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The increase of atmospheric carbon dioxide (CO2)1 has been predicted to impact the seasonal

cycle of inorganic carbon in the global ocean2, 3, yet the observational evidence to verify this

prediction has been missing so far. Here, using an observation-based product of the oceanic

partial pressure of carbon dioxide (pCO2) covering the past 34 years, we find that the winter-

to-summer difference of the pCO2 has increased on average by 2.2±0.4 µatm decade−1 from

1982 through 2015 poleward of 10◦ latitude. This is largely in agreement with the trend ex-

pected from thermodynamic considerations. Most of the increase stems from the seasonality

of the drivers acting on an increasing ocean pCO2 caused by the uptake of anthropogenic

CO2 from the atmosphere. In the high latitudes, the concurrent ocean acidification induced

changes in the buffer capacity of the ocean enhance this effect. This strengthening of the

seasonal winter-minus-summer difference pushes the global ocean earlier towards critical

1



thresholds inducing stress to ocean ecosystems and fisheries4. Our study provides the obser-

vational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a

global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions.

The oceanic uptake of anthropogenic CO2
1, 5 is causing major shifts in the surface ocean

inorganic carbon system6. These shifts include increasing concentrations of dissolved CO2, and

hence higher pCO2, but also a reduction of the carbonate ion concentration and pH, and are often

collectively referred to as ocean acidification4, 7. One of the predicted consequence of these chem-

ical changes is an increase in the seasonal variation of the surface ocean pCO2
2, 3, 8. However, this

prediction has not been confirmed experimentally by in-situ data on a global scale so far. Here,

by analysing surface ocean pCO2 observations collected over the past 34 years, we demonstrate

that the seasonal pCO2 difference indeed has increased substantially in recent decades, implying

stronger stress to organisms that are sensitive to ocean acidification3, 9.

Our results are based on a collection of ship and mooring surface ocean pCO2 measurements

assembled by the Surface Ocean CO2 Atlas effort (SOCATv4)10, 11. These measurements were

combined with our 2-step neural network data interpolation technique SOM-FFN (self organizing

map feed forward network)12, 13 to reconstruct changes in surface ocean pCO2 from 1982 through

2015 at monthly intervals and with a spatial resolution of 1◦×1◦. The seasonal differences of pCO2

were computed by first fitting the interpolated data with a combination of harmonic and polyno-

mial functions and then determining the differences for the January through March means and for

the July through September means (see Methods). Even though there exists substantial interannual
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variability in the strength of the seasonal pCO2 difference, expressed here as the seasonal maxi-

mum minus the seasonal minimum, its trend is clearly positive in all extratropical regions ranging

between 1.1±0.3 µatm decade−1 and 2.9±0.3 µatm decade−1 (Fig. 1) with an average rate of

2.2±0.4 µatm decade−1.

The seasonal differences observed at the Hawaiian Ocean Timeseries station (HOT)14 and

at the Station S/Bermuda Atlantic Timeseries Station site (StaS/BATS)15–17, where measurements

are available since 1988 and 1983, respectively, support our estimates. The diagnosed trends of

1.5 ± 1.1 µatm decade−1 (StaS/BATS) and 3.8 ± 2.4 µatm decade−1 (HOT) are statistically indis-

tinguishable from those inferred from our neural network based estimates at these two locations

(i.e., 1.5±1.8 and 0.2±1.8 µatm decade−1 respectively - see Supplementary Information). The un-

certainties of these local trends are quite large, however, largely reflecting the strong year-to-year

fluctuations of the seasonal cycle of surface ocean pCO2 at this local scale. While this prevents

a very thorough quantitative validation of our neural network based analyses, they nevertheless

support our estimate of a rate of increase of 2.3 ± 0.4 µatm decade−1 in the subtropical band

(10◦N-40◦N) of the northern hemisphere. This is particularly encouraging considering the local

nature of these station data in comparison to our larger scale SOM-FFN estimates. This conclusion

is further supported by the residuals of our interpolated product having no seasonal trend, i.e., the

diagnosed trend in the seasonal difference is not an artifact of the interpolation, but stems from the

pCO2 observations (see Supplementary Information). The long-term changes in the winter-minus-

summer differences for the large-scale regions analyzed here are also significantly larger than the

estimated uncertainty in the reconstructed seasonal cycles for pCO2.
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The seasonal differences of the surface pCO2 increase everywhere, with the winter-minus-

summer differences becoming more negative in the low latitudes (equatorward of∼40◦), and more

positive in the high latitudes (poleward of ∼40◦) (Fig. 2). This change in the sign between the

low and the high latitudes corresponds to the seasonal maxima of pCO2 being 6 months out of

phase between these two bands (Fig. 2e). In the low latitudes, the seasonal cycle has a maximum

in summer, and thus a negative winter-minus-summer difference (Fig. 2a, c). In contrast, the

seasonal cycle in the high latitudes has a maximum in winter, leading to a positive winter-minus-

summer difference in pCO2 (Fig. 2b, d). For our further analyses, we will use the winter-minus-

summer difference rather than the absolute difference as our metric for changes in the seasonal

cycle, mainly because including the sign permits us to investigate the dominant drivers for the

winter-minus-summer trends.

We can quantify these drivers by separating the seasonal cycle of the surface ocean pCO2 into

the thermal part driven by the seasonal variations in sea-surface temperature (SST), and into the

non-thermal part driven by the seasonal variations by all other factors, namely dissolved inorganic

carbon (DIC), alkalinity, and salinity6, 18, 19 (Fig. 3). This separation reveals that the winter-minus-

summer differences of the thermal component became more negative between the 1985-1989 and

the 2010-2014 periods, while the winter-minus-summer difference in the non-thermal component

became more positive between these two periods. While these trends oppose each other, in the

low latitudes (Fig. 3a), the negative winter-minus-summer trend in the thermal component domi-

nates the increase in the seasonal pCO2 difference, whereas in the high latitude regions (Fig. 3b),

the positive winter-minus-summer trend in the non-thermal component is the dominating compo-
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nent. Consequently, adding both components, we find an increase in the seasonal pCO2 difference

everywhere in the global ocean.

The regionally varying contribution of the thermal and non-thermal components to the chang-

ing seasonal cycle is also clearly visible in a regionally more refined analysis of the winter-minus-

summer trends (Fig. 4), even though the regional winter-minus-summer pCO2 trends vary more

substantially than the broad latitude band averages (Fig. 4a). Trends in the winter-minus-summer

pCO2 difference of the thermal and non-thermal components are locally even stronger, reaching

10 µatm decade−1, but the compensatory nature of the thermal and non-thermal trend components

occurs nearly everywhere (Fig. 4b, c).

Thermodynamic consideration of the CO2 system in seawater permits us to determine and

quantify the drivers behind the increases in the seasonal differences as well as the compensatory

nature between the thermal and non-thermal components. Starting from a Taylor expansion of the

pCO2 drivers 6, 18 and using some simplifications, we can show that three mechanisms are driving

the increase in the seasonal differences (see Methods). The first mechanism is associated with the

long-term increase in the mean concentration of CO2 in the surface ocean, i.e., [CO2]aq, caused by

the uptake of anthropogenic CO2 from the atmosphere. This mechanism effects both the thermal

and non-thermal driven seasonal cycle because of their respective CO2 sensitivities. The second

mechanism is associated with the reaction of the added CO2 with the carbonate ion in seawater,

resulting in a reduction of the capacity of the surface ocean CO2 system to buffer against changes.

This consequence, reflected in an increase in the Revelle (buffer) factor implies that the surface
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ocean CO2 system becomes more sensitive to the seasonal cycle in DIC and alkalinity3. The third

mechanism changes the seasonal pCO2 difference by altering the seasonality of its drivers.

We do not have sufficient long-term observations of surface DIC, alkalinity and salinity to

determine the changes in their seasonal cycles required to quantitatively estimate the contribution

of the third mechanism. In response, we investigate how much of the observed trends can be

attributed to the increase in the CO2 concentration and buffer factor and then discuss the role of

the third mechanism based on the mismatch between the observations and the estimates from the

first two mechanisms.

The comparison between our observation-based winter-minus-summer trends and those from

the thermodynamic consideration (dashed green lines in Fig. 4) illustrates that the first two mech-

anisms can explain the majority of the observation-based latitudinal trend pattern. This suggests

that the contribution of the third mechanisms, i.e., changes in the seasonality of the pCO2 drivers,

is comparably small. The dominance of the first two mechanisms implies that it is indeed the long-

term changes in the surface ocean CO2 chemistry linked to the increasing uptake of anthropogenic

CO2 that causes the increase in the winter-minus-summer difference in surface ocean pCO2, con-

firming model-based analyses2, 3, 20.

Further details emerge when the thermal and the non-thermal pCO2 components are consid-

ered separately (Fig. 4b,c). In particular, this analysis allows us to explain why the thermal and

non-thermal components drive the change in the low and high latitudes, respectively. As it turns

out this is the result of the increasing oceanic CO2 concentration being responsible for roughly
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two thirds of the predicted trend in the non-thermal component and for all of the predicted trend

in the thermal component (see Supplementary Figure 8). This dominance results in this driver

enhancing both components in roughly equal manner, but because these two components have

opposing seasonality, the net effect depends on which component dominates the seasonal cycle.

As a result, in regions where the seasonal cycle of pCO2 is dominated by the thermal component,

the trend in the winter-minus-summer difference is dominated by this component as well. In an

analogous manner, the non-thermal component drives both the seasonal cycle and the trend in the

winter-minus-summer difference in the high latitudes.

While the consideration of the first two mechanisms explain most of the observed trends,

there are also substantial differences, implying changes in the seasonality of the pCO2 drivers.

Figure 4 reveals that the underestimation of the winter-minus-summer trend in the low and temper-

ate latitudes of the northern hemisphere stems from an underestimation of the thermal component

(Fig. 4b). This implies that a trend toward a stronger seasonal warming of the sea surface con-

tributed to the larger seasonal difference in pCO2 as well. In contrast, the underestimation of the

observation-based trend in the low and temperate latitudes of the southern hemisphere (Fig. 4a)

stems primarily from the non-thermal pCO2 component (Fig. 4c). This implies that a reduction or

shift of the seasonal cycle of DIC, or an increase in the seasonal cycle of alkalinity contributed to

the weaker increase of the winter-minus-summer difference. A plausible cause is natural variabil-

ity of the surface ocean pCO2 in the subtropical Pacific in response to El Niño Southern Oscillation

(ENSO). The decadal scale variability of the Southern Ocean carbon sink21, 22 may matter as well,

particularly since a weaker seasonal cycle of DIC would be consistent with recent estimates sug-
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gesting a weaker accumulation of CO2 in the surface waters of the Southern Ocean22 linked to

changes in the shallow overturning circulation23. This mismatch in the non-thermal seasonal dif-

ference trends, however, might also reflect our limitation to estimate seasonal trends in the austral

winter due to the limited amount of seasonal CO2 measurements24.

Our ability to experimentally verify the increase in the seasonal variations of the surface

ocean pCO2 is very encouraging. It demonstrates the great advances of the surface ocean observing

networks and their interpretation through various interpolation schemes11, 25. Our finding that the

majority of the increase in the seasonal winter-minus-summer difference is driven by the rise in

atmospheric CO2 implies that this increase should be a very robust feature across different models

and observations, as it does not depend on the magnitude of climate change and any feedbacks

between climate and the ocean carbon cycle.

The increase in the seasonal difference of the surface ocean pCO2 enhances in a substan-

tial manner the effects of ocean acidification4, 26, 27 on marine organisms, as they find themselves

exposed earlier to higher levels of ocean acidification, possibly inducing the transition across criti-

cal thresholds, harmful to ocean ecosystems and fisheries, such as hypercapnia and low saturation

states with regard to calcium carbonate (CaCO3)3, 9, 28. Additionally, the observation-based trends

are subject to substantial natural climate variability and the full extent of the seasonal pCO2 dif-

ference is likely still masked29. This circumstance does not allow us to fully distinguish between

decadal scale climate variability and anthropogenic trends, a difference that can only be resolved by

long-term observational records. Our observation-based study however shows that anthropogenic
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CO2 emissions have already left a detectable imprint on the marine carbon cycle in the form of an

increasing seasonal difference of the surface ocean CO2 over the past decades.
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Calculation of the seasonal differences and trends To compute the winter-minus-summer differences of

our pCO2 product, we first fit a 3rd order polynomial (to account for trends) and 4th order harmonic function

(to reproduce the seasonality) to all data to reproduce the full seasonal cycle30 :

f(t) = a1 + a2 · t+ a3 · t2 + a4 · sin(2 · π · t/T ) + (1)

a5 · cos(2 · π · t/T ) + a6 · sin(4 · π · t/T ) + a7 · cos(4 · π · t/T )

where t is time in years and T is the period, chosen here as one year.

We recreate the seasonal cycle of a certain year by fitting equation (1) to every full analysis year as well as

the year before and after that creating 3-year running timeseries. Years at the beginning or the end of our

timeseries are reconstructed using the 2 following or proceeding years.

From the resulting harmonic function f(t) segments, we calculate winter averages in the northern hemi-

sphere as the mean of the months January, February and March and summer averages as the mean of the

months July, August and September and vice versa for the southern hemisphere. The seasonal maximum mi-

nus seasonal minimum for a certain year is then calculated as the difference between winter-minus-summer

means.

Trends in these winter-minus-summer differences are then calculated from the slope of the linear regression

line fit to the 34-year timeseries and uncertainties are derived from the t-statistic of the regression (see

below). We repeated our analysis without the quadratic (a3 · t2) and linear terms (a2 · t) in equation (1) but

find only small difference between the estimated cycles and seasonal trends (not shown).

Calculation of thermal and non-thermal components We split the observation-based pCO2 into its ther-

mal (superscript th) and non-thermal (superscript nt) components, i.e., that part driven by the seasonal
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variations in SST, and that part driven by the seasonal variations by all other factors, namely DIC, alkalinity,

and salinity18, 19. To compute the thermal component, we use the well established temperature sensitivity of

CO2 (γT ) of 4.23%/◦C18. This experimentally determined sensitivity may divert from the exact local sensi-

tivity, but this error is very small and therefore not further considered. Furthermore, we perturb the annual

mean pCO2, < pCO2 >annual, with the observed temperature anomalies, i.e., the differences between the

measured SST and the long-term mean SST, (<SST>):

pCOth
2 =< pCO2 >annual · exp(γT · (SST− < SST >)) (2)

The non-thermal component is computed by removing the temperature effect from the observation-based

pCO2, while normalizing the pCO2 values to the long term mean SST, i.e., (<SST>)19

pCOnt
2 = pCO2 · exp(γT · (< SST > −SST)) (3)

Drivers of the seasonal pCO2 difference trends To determine the potential drivers of the observed trends

in the winter-minus-summer differences in pCO2, we start with a decomposition of any variations in pCO2

into their driving components, i.e., sea-surface temperature, SST, sea-surface salinity, S, dissolved inorganic

carbon, DIC, and total alkalinity, Alk, thereby neglecting the very small contribution arising from variations

in nutrients and other very minor drivers. Considering only the first-order terms of a Taylor expansion gives

for any change in pCO2, i.e., dpCO2
6, 18:

dpCO2 =
∂pCO2

∂SST
· dSST +

∂pCO2

∂DIC
· dDIC (4)

+
∂pCO2

∂Alk
· dAlk +

∂pCO2

∂S
· dS
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where the ”d” denotes deviations of this property from some norm (with the assumption that d is small

relative to mean value). Since variations in the freshwater input to the surface ocean affect not only salinity,

but also DIC and Alk (with the latter two opposing each other), it is often more insightful to combine all

terms affected by freshwater fluxes into one31 leaving only the seasonal changes in salinity normalized DIC

and Alk in the respective terms. The salinity normalization is given by sDIC = S/S0 · DIC, sAlk = S/S0· Alk,

with S0 representing the normalization salinity, here taken as the annual mean salinity. This gives:

dpCO2 =
∂pCO2

∂SST
· dSST +

∂pCO2

∂DIC
· S/S0 · dsDIC (5)

+
∂pCO2

∂Alk
· S/S0 · dsAlk +

∂pCO2

∂FW
· dFW

The partial derivatives with regard to any of the drivers, i.e., ∂pCO2/∂X can be estimated from the pCO2

sensitivities, γ6. As we are considering deviations from the annual mean, S/S0 is essentially equal to 1

and will be dropped subsequently. Taking advantage of this simplification, inserting these sensitivities and

replacing ”d” with the seasonal difference (∆seas) yields:

∆seaspCO2 = γT · pCO2 ·∆seasSST︸ ︷︷ ︸
sensitivity to temperature

+ γDIC ·
pCO2

DIC
·∆seassDIC︸ ︷︷ ︸

sensitivity to sDIC

(6)

+ γAlk ·
pCO2

Alk
·∆seassAlk︸ ︷︷ ︸

sensitivity to sAlk

+ γFW ·
pCO2

FW
·∆seasFW︸ ︷︷ ︸

sensitivity to freshwater

where γT is the temperature sensitivity (see above), and where γDIC,Alk,FW describe the dimensionless

pCO2 sensitivities of the remaining terms, with γDIC usually referred to as the Revelle factor6, 32.

The first term of the right hand side of equation (6) represents the seasonal difference of the thermal com-

ponent, while the remaining three terms together represent the seasonal difference of the non-thermal com-

ponent. To simplify the further analysis, we take advantage of the observation that the contribution of sAlk
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and FW to the seasonal cycle of pCO2 is generally much smaller than that of SST and sDIC6. This permits

us to drop these terms subsequently. We expect this simplification to work well across the majority of the

ocean basins, where the seasonal changes in sAlk are very small33, but less so in high latitude and coastal

ocean regions, where both the sAlk and the freshwater fluxes are larger. However, since we investigate zonal

mean trends and no trends poleward of 65◦N and 65◦S, respectively, we expect our simplification to work

very well. The non-thermal part of (6) thus reduces to a single component driven by sDIC:

∆seaspCO2 = ∆seaspCOth
2 + ∆seaspCOnt

2 (7)

≈ γT · pCO2 ·∆seasSST + γsDIC ·
pCO2

DIC
·∆seassDIC

We next determine the temporal trends in these two components. Computing the temporal derivative of the

seasonal difference we derive

d∆seaspCO2

dt
= γT ·

dpCO2

dt
·∆seasSST + γT · pCO2 ·

d∆seasSST

dt
(8)

+
dγDIC

dt
· pCO2

DIC
·∆seassDIC

+γDIC ·∆seassDIC ·
(
dpCO2/dt

DIC
− dDIC/dt · pCO2

DIC2

)
+γDIC ·

pCO2

DIC
· d∆seassDIC

dt

Since dpCO2/dt and dDIC/dt are of similar magnitude (long term mean dpCO2/dt ≈ 1.5 µatm/yr), while

pCO2/DIC � 1, the second term inside the bracket is considerably smaller than the first term. Thus this

equation can be simplified to:

d∆seaspCO2

dt
= γT ·

dpCO2

dt
·∆seasSST + γT · pCO2 ·

d∆seasSST

dt
(9)
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+
dγDIC

dt
· pCO2

DIC
·∆seassDIC + γDIC ·

dpCO2

dt

∆seassDIC

DIC

+ γDIC ·
pCO2

DIC
· d∆seassDIC

dt

and further

d∆seaspCO2

dt
=

dpCO2

dt
· (γT ·∆seasSST + γDIC ·

∆seassDIC

DIC
)︸ ︷︷ ︸

change in surface pCO2

(10)

+
dγDIC

dt
· pCO2

DIC
·∆seassDIC︸ ︷︷ ︸

Revelle factor change

+
d∆seassDIC

dt
· γDIC ·

pCO2

DIC
+
d∆seasSST

dt
· γT · pCO2︸ ︷︷ ︸

seasonal difference change

Analyzing the terms that can drive a trend in the winter-minus-summer differences in pCO2 reveals that we

have three sets of processes to consider. The first one is associated with the long-term change in surface

ocean pCO2. This causes a trend simply by the seasonal variations in SST and sDIC acting on an increasing

pCO2. The second process is a result of ocean acidification causing an increase in the Revelle factor. This

term is, like the first one, directly tied to the increase in atmospheric CO2 driving an uptake of anthropogenic

CO2 into the surface ocean. The third set of processes are associated with changes in the seasonal difference

of the drivers, i.e., the ∆seasX terms owing e.g., to a change in ocean circulation/mixing or biological

activity.

These terms can be grouped according whether they act on the thermal or non-thermal components. This

gives for the thermal component:

d∆seaspCOth
2

dt
= γT ·

dpCO2

dt
·∆seasSST︸ ︷︷ ︸

change in surface pCO2

+ γT · pCO2 ·
d∆seasSST

dt︸ ︷︷ ︸
seasonal difference change

(11)
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and for the non-thermal component, i.e., that driven by changes in sDIC:

d∆seaspCOnt
2

dt
=

dγDIC

dt
· pCO2

DIC
·∆seassDIC︸ ︷︷ ︸

Revelle factor change

+ γDIC ·
dpCO2

dt

∆seassDIC

DIC︸ ︷︷ ︸
change in surface pCO2

(12)

+ γDIC ·
pCO2

DIC
· d∆seassDIC

dt︸ ︷︷ ︸
seasonal difference change

Here we only quantify the impact of the first two sets of drivers, i.e., the surface ocean pCO2 driven change

and the change in the Revelle factor, as we currently lack good observations for the trends in ∆seasX terms.

Therefore, deviation between our observation-based CO2 estimate and the theoretical framework can be

partly explained by the third set of drivers (as well as by the neglected contributions from alkalinity and the

freshwater balance).

We have already all the input data34 to estimate the CO2 effect for the thermal component (10), but we

need to estimate the seasonal difference of sDIC required to estimate the CO2 effect for the non-thermal

component. We estimate this term, i.e., ∆seas sDIC from pCO2 using equation (8) and fields from the

GLODAPv2 database35, 36

∆seassDIC = (∆seaspCO2 − γT · pCO2 ·∆seasSST) · DIC

γDIC · pCO2
(13)

and the change in the Revelle factor as6

dγDIC

dt
=
dγDIC

dDIC
· pCO2/DIC

γDIC
· dpCOatm

2

dt
(14)

using the dry air mixing ratio of atmospheric CO2 (https://www.esrl.noaa.gov/gmd/ccgg/mbl/) with a long

term mean dpCOatm
2 /dt of 1.7 µatm/yr, and by using the approximation6:
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γDIC ≈
3 ·Alk ·DIC− 2 ·DIC2

(2DIC−Alk) · (Alk−DIC)
(15)

we derive

dγDIC

dDIC
=

Alk2 · (4 ·DIC− 3 ·Alk)

(DIC−Alk)2 · (2 ·DIC−Alk)2
(16)

which yields the expected change in the non-thermal pCO2 seasonal difference in response to a change in

Revelle factor plus the oceanic accumulation of anthropogenic CO2. While the above approximation for the

Revelle factor is far from being accurate, tests with a full model of the aqueous CO2 system reveal that this

approximation is reasonably close to the accurate results. We retain the approximation given its simplicity.

The results of equations 11 and 12 as well as their combination in equation 10 are displayed in Figure 4 of

the main text as dashed green lines.

Uncertainty analysis Two main sources of uncertainty contribute to the uncertainty of the reported trend

in the winter-minus-summer difference in surface ocean pCO2. The first source is associated with the

uncertainty in the spatio-temporal interpolation of the observations, which directly affects the diagnosed

magnitude of the seasonal cycle. The second source of uncertainty stems from the determination of the 34-

year linear trend in the winter-minus-summer difference in the presence of interannual to decadal variations.

We use the surface ocean pCO2 residuals, computed as the difference between our interpolated pCO2 esti-

mate minus the SOCATv4 gridded data11 as the basis for computing the uncertainty for the winter-minus-

summer difference. These residuals contain no significant temporal trends neither for the summer nor for

the winter season (see supplement) and also do not depend on the data density. This permits us to assume

that the error structure of our interpolated pCO2 is stationary and random in time, and thus not biasing the
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determination of the linear trend. The substantial residuals (root mean squared error (RMSE) of a typical

magnitude of 10-20 µatm) nevertheless imply a considerable uncertainty of the reconstructed seasonal cycle.

But as we determine the mean seasonal cycle for large spatial regions, this uncertainty of the mean, i.e., the

standard error (SE) goes down with one over the square root of the effective sample size Neff , i.e.,

SE ≈ RMSE√
N eff

(17)

whereN eff represents the spatially decorrelated number of pCO2 residuals per region. We calculate it from

N eff ≈ N · 1− r
1 + r

(18)

whereN is the total number of residuals per region and r is the lag 1 autocorrelation coefficient. We estimate

r by randomly plotting the squared difference of the pCO2 residuals as a function of haversine distance. We

do this for five randomly chosen and non-repeating subsamples of 1000 residual pairs each, binning them

into 300 km bins and calculating:

r =

∑n−1
d=1 (xd− < x1:n−1 >)(xd+1− < x2:n >)

(
∑n−1

d=1 (xd− < x1:n−1 >)2)1/2(
∑n−1

d=1 (xd+1− < x2:n >)2)1/2
(19)

where x is the residual difference squared of two locations separated by the distance d and< x > represents

the average squared distance. The standard error is computed for each analysis region.

To determine the uncertainty of the linear trend in the annual winter-minus-summer differences for each of

the regions, we take the 95% confidence interval reported in the output of the least-squares regression fit in

matlab. We test if the trends are significantly different from 0 using standard t-statistics.
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Data availability Our pCO2 analysis is based on measurements extracted from the Surface Ocean CO2 At-

las (SOCATv4)11 that is freely available via: https://www.socat.info. The neural network based interpolated

sea surface pCO2 product used in this study is freely accessible at the National Centers for Environmental

Information via:

https://www.nodc.noaa.gov/ocads/oceans/SPCO2 1982 2015 ETH SOM FFN.html We further use bottle

data from the Bermuda Atlantic Timeseries station (BATS)16 and from the closely located Station S15 to

compute the surface ocean pCO2 at these two sites near Bermuda. These data are available online via

http://bats.bios.edu. For the Hawaiian Ocean Timeseries station (HOT)14, we extracted the already computed

pCO2 data from http://hahana.soest.hawaii.edu/hot/products/HOT surface CO2.txt. Additionally, for our

calculations, we use the gridded product from the Global Data Analysis Project version2 (GLODAPv2)35, 37

which can be freely accessed from https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2/ and NOAA-ESRL

marine boundary layer reference dry air mixing ratio of atmospheric CO2 freely accessed from

https://www.esrl.noaa.gov/gmd/ccgg/mbl/. Lastly we use the NOAA Optimum Interpolation (OI) version

234 sea surface temperature product, freely accisible via

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html, for our calculations.
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Figure 1 Trends in the seasonal difference of sea surface pCO2 from 1982 through

2015. (a) 10◦N -40◦N, (b) 40◦N -65◦N (c) 10◦S -40◦S and (d) 40◦S -65◦S. Trends are

derived from the updated version of an observation-based sea surface pCO2 product13.

Black markers represent the seasonal maximum minus seasonal minimum for each year

and the solid regression line represents the results of a linear least-squares regression.

The shaded area represents the uncertainty of the interpolated pCO2 product. The slope

of the line represents the trends in seasonal variations, i.e., the trend in the seasonal

maximum minus the seasonal minimum including its 95% confidence interval.

Figure 2 The changing seasonal sea surface pCO2 cycle. (a) 10◦N -40◦N, (b) 40◦N

-65◦N (c) 10◦S -40◦S and (d) 40◦S -65◦S. Each panel consists of a comparison of the

mean seasonal cycle from 1985-1989 (dashed line) and 2010-2014 (solid line) including

shaded uncertainty estimate. The mean seasonal cycles for each respective period are

repeated and those of the southern hemisphere are shifted by 6 months to align the

seasons. (e) The climatological mean winter-minus-summer difference for each 1◦×1◦

pixel. Positive winter-minus-summer differences are marked in red, whereas negative

winter-minus-summer differences are marked in blue.

Figure 3 Separation of the 5-year mean seasonal cycle of pCO2 into its thermal and

non-thermal components. (a) between 10◦N -40◦N and (b) between 40◦S -65◦S. Shown

are the data for the period 1985-1989 (dashed lines) and 2010-2014 (solid lines). While in

(a) the non-thermal component increases the seasonal winter-minus-summer difference
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(marked in red with a plus sign highlighting the positive transition from winter maximum

to summer minimum), the opposing thermal signal is stronger leading to an increase in

the summer-minus-winter difference (marked in blue with a minus sign highlighting the

negative transition from winter minimum to summer maximum). Vice versa, in (b) the

non-thermal component dominates over the thermal component.

Figure 4 Regional and zonal mean trends in the winter-minus-summer difference.

(a) total (black), (b) thermal (blue) and (c) non-thermal (red) seasonal pCO2 cycles visu-

alized both geographically and as zonal means. Negative trends highlight an increasing

summer maximum and decreasing winter minimum, whereas positive trends highlight in-

creasing winter maxima and decreasing summer minima. The dashed green lines repre-

sent the expected increase based on our thermodynamic consideration considering only

the effect of the increase in surface ocean CO2 and changes in Revelle factor (see text).

Stars further indicate the observation-based (gray, red, blue) winter-minus-summer trends

from timeseries stations at Bermuda and Hawaii. Note that the latter are trends at a sin-

gle location, while the trends shown based on the neural network based pCO2 analyses

represent basin-scale or global zonal mean trends.
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