowest energy solutions for AQDS binding to UndA are 
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found near hemes 2 and 7. The same procedure revealed that in the case of OmcA the 

polypeptide appears to direct different shuttles to different hemes according to their 

electrostatic nature. FMN and AQDS that are negatively charged dock near heme 2, 

with the conserved calcium atom that is not derived from the crystallization buffer 

playing an important role.  Docking of riboflavin, which is neutral, occurs near hemes 9 

and 10, and docking of phenazine methosulphate which is positively charged occurs 

near the heme 10. These computational results are corroborated by NMR spectroscopy 

data that show different heme signals being disturbed upon binding of the various 

shuttles to OmcA (Paquete et al., 2014). Two independent sets of molecular docking 

simulations of riboflavin binding to OmcA revealed a preference for binding near hemes 

5 and 7, with heme 7 being considered the most likely of the two possibilities due to the 

putative role of heme 5 in protein-protein interaction (Babanova et al., 2017; Hong and 

Pachter, 2016). Docking of FMN to OmcA revealed solutions similar to those obtained 

for riboflavin (Babanova et al., 2017) The NMR spectroscopy data showing different 

heme signals being disturbed upon binding of FMN or riboflavin reveals that despite the 

similarity of the calculated docking solutions there is a clear discrimination between the 

binding sites for the two shuttles under the experimental conditions (Paquete et al., 

2014).  

The availability of the crystal structure of MtrC prompted also the investigation of 

the molecular details of shuttle binding to this protein. Binding of FMN was found to 

take place close to heme 2 with a calculated dissociation constant of 490 uM (Breuer et 

al., 2015a). Molecular dynamics simulations revealed that the reductive cleavage of the 

disulfide bond in this protein can lead to conformational changes in the structure. These 

changes reveal a new binding pocket near to heme 4 with a poise that is compatible with 

electron transfer but does not lead to an increase in the affinity for FMN (Breuer et al., 
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2015a). Four possible docking positions for FMN were identified near hemes 1, 4, 7 and 

9 using the crystal structure of MtrC with the shortest distance for heme 4. By contrast, 

riboflavin does not show a solution near heme 4 and docking near heme 7 shows the 

shortest distance (Babanova et al., 2017).  

In contrast to spectroscopic and computational results indicating weak binding of 

shuttles to outer-membrane cytochromes, voltammetric signals of electrode grown 

Shewanella assigned to presumed flavocytochromes were interpreted as indicating 

strong flavin binding to outer-membrane cytochromes (Okamoto et al., 2014a). This 

different result may have two causes: first a strong increase of the affinity of flavins for 

outer-membrane cytochromes with increasing ionic strength was deduced from 

voltametric data (Okamoto et al., 2014a); second, the outer-membrane cytochromes in 

living cells are not in the fully oxidized state for which crystal structures were obtained 

and the disulfide bridges may be reduced leading to the proposed increase in flavin 

affinity (Edwards et al., 2015).  

The other model electroactive Gram-negative bacterium G. sulfurreducens PCA is 

generally accepted to perform DET because: i) it is unable to reduce iron that is 

entrapped in alginate beads with pore size too small for direct cell contact with the 

medium, and ii) current production of electrode grown culture is not affected by 

medium exchange (Bond and Lovley, 2003; Nevin and Lovley, 2000). This does not 

mean that outer-membrane cytochromes from G. sulfurreducens PCA are not able to 

opportunistically use flavins that may be available in the medium to enhance EET 

(Okamoto et al., 2014b). 
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Conclusions  

The increasing interest in METs as promising devices for sustainable industrial 

processes has stimulated the investigation of EET mechanisms performed by 

electroactive organisms. This has relied on the identification and characterization of 

cell-surface exposed conductive proteins responsible for exchanging electrons with 

electrodes. These fall into one of four types of proteins: porin-cytochrome complexes, 

cell-surface exposed cytochromes, conductive nanowires and other redox proteins. To 

broaden our understanding of the diversity of the portfolio of proteins that sustain EET 

it is necessary to characterize cell-surface exposed conductive proteins from other 

electroactive organisms, including those that do not contain MHC. 
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Figure Captions 

 

Figure 1. Alignment of genes identified to encode for proteins belonging to porin-

cytochrome complexes. (A) in S. oneidensis MR-1; (B) in other representative 

electroactive organisms. The genes are colored for putative function in EET (yellow are 

porin proteins, red are c-type cytochromes, green are iron-sulfur proteins and purple 

molybdopterin containing proteins). 

 

 

 

Scheme Captions 

 

Scheme 1. Representation of the four types of cell-surface exposed conductive 

proteins from electroactive organisms: (A) porin-cytochrome protein complexes; (B) 

cell-surface exposed cytochromes, which can be lipoproteins or cytochromes loosely 

bound to the cell surface; (C) conductive nanowires and (D) other redox proteins. The 

proteins are colored for type of protein: red are c-type cytochromes, yellow are porins, 

grey are pilin, blue and green are iron-sulfur and copper proteins, respectively.  
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Table 1. Cell-surface exposed cytochromes identified in electroactive organisms. 

Microorganism Locus tag 
Protein 

name 

Heme bind. 

motif 
a
 

Number of 

aminoacids 
Reference 

Acidithiobacillus 

ferrooxidans ATCC 

23270 

AFE_3153 Cyc2 1 485 (Yarzábal et al., 

2002) 

Aeromonas hydrophila 

ATCC 7966 

AHA_2764  10 743 (Shi et al., 

2012) 

Desulfuromonas 

acetoxidans DSM 684 

Dace_0364 OmcB 13 762 (Alves et al., 

2011) 

Geobacter 

sulfurreducens PCA 

GSU2737 OmcB 12 744 (Kim et al., 

2005; Leang et 

al., 2010; Liu et 
al., 2014; 

Richter et al., 

2009) 

GSU2731 OmcC 12 768 

GSU0618 OmcE 4 232 

GSU2432 OmcF 1 104 

GSU2076 OmcS 6 432 

GSU2432 OmcZ 8 473 

Ferroglobus placidus Ferp_0670  35 1732 (Smith et al., 

2015) Ferp_0672 31 1639 

Rhodoferax 
ferrireducens T118 

Rfer_0244  4 261 (Liu et al., 
2014; Risso et 

al., 2009)  
Rfer_4079  10 885 

Rfer_4080  10 936 

Rfer_4083 MtrC 10 826 

Rhodopseudomonas 

palustris TIE-1 

Rpal_0817 PioA 10 540 (Jiao and 

Newman, 2007) 

Shewanella oneidensis 

MR1 

SO_1778 MtrC 10 671 (Beliaev et al., 

2001; 

Hartshorne et 

al., 2007; Myers 

and Myers, 

1997) 

SO_1780 MtrF 10 639 

SO_1779 OmcA 10 735 

Sideroxydans 

lithotrophicus ES-1 

Slit_2497 MtoA 10 355 (Shi et al., 

2012) 

Thermincola potens JR TherJR_2595  9 525 (Carlson et al., 
2012) 

  
    

  
a The heme binding motif is identified by the sequence CXXCH, where X is any aminoacid. 
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Figure 1 
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Scheme 1 
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