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Highlights  

• Facial expressions can be classified from patterns of brain activity  

• Classification generalized across spatially independent samples of face information 

• Significant cross-classification in early and higher visual areas and dorsal PFC 

• Cross-classification in STS and dorsal PFC correlated with behavioural accuracy  

• Cortical feedback may facilitate reactivation of occluded parts of face stimuli
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Abstract 

A network of cortical and sub-cortical regions is known to be important in the processing of facial 

expression. However, to date no study has investigated whether representations of facial expressions 

present in this network permit generalization across independent samples of face information (e.g. eye 

region Vs mouth region). We presented participants with partial face samples of five expression 

categories in a rapid event-related fMRI experiment. We reveal a network of face-sensitive regions that 

contain information about facial expression categories regardless of which part of the face is presented. 

We further reveal that the neural information present in a subset of these regions: dorsal prefrontal 

cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even 

early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 

‘eyes only’ versus ‘eyes removed’). Furthermore, classification performance was correlated to 

behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g. STS, dPFC) and 

lower level cortical regions contain information useful for facial expression decoding that go beyond the 

visual information presented, and implicate a key role for contextual mechanisms such as cortical 

feedback in facial expression perception under challenging conditions of visual occlusion. 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Decoding facial expressions across face parts 5 

 

Introduction  

Facial affect recognition (FAR) is a critical component of healthy social cognition in humans (Adolphs, 

2003). Impairments in recognition and related neural dysfunction are found in several disorders 

associated with socio-affective dysfunction, including psychopathy and conduct disorder (Dadds et al., 

2006; Contreras-Rodriguez et al., 2014), mood disorders (Surguladze et al., 2004), and autism (Swartz et 

al., 2013). Prominent neurocognitive models of FAR focus both on core face regions such as fusiform 

face area (FFA), superior temporal sulcus (STS), and occipital face area (OFA; Ishai, 2008; Park et al., 

2012), and on the extended face network, which includes the amygdala, and areas of prefrontal cortex 

such as inferior frontal gyrus (IFG) and dorsal prefrontal cortex (dPFC; Stein et al., 2007; Dal Monte et al., 

2013; Ferrari et al., 2016). While previous studies have found increased activity in ventral visual cortex & 

STS for emotional versus neutral faces (Vuilleumier et al., 2001; Engell and Haxby, 2007; Fusar-Poli et al., 

2009), recent studies using MVPA have addressed whether the information present in particular regions 

can discriminate particular facial expression categories (Wegrzyn et al., 2015; Zhang et al., 2016). 

Wegrzyn et al (2015), for instance, revealed that facial expression category can be read out from 

multiple regions (e.g. amygdala, STS, fusiform gyrus and inferior occipital gyrus). However, while some 

of these studies have investigated the invariance of expression representations to differing identities 

(Zhang et al., 2016), none have investigated whether the evoked representation of facial expressions 

generalizes across the specific parts of the face used to signal it (e.g. eyes Vs mouth; cf. Anzellotti and 

Caramazza, 2016). Such invariance across visual features would be useful because the ability to 

recognize a facial expression is important even when specific facial features are occluded (e.g. in the 

presence of sun glasses or scarf; cf. Tang et al., 2014).   

Moreover, while regions in the extended face network may be contributing unique information to FAR, 

it is also likely that they are providing feedback to earlier areas, particularly under conditions of partial 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Decoding facial expressions across face parts 6 

 

occlusion (O'Reilly et al., 2013; Tang et al., 2014). Such information may feed-back even to the earliest 

visual areas (Clark, 2013; Muckli et al., 2013). For example, recent work has revealed that early visual 

regions contain information about occluded parts of visual scenes (Smith and Muckli, 2010; Muckli et al., 

2015). Similarly, we showed that retinotopically mapped sub-regions (eye & mouth) of V1 changed 

activity as a function of the specific face categorization task at hand (Petro et al., 2013). 

Behavioral and patient work has demonstrated that different features of the face are diagnostic for 

particular expression categorizations (e.g. the eyes in fear; Adolphs et al., 2005; Smith et al., 2005; Smith 

and Schyns, 2009), which might lead one to predict that generalization across face features is not 

possible. On the other hand, recurrent or top-down connections within the visual system may allow for 

an effective filling in of missing information from occluded visual stimuli (Smith and Muckli, 2010; Clark, 

2013; O'Reilly et al., 2013; Tang et al., 2014) and hence lead to such generalizations.  The present study 

tests these competing predictions by measuring whether representations within key nodes of the core 

and extended face networks contain measurably similar activity to independent samples of face 

information: expressions revealing the eyes only versus eyes removed (Han et al., 2012). 
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Figure 1: Exemplars of Stimuli, Timing of Experiment, and Analytic Approach 

Top (a): Trial sequence used in the fMRI experiment. Bottom (b): Logic of the MVPA 

Classification analyses used in the present analyses, depicting both within-condition 

classification of expression and cross-classification across different parts of the face (i.e., train 

on ‘eyes only’ data, test on ‘eyes removed’). 

 

Methods 

Participants and experimental task 

We analyzed data from 19 randomly selected participants who completed the ‘partial face encoding’ 

task, which has been described in detail previously (Han et al., 2012). The data presented in the current 

work were collected in the context of a larger study examining the relationship between individual 

differences in distinct facets of empathy and social cognition. With the exception of data from 7 subjects 

(part of the sample presented in Han et al., 2012), none of the data presented here have been published 
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elsewhere. Briefly, while in an fMRI scanner, participants were asked to label the facial expression 

shown (i.e., angry, disgusted, fearful, happy, neutral) of either a ‘whole face’, a face with ‘eyes only’, or a 

face with ‘eyes removed’. Facial stimuli were taken from 36 actors (18 female, 18 male) in the Karolinska 

Directed Emotional Faces set (Lundqvist et al., 1998), grey scaled, and had their hair and ears cropped to 

remove potentially distracting idiosyncratic stylistic features. Participants viewed each facial expression 

the same number of times, and each actor included displayed each of the five facial expressions. Each 

trial consisted of an initial fixation cross (1200ms), a face, or partial face, presentation (1500, 1700, or 

1900 ms), followed by a fixation inter-stimulus interval (0, 300, or 600 ms), a response screen (1500, 

1700, or 1900 ms), and a fixation inter-trial interval (250 ms). Additionally, twenty fixation-only trials (10 

of 2500ms and 10 of 3000ms) were included in each run (Figure 1). This trial structure and design was 

used to maximize the accuracy of the regression analysis given the event related nature of the task. 

Participants completed six runs, each run consisting of 90 images, balanced for emotion, face sample 

(i.e., whole faces, eyes only, or eyes removed), and actor’s gender. Specifically, there are 5 emotional 

labels one can assigned to a given trial type and there are 15 trial types (i.e., combinations of emotion 

and face parts; see Supplementary Figure 1). Run order and emotion-response finger designations were 

randomized across participants.  Prior to beginning the experimental runs, all participants completed 

two practice runs, which trained participants on which button corresponded to which emotion and 

acclimatized them to the pace of the task.  

Behavioural Analysis 

To assess participants’ FAR accuracy we first conducted a 5 (Emotion: angry, disgusted, fearful, happy, 

neutral) by 3 (Face parts: ‘whole face’, ‘eyes only’, ‘eyes removed’) repeated measures ANOVA on 

accuracy for identifying the viewed emotion, followed by Bonferroni-adjusted t-tests.  Second, we 

quantified the percentage of responses participants made that were both ‘hits’ (e.g., labeling an angry 
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face as angry) and ‘false alarms’ when labeling the faces (e.g., labeling an angry face as disgust) relative 

to chance responding (i.e., 1/5, or 20%). Specifically, there are 5 emotional labels one can assigned to a 

given trial type and there are 15 trial types (i.e., combinations of emotion and face parts; see 

Supplementary Figure 1). This analysis resulted in 75 one-sample t-tests and was corrected for multiple 

comparisons using the Holm-Bonferroni correction (Holm, 1979; Gaetano, 2013). This analytic approach 

is consistent with the approach taken in Han et al. (2011), which focused only on recognition accuracy 

and not reaction times, as accuracy of recognition was the focus of the study and emphasized to 

participants. 

MRI acquisition 

The experimental task was completed at the Centre for Metabolic Mapping, in the Robarts Research 

Institute’s 3T Siemens scanner equipped with a 32-channel head coil. The session began with a high-

resolution anatomical scan that covered the whole brain (time to repetition=2,300 ms, time to 

echo=4.25 ms; Field of View=25.6 cm; 192 axial slices; voxel dimensions=1mm isovoxels; 256x256mm 

matrix). Participants completed six functional MRI runs during which blood-oxygenation-level-

dependent (BOLD) changes were measured using a T2*-gradient echo-planar sequence (EPI; time to 

repetition=3000 ms, time to echo=30 ms; 120x120mm matrix; field of view=24 cm; flip angle = 90°). 

One-hundred-forty-seven volumes were collected per run, resulting in run durations of 7.35 minutes. 

Complete brain coverage was obtained with 45 interleaved slices of 2mm by 2mm in plane and a slice 

thickness of 2.5mm (forming voxels of 2x2x2.5mm).  

MRI data processing 

Standard individual preprocessing was carried out using Analysis of Functional NeuroImages software 

(Cox, 1996). After removing the first four volumes of each run, the functional data was slice time 
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corrected, and motion corrected by registration to the first volume of the first run, and transformed into 

the standard space of Talairach and Tournoux. No spatial smoothing was applied. The time series of 

each voxel was scaled such that the coefficient produced by the regression analysis represented the 

percent signal change from the mean voxel activity. A first-level general linear model regression was 

performed including a single regressor for each trial of each condition of interest. Regressors of no 

interest were also included to avoid potential confounds, these included modelling the response epoch 

for each condition as a single regressor and modelling volumes with excessive motion (where the 

Euclidean Norm of the motion derivative exceeded 1.0). 

All regressors were produced by convolving the trial onsets with the gamma-variate hemodynamic 

response function. To account for voxel-wise correlated drifting, baseline plus linear drift and quadratic 

trend were also modeled. This produced trial-by-trial beta coefficients for each of our conditions of 

interest, which were then used in the MVPA analyses described below. Additionally, a first-level contrast 

of all whole-face conditions (i.e, irrespective of facial expression) versus baseline was carried out in each 

individual. The resulting t-values were used in the feature selection step described below.  

 

Region-of-interest Definition 

A probabilistic V1 mask was defined from the cytoarchitectonic map in the Juelich Anatomy toolbox in 

FSL (Eickhoff et al., 2005), and was thresholded at 50%. Face-related ROIs were generated using the 

automated meta-analysis toolbox Neurosynth (www.neurosynth.org, Yarkoni et al., 2011) from a meta-

analysis of previous fMRI studies that frequently use the word ‘face’ (i.e., all studies in which  the word 

“face” was mentioned more than once per 1000 words were included). We generated our ROI mask by 

identifying brain regions that were significantly active given the use of the word “face” (i.e., the ‘forward 
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inference’ analysis). In order to isolate the ROIs and avoid larger clusters that incorporated multiple 

regions of interest, we thresholded the image at a z-value of 5 and removed voxels corresponding to 

early visual cortices. In this manner in addition to the V1 mask we produced four bilateral ROIs 

corresponding to the lateral occipital/ventral temporal cortex (LO/VT), Inferior frontal gyrus (IFG), dorsal 

prefrontal cortex (dPFC: including dlPFC and dmPFC), and amygdala. The LO/VT mask also included right 

STS, thus we isolated right STS from LO/VT; however, the resulting right STS mask was <350 voxels. 

Furthermore, there was a left STS cluster that was <15 voxels. In order to derive an independent 

bilateral ROI of the STS we dilated the edges of the right STS cluster using a 2mm kernel which produced 

a resulting mask of 1,304 voxels. Finally, we mirrored the right STS mask in the left hemisphere and 

subtracted the LO/VT mask to ensure independence. Note that the final left STS mask included all voxels 

that were in the original small left STS cluster. The frontal regions above contribute to the extended face 

network (Ishai, 2008; Park et al., 2012), and have each been identified as contributing to certain aspects 

of facial affect recognition (Stein et al., 2007; Dal Monte et al., 2013; Ferrari et al., 2016).  Notably, the 

brain regions identified using the ‘reverse inference’ in Neurosynth produced similar ROIs in the LO/VT, 

STS and amygdala regions, but did not include the prefrontal cortex regions.  

 

Feature selection 

We selected the top 1,000 voxels per ROI per participant for inclusion in the MVPA analysis based on 

their t-value from the first-level within-subject analyses of all whole-faces versus baseline, with only 

those voxels with positive t-values being included. This decision was based on a preliminary within-

condition classification analysis of whole-face facial expressions on data from a broad early visual cortex 

mask, which demonstrated that classification accuracy reached an asymptote at ~1,000 features (i.e., 
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voxels) in the model. Thus, for all analyses we used 1,000 voxels per bilateral ROI per participant. Lastly, 

we produced ‘heat maps’ for each bilateral ROI to display the number of participants for which a given 

voxel was included in each classification analysis. In order to confirm that our effects were not 

dependent on voxel number, we repeated the analyses with 400 voxels per ROI (see Wegryzn et al 

2016), and note that these analyses produced near identical classification results. 

Data analysis 

Within-subject pattern classification analysis (Figure 1). Linear support vector machine classification 

with a leave-one-run-out cross-validation scheme was carried out within each participant (Smith and 

Muckli, 2010; Smith and Goodale, 2015). This involved iteratively training the SVM classifier on data 

from five runs and testing on the held out, independent, sixth run. This produced six folds of training 

and testing, in which each run served as the testing set exactly one time. In this manner multiclass 

classification on the five facial expressions was carried out four times for each ROI.  The first three 

classification analyses involved within-condition classification such that it was carried out independently 

on each of the three visual categories (whole faces, eyes only, and eyes removed). Although results in 

early visual regions produced by this analysis could be driven by basic visual features, it was important 

for the non-visual ROIs and provided an upper bound to our classification accuracy. To test our main 

questions, we performed the fourth classification analysis, which involved cross-classification such that 

an SVM model was trained on the pattern of brain activity elicited by facial expression of eyes only or 

eyes removed, and tested on data elicited by eyes removed or eyes only, respectively (Smith and Muckli, 

2010; Vetter et al., 2014; Kaplan et al., 2015). Thus, while the low-level features in the training versus 

testing data set are spatially independent, the presented images still share the same high order 

expression category.  The accuracy of these two cross-classifications were averaged together to 

produce one cross-classification (XC) accuracy score. It should be noted that for the cross-classification 
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analysis we also used the leave-one-run-out cross-validation scheme for training and testing the model 

to ensure independence between the training and testing set. For each multiclass classification analysis 

we always used all five facial expressions, thus chance performance was expected to be ~20%. We 

indeed verified that chance performance was ~20% using permutation testing by repeating the within 

subject leave-one-run-out cross validation with permuted data labels in each run. This also confirmed 

there was no systematic bias in our classification.  

The linear SVM algorithm was implemented using the LIBSVM toolbox (Chang and Lin 2011), with 

default parameters (notably C=1). Note that the activity of each voxel in the training data was 

normalized within a range of -1 to 1 prior to input to the SVM. The test data were normalized using the 

same parameters (min, max) as obtained from the training set normalization in order to optimize the 

classification performance (Smith and Muckli, 2010; Chang and Lin, 2011; Vetter et al., 2014; Smith and 

Goodale, 2015). The five-alternative forced choice (5AFC) classification task is implemented by LIBSVM 

as a series of 1 Vs 1 binary comparisons (10 here) that allows for the generation of a full confusion 

matrix, similar to that obtained from experiments on human facial expression categorization. LIBSVM by 

default uses a non-optimal solution for dealing with ties in multiclass classification when the confusion 

matrix (and not just accuracy) is important (simply choosing the first class defined during training). To 

overcome this limitation, when ties were present we randomly chose one of the five possible categories, 

and repeated the whole cross-validation procedure fifty times in order to better reflect the nature of the 

errors the classifier typically made.   

 

Group-wise analysis. Independently for each of the classification analyses, classification performance 

was averaged across each fold for inclusion in the group analysis. Significance was determined for each 
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classification analysis in each ROI by comparing the classifier accuracy to the chance level using a non-

parametric Wilcoxon signed rank test (two tailed) followed by FDR correction (q<0.05) to protect against 

type one errors due to repeated testing across multiple ROIs. Moreover, given the nature of multiclass 

classification, we also produced 5x5 confusion matrices for each of the four main classification analyses 

(i.e., within whole faces, within eyes only, within eyes removed, and cross-classification). Confusion 

matrices allow for the quantification of the classifiers accuracy for identifying a target facial expression 

and the probability that each of the other four facial expressions is mistakenly labelled as the target 

emotion. As we had no a priori predictions regarding the contribution of specific expressions to 

classifier performance, we performed post hoc analyses comparing the hit rate of each specific 

expression to chance (i.e., the top-left to bottom-right diagonal elements of the confusion matrices) 

using non-parametric Wilcoxon signed rank test (two tailed). This identifies which specific facial 

expressions are discriminated above chance. 

Relationship between brain activity and behaviour. We sought to determine whether there was a 

relationship between decoding accuracy in the critical cross-classification case (eyes only to minus eyes 

or vice versa) with the behavioural categorization performance of our participants. We were specifically 

interested in the cross-classification case as, if significant, this would presumably reflect a high-level 

effect as there is no overlap in the low level visual information present in the stimuli. Decoding effects 

found within each face condition, on the other hand, may rely on a strong contribution from low level 

features (see our Computational Model Analysis section below and in results). Thus, we first averaged 

participants’ behavioural accuracy across the two relevant conditions (eyes only and eyes removed) that 

underlie the key cross-decoding analysis. We then Spearman correlated this with mean cross-

classification decoding performance, to protect against the influence of outliers on the standard 

Pearson correlation coefficient (Pernet et al., 2012). As a further test of the strength of these 
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correlations, we also re-ran our correlations with the robust ‘skipped correlation’ Pearson coefficient 

measure (see Pernet et al., 2012). We used the Robust Correlation toolbox (Pernet et al., 2012) to 

implement this test and note here that as it only computes whether a correlation is significant or not 

at alpha = .05 using bootstrapped confidence intervals, multiple comparisons correction could not be 

applied. 

 

Computational Model Analysis 

To explore the extent to which low level image features could account for our cross-classification results 

of interest, we applied the same linear classifier and trained it to decode expression category based on 

the image pixel values. We trained the classifier to decode expression both within each face condition 

(eyes only, eyes removed and whole faces) and also on the key cross-classification analysis: i.e. where 

the classifier is trained on one partial face condition (i.e. eyes only) and tested on the complementary 

case (i.e. rest of face minus the eyes) or vice versa. We used a leave one identity out procedure as is 

standard in computational models of facial expression perception (see e.g. Dailey et al., 2002 and 

Susskind et al., 2007; for related approaches) with analyses based on down-sampled images (1/4 of 

original size).  We also conducted a more elaborate analysis using a V1 Gabor model (see Mutch and 

Lowe, 2006; Serre et al., 2007) which produced comparable results to the simpler analysis described 

above and as with the simpler analysis produced no significant decoding in the key cross-classification 

analysis. In the results section, we present the simpler image pixel analyses which do not require the 

multiple specification of parameters that are required for the V1 Gabor model. 
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Figure 2: Behavioural results for facial affect recognition accuracy. 

Participants’ behavioural response rates are displayed as confusion matrices for each category 

of face parts: (Left) Whole Faces, (Middle) Eyes Only, and (Right) Eyes Removed. For each 

individual confusion matrix, the facial expression that was presented is represented by each row 

and the participant response by each column [A = anger, D = disgust, F = fear, H = happy, N = 

neutral]. The scale represents the percentage of a particular response by the participant during 

the presentation of a specific facial expression. The diagonal, moving from top-left to bottom-

right, of each matrix represents the correct response rate (‘hits’) and all other cells in the matrix 

represent ‘false alarms’. 

 

Results 

Behaviour 

We first quantified participants’ pattern of FAR using a 5 (Emotion) x 3 (Face Part) repeated measures 

ANOVA (see figure 2). This analysis revealed a main effect of emotion, F(4,72) = 62.46, p < .001, η2= .78. 

Follow-up Bonferroni-corrected pairwise comparisons demonstrated that irrespective of face 

presentation condition, participants were most accurate at identifying neutral faces compared to every 
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other emotion, angry (pcorrected<.001), disgust (pcorrected<.001), fear (pcorrected<.001), and happy 

(pcorrected<.05). Accuracy for happy was greater than angry (pcorrected<.001), disgust (pcorrected<.001), and fear 

(pcorrected<.001); Accuracy for fear was great than for angry (pcorrected<.001) and disgust (pcorrected<.005); and 

there was no difference in accuracy for angry versus disgust (pcorrected>.05). The ANOVA also revealed a 

main effect of face presentation condition, F(2,36) = 83.28, p < .001, η2= .82. Bonferroni-corrected 

pairwise comparisons demonstrated that irrespective of emotion participants were more accurate 

identifying emotions from the whole face compared to both the eyes only (pcorrected<.001) and eyes 

removed (pcorrected<.001) conditions. There was no difference in FAR accuracy between the eyes only and 

eyes removed conditions (pcorrected>.05). Lastly, the ANOVA revealed a significant emotion by face 

presentation condition interaction, F(8,144) = 91.45, p < 0.001, η2= .84.  

To unpack this interaction, we focused on all pairwise comparisons between facial expressions 

within a given face presentation condition (e.g., accuracy for angry versus disgust within the whole face 

category) and all pairwise comparisons between face presentation conditions within a given emotional 

expression (e.g., accuracy for angry faces recognition for ‘eyes only’ versus ‘eyes removed’). This 

produced 45 pairwise comparisons, which we evaluated against a Bonferroni correct alpha value of 

0.05/45 (i.e., ~0.0011). For ‘whole face’ trials we found that compared to angry faces recognition of 

happy, t(18) = 5.61 (p < .001), and neutral faces, t(18) = 4.90 (p < .001),  was significantly greater . For 

‘eyes only’ trials accuracy for recognizing disgust was quite poor, as recognition of anger, t(18) = 9.58, 

fear, t(18) = 12.34, happy, t(18) = 13.41, and neutral, t(18) = 14.20,  were all significantly greater than 

disgust recognition (p < .001). Also for ‘eyes only’ trials we found that recognition of neutral faces was 

significantly greater than both anger, t(18) = 5.18, and fear, t(18) = 4.87, recognition (p < .001). For ‘eyes 

removed’ trials recognition accuracy of anger was very poor, as recognition of disgust, t(18) = 10.28, 

fear, t(18) = 7.14, happy, t(18) = 13.48, and neutral, t(18) = 13.72, were all significantly greater than 
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anger recognition (p < .001). Additionally for ‘eyes removed’ trials, recognition of disgust, t(18) = 3.98, 

happy, t(18) = 7.12, and neutral, t(18) = 8.06, were all significantly greater than recognition of fear (p < 

.001), and recognition of neutral was significantly greater than disgust, t(18) = 5.12 (p < .001). On the 

other hand, within each emotion we found that accuracy for anger ‘whole face’, t(18) = 14.61, and anger 

‘eyes only’, t(18) = 10.22, was significantly higher than for anger ‘eyes removed’ (p < .001); accuracy for 

disgust ‘whole face’, t(18) = 15.00, and disgust ‘eyes removed’, t(18) = 11.77, was significantly higher 

than for disgust ‘eyes only’ (p < .001); accuracy for fear ‘whole face’, t(18) = 7.77, and fear ‘eyes only’, 

t(18) = 3.96, was significantly higher than for fear ‘eyes removed’ (p < .001); accuracy for happy ‘whole 

face’, t(18) = 5.12, and happy ‘eyes removed’, t(18) = 4.10, was significantly higher than for happy ‘eyes 

only’ (p < .001); and, there were no significant differences in recognition accuracy for neutral 

expressions across the face part trial types. 

As a follow-up, exploratory analysis, we performed post hoc exploratory analysis using one 

sample t-tests on the accuracy for each individual trial type (i.e., 75 one-tailed tests, including ‘hits’ and 

‘false alarms’) versus chance (i.e., 1/5 or 0.2% accuracy). These analyses were corrected for multiple 

comparisons (Holm, 1979; Gaetano, 2013). Of note, on ‘eyes only’ trials participants labeled disgust eyes 

as angry eyes significantly above chance, but did not identified disgust eyes as disgust significantly 

better than chance. Additionally, on eyes removed trials, participants labelled angry faces as angry, as 

was expected, however, they also labelled angry faces as neutral on a proportion of trials significantly 

greater than chance. Otherwise, all the other significant effects were participants correctly labeling the 

target emotion. 

 

Brain Imaging 
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We defined regions of interest for six areas we expected to be involved in neural processing and 

representation of facial expressions (Early Visual Cortex, VT/LO, STS, dPFC, IFG, and Amygdala) in the 

partial faces task (see Methods). Figure 3 (A-D, 1st column) shows the sampling density of the group of 

subjects for the EVC, VT/LO, STS, and dPFC ROIs, respectively, which is indicative of how likely a given 

voxel was selected for use in the MVPA analysis across participants. Figure 3 (A-D, 2
nd

 column) shows the 

decoding results for each ROI. Additionally, results for the IFG and amygdala are not included in the 

figure but are reported in text below. To assess whether decoding was greater than chance (1/5 or 20%) 

in each region we performed two-tailed non-parametric Wilcoxon signed rank tests. Correction for 

multiple testing was made across all regions and all comparisons, using the false discovery rate (q < .05).  

MVPA Within condition classification: As expected, decoding of facial expressions was highly significant 

for each face presentation condition (whole faces, eyes only, eyes removed) in multiple ROIs. This was 

true in early visual cortex (Med = 33.9%, 33.2% and 29.3% respectively; all p’s < .0002; chance = 20%, 

figure 3a, 2
nd

 column) , LO/VT (Med = 24.6%, 23.4%, and 23.5% respectively for whole faces, eyes only 

and eyes removed; all p’s < .0029, figure 3b, 2
nd

 column) and in STS (Med = 23.8%, 23.0%, and 21.8% 

respectively for whole faces, eyes only and eyes removed; all p’s < .0025. figure 3c, 2
nd

 column). 

Furthermore, both dPFC (Med = 28.5%, 24.1%, and 26.5% respectively for whole faces, eyes only and 

eyes removed; all p’s < .0013, figure 3d, 2
nd

 column) and IFG (Med = 24.1%, 23.8%, and 23% respectively 

for whole faces, eyes only and eyes removed; all p’s < .0033) also showed reliable decoding of facial 

expression within each face condition. The amygdala, however, did not show reliable decoding in any of 

the abovementioned conditions (Med = 19.9%, 19.9%, and 20.1% respectively for whole faces, eyes only 

and eyes removed; all p’s > .52), and therefore the amygdala was excluded from the cross-classification 

analyses reported below. Figure 4, columns 1-3, shows the full confusion matrices underlying the 

multiclass classification results for each of EVC, LO/VT, STS, and dPFC. Post hoc examination of the 
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confusion matrices reveals variation of classifier performance across the five facial expressions. We 

report both the uncorrected and FDR corrected results of these contrasts in full in Figure 4, columns 1-

3.  

 

 

Figure 3: Within- and Cross-Condition Decoding Results 
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A) Anatomical V1 (EVC): Density map (First Column) showing the likelihood of each selected 

voxel being present across participants. Second column: Decoding results showing median 

accuracy for each classification analysis performed (chance = 20%, stars indicate significant after 

FDR correction) are displayed using box plots. The critical cross-classification results are 

highlighted by the red-dashed box, and represent the median classifier accuracy (across 

participants) for decoding expression averaged across the two possible train-test permutations: 

training on ‘eyes only’ and testing on ‘eyes removed’, and training on ‘eyes removed’ and 

testing on ‘eyes only’. Rows B-D, as in A, but for VT/LO, STS and dPFC regions respectively. 

 

MVPA Cross-classification: It is important to note that the within condition decoding of expression may 

rely on low level features to a significant extent (see Low Level Feature Analysis below). Hence, we were 

particularly interested in testing whether significant cross-classification would be present generalizing 

across completely non-overlapping sets of facial features (i.e. trained on eyes only then tested on eyes 

removed, and trained on eyes removed then tested on eyes only). We found such an effect in STS (Med 

= 22%, p = .008, figure 3c, 2nd column), VT/LO (Med = 23%, p = .0008, figure 3b, 2nd column), dPFC (Med 

= 23%, p = .001, figure 3d, 2nd column) and even early visual cortex (Med = 26%, p = .0002, figure 3a, 2nd 

column). Thus, the activity patterns generated in these regions to independent parts of a face stimulus 

go beyond merely encoding the statistics of the visual input, suggesting a key role for higher-level 

context in shaping the representations present. This effect, however, did not reach significance in IFG 

(Med = 21%, p = 0.11). Figure 4, column 4, shows the full confusion matrices underlying the multiclass 

cross-classification results for each of EVC, LO/VT, STS, and dPFC. We also performed Post hoc analyses 

comparing the hit rate of the classifier performance to chance so as to ascertain which expressions, 
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considered independently, achieve significant decoding. Both uncorrected and FDR corrected results 

of these contrasts are reported in Figure 4, column 4.  

 

 

Figure 4: Confusion Matrices Underlying Classification 

Full Confusion matrices underlying the main classification analyses. Rows (A-D) of the figure 

depict region of interest, EVC, LO/VT, STS, and DPFC, respectively. From left to right, the 

columns depict a particular classification analysis: ‘whole faces’, ‘eyes only’, ‘eyes removed’, and 

cross-classification. For each individual confusion matrix, the facial expression that was 
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presented is represented by each row and the response the classifier chose by each column [A = 

anger, D = disgust, F = fear, H = happy, N = neutral]. The scale represents the frequency of a 

particular response by the classifier during the presentation of a specific facial expression. The 

diagonal, moving from top-left to bottom-right, of each matrix represents the correct response 

rate. Post hoc analysis of the classifier hit rate for specific emotions (i.e., the top-left to 

bottom-right diagonal elements of the matrices) to chance using non-parametric Wilcoxon 

signed rank test (two tailed) reveals the expressions contributing the most to the overall 

classification accuracy: ** p < .05 FDR corrected (q < .05); * p < .05 uncorrected. The FDR 

correction was applied independently to the within condition classification and the cross-

classification. 

 

Low level Feature Analysis 

To what extent might the cross-decoding observed above, depend on low level visual features? We 

expect any contribution of this to be minimal given the absence of visual overlap between the key 

conditions for each face image (i.e. eye region Vs minus eye region stimulus).  To assess this empirically, 

we trained a classifier to decode expression based on the image pixel values (see Methods). Crucially 

while a decoder built on image statistics could robustly decode expression within each partial face 

condition (Med = 60% whole faces; Med = 40% eyes only and Med = 60% eyes removed; all p’s <= .0015; 

signed rank two tailed test, chance 20%), it provided no evidence whatsoever of being able to decode 

expression in the key cross-classification analyses (Med = 19%, p = 0.5; signed rank two-tailed test, 

chance = 20%). Hence low-level statistics cannot explain the successful cross-decoding of expression 

across complementary sets of visual information demonstrated above (i.e. eyes to minus eyes). In 
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addition, we note that taking expression decoding of whole faces as a baseline, then the reduction in 

performance to the key cross-decoding analysis is largest in early visual cortex (approximately 8%) and 

much smaller in higher order visual regions such as STS and LOC/VT (2%, and 1.6% respectively). This 

suggests that these higher visual regions may have more generalizable representations and again speaks 

against a low-level feature explanation of our cross-decoding effect in early visual cortex. 

 

Brain-behavior relationship: Finally, we wanted to test whether the decoding accuracy observed in the 

critical cross-classification analysis was related to participants’ behavioural categorization accuracy. If 

contextual mechanisms generate information going beyond the bottom-up stimulus information 

present, and that information is useful for behavior, then we would expect to observe such a 

relationship, perhaps even extending back to areas early in the visual processing stream via feedback. 

We computed Spearman correlations (FDR corrected for number of regions) between the decoding 

performance for the critical cross-classification analysis and the mean behavioral performance averaged 

across the two key partial face conditions, eyes only and eyes removed (see Methods).  Crucially, 

significant correlations (FDR corrected for multiple comparisons) were found in STS (rS = .66, p = .002, 

figure 5a) and in dPFC (rS = .54, p = .017, figure 5b). These correlations are depicted in Figure 5a-b. The 

same pattern was found in IFG (rS = .60, p = .007, Figure 5c) but after FDR multiple-comparisons 

correction no significant effects were found in either ventral temporal/lateral occipital cortex (rS=.47, p 

= .044) or in early visual cortex (rS = .475, p = .04), see Supplementary Figure 2. For corroboration, we 

re-ran our correlation analyses using the robust and powerful ‘skipped correlation’ measure (see 

Pernet et al., 2012 & methods). Note that correction for multiple comparison is not available at 

present for this measure (see Methods). These analyses, however, revealed a broadly similar pattern 

of results: i.e. high and significant (uncorrected) correlations in STS (r=.63, 95% CI [.23, .84], dPFC 
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(r=.62, 95% CI [.11, .87]), IFG (r=.64, 95% CI [.17, .86]) and V1 (r=.5, 95% CI [.07, .76]) but not LO/VT 

(r=.34, 95% CI [-.11, .73]). The results of these analyses suggest that in several higher tier brain areas, 

high-level contextual information is consistently related to, and hence may facilitate, behavioural 

categorization performance.  

 

Figure 5: Brain-behavior Spearman correlations of cross-classification performance against 

behaviour.  

The spearman correlation between cross-classification performance on the x-axis and 

participants behavioural accuracy for identifying facial expressions from partial faces on the y-

axis is displayed for (a) STS, (b) dPFC, and (c) IFG.    

 

Discussion 

The present findings demonstrate that a network of areas important in face categorization 

contain information about facial expression categories, namely EVC, LO/VT, STS, dPFC and IFG, with all 

areas except IFG permitting decoding of facial expression category across non-overlapping samples of 

visual information. This suggests that these regions contain information relevant to FAR, in a manner 
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that generalizes, to a degree, beyond the specific visual information provided. We further show that 

the magnitude of this effect is related to behavioral performance in an expression categorization task, 

in STS and dPFC.  

Spatial generalization of expression decoding  

We note that while the magnitude of some within condition and cross-classification effects were 

relatively small in percentage terms, they were statistically reliable. In fact, using traditional effect 

size measures (Cohen’s d) all of our significant effects (including the cross-classification case) 

produced moderate to large effect sizes: i.e. our smallest effect size was d = 0.69 (whereas d > 0.80 is 

conventionally taken as evidence for a large effect, d=0.5 is a moderate effect size). Our classification 

results were also robust to trial-level noise which can undermine trial-level analyses. Similar small but 

significant effects have been observed in similar trial-level classification studies involving within-

category classification of faces and emotions (Harry et al., 2013; Skerry and Saxe, 2014; Anzellotti and 

Caramazza, 2016). Hence, we interpret the current results as providing evidence that STS, LO/VT, and 

dPFC contain high-level representations of facial expression that generalize to a degree across 

changes in the visual input.  

Representation of Facial Expression in Face Sensitive Regions 

Reliable decoding of facial expression category was found in a network of brain areas important in 

face processing tasks: LO/VT, STS, dPFC, and IFG all showed decoding of facial expressions within each 

face presentation condition (whole faces, eyes only or rest of face minus eyes).  STS has often been 

proposed as the key region in representing dynamic facial expression of emotion (Haxby et al., 2000; 

Furl et al., 2013), although some previous studies have also found evidence of facial expression 

sensitivity in ventral temporal regions (Tsuchiya et al., 2008; Kawasaki et al., 2012; Harry et al., 2013; 
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Wegrzyn et al., 2015). In the present study, we did find the highest correlation with behavior in the 

STS (see also Said & Haxby, 2010), but we also found expression information present within VT/LO 

regions. Wegrzyn et al. (2015) also found reliable decoding of expression in both fusiform and STS 

regions, as well as the amygdala, while Zhang et al. (2016) in contrast, found reliable decoding only 

within the amygdala (Fear Vs other categories) and pSTS (neutral Vs other categories) but not within 

fusiform regions. Importantly Zhang et al.’s analyses involved generalizing across identity, which may 

provide a reason for the lack of fusiform decoding observed in their study. While an earlier study, Said 

et al. (2010), revealed reliable decoding of each basic category in both anterior and posterior STS 

(anatomically defined) with dynamic stimuli and a correlation with perceptual ratings (pSTS), a more 

recent study that attempted to decode expressions from the combination of constituent facial action 

units, failed to find reliable expression category decoding in STS (Srinivasan et al., 2016). Hence, while 

several studies, including our own, have found decoding within the STS for static or dynamic faces, 

which specific expressions underlie successful decoding is likely to be dependent on several factors:  

Whether dynamic or static faces were used; which particular expressions were classified (as certain 

expressions are more readily confused with other expressions, see Smith & Schyns, 2009); and, 

whether the analyses attempted to generalize either across identity of the faces, across different 

subsets of visual information, or across different sensory modalities.  

Crucially, in the present work we found that face responsive STS & LO/VT cortex contain 

representations of facial expression that generalize to a degree across independent samples of visual 

information from a face (see Anzelotti & Caramazza, 2015, for a similar case with respect to 

representation of identity in the anterior temporal lobe). We further reveal that the representations 

present are related to human categorization performance under these challenging conditions in STS. 

As mentioned earlier, recurrent or top-down connections within the face network may allow for 
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partial reactivation of missing information from occluded visual stimuli (Smith and Muckli, 2010; 

Clark, 2013; O'Reilly et al., 2013; Tang et al., 2014) and hence permit such a generalization to be 

possible.  

Previous research, furthermore, has provided evidence for supramodal representations of emotion 

using cross-classification across different sensory or stimulus modalities. Peelen et al. (2010) found 

evidence for the cross-classification of emotional expressions between facial, bodily, and vocal stimuli 

in both STS and parts of the anterior-dorsomedial PFC. In the present study, it could certainly be the 

case that our partial face stimuli are tapping into a similar high-level representation in these regions. 

However, our study shows evidence of such representation also in VT/LO region, which may not 

necessarily be expected when generalizing across sensory modalities. Recently, Skerry and Saxe 

(2014) found that while the STS does contain representations that generalize across variations in facial 

expression stimuli (e.g. variable positions and variable lighting conditions) that allow for the decoding 

of pleasant versus unpleasant expressions, it does not generalize across more conceptually disparate 

categories (such as positive and negative social situations of non-human agents).  

Many previous MVPA studies, in addition, did not consider the role of frontal regions in FAR, primarily as 

the focus was on perceptual representations (cf., Said et al., 2010). In the present work, we show 

reliable decoding both within IFG and dPFC regions under explicit processing conditions (with the latter 

also showing the key cross-decoding effect). This is consistent with the meta-analysis by Fusar-Poli et al. 

(2009), which found that explicit FAR consistently recruits dorsal and lateral aspects of PFC. Given the 

potential top-down nature of the PFE task, especially on trials in which facial expressions are judged 

based on little diagnostic information (e.g., fear on ‘eyes removed' trials), we interpret the dPFC 

decoding consistent with its role in selective attention and cognitive control. Indeed, a recent study 

using the PFE paradigm found greater activity in the dPFC in low-callous trait individuals when judging 
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fearful faces in the 'eyes removed' relative to the 'eyes only' condition (Han et al., 2012). Moreover, our 

explicit FAR task required active maintenance of participants’ behavioural choice from the choice 

encoding to the response phase, which is expected to require dorsal and lateral PFC regions involved in 

the representation of such higher-order information (D'Esposito and Postle, 2015).   

While the current study did not find significant decoding of facial expressions in the amygdala, unlike 

previous studies (Wegrzyn et al., 2015; Zhang et al., 2016) we used an explicit emotion recognition task. 

While the lack of decoding within the amygdala  indicates a lack of a perceptual or abstract 

representations that distinguish whole or partial facial expressions, it does not rule out the possibility 

that the amygdala makes a general contribution to FAR (Adolphs, 2010). Evidence indicates that the 

amygdala contributes to the allocation of attention towards biologically relevant stimuli (Gamer et al., 

2013; Peck et al., 2013), rather than discriminating between emotions per se (cf. Wegrzyn et al., 2015; 

Zhang et al., 2016). The amygdala also has efferent connections throughout the ventral visual cortex 

(Amaral, 2002) that contribute to emotion-induced visual enhancement  (Pessoa et al., 2002; 

Vuilleumier et al., 2004; Amting et al., 2010). A complimentary alternative is that the amygdala 

facilitates attention selectivity via indirect connections to the lateral PFC that do not involve the ventral 

visual pathway (Mohanty et al., 2009; Zikopoulos and Barbas, 2012; Pessoa, 2013; Greening and 

Mitchell, 2015). Thus, the amygdala could contribute to neural filling-in within perceptual regions or 

attentional reorienting in the absence of significant neural decoding of facial expressions. 

 

Early Visual Cortex contains reliably similar information across independent visual inputs 

The present study agrees with many others that show how high-level contextual influences can shape 

processing within the earlier regions of sensory cortex, even in a content-specific manner (e.g. Meyer et 
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al., 2010; Smith and Muckli, 2010; Man et al., 2012; Muckli et al., 2015). Our results demonstrate that 

reliably similar information about facial expression category is present in EVC across spatially 

independent samples of visual information.  What type of mechanism might explain the present results? 

As there is no visual information in common across the two critical conditions (eyes only and eyes 

removed), low level stimulus based processing does not provide a straightforward explanation of the 

present findings (we note this is in contrast to decoding observed within a specific face presentation 

condition).  For example, a typical V1 model (e.g. HMAX layer C1, Serre et al., 2007) would not contain 

any differential expressive information in common between the critical conditions. Indeed our analysis 

of low level features explicitly demonstrated that while a decoder trained on image pixels could robustly 

decode expression within each face condition, it was exactly at chance in the key cross-decoding 

analysis. Hence our results support the interpretation that cortical feedback or lateral interactions 

transmit contextual information relating to the expression category of the occluded parts of the face 

stimulus. Cortical feedback, for instance, could arise from higher face processing areas (e.g. FFA; see 

Strother et al., 2011) or areas within the PFC, as observed during mental imagery of faces (Kim et al., 

2007; Diekhof et al., 2011). PFC regions have been proposed to generate high-level expectations (e.g., 

task instructions, or goals) about perceptual stimuli (e.g., Bar, 2003; Summerfield et al., 2006; Trapp and 

Bar, 2015). Summerfield et al. (2006) also found such effects for faces within the FFA and again, in the 

present study, our decoding analyses revealed generalization across visual information in face specific 

regions in VT/LO. Thus, feedback from sectors of the PFC to higher-level face areas in the ventral stream, 

could feedback expectation of missing features to early visual cortex. Thus, we tentatively suggest that 

feedback from PFC likely via STS/FFA to EVC may aid perception of occluded facial expressions.  

Wider Implications 
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FAR deficits are found in several disorders; however, the neurocognitive mechanisms of this deficit 

appear to vary across disorders. In a number of clinical cases, including neurological patients with 

amygdala lesions (Adolphs et al., 2005; Gamer et al., 2013) and youth with conduct disorder (Dadds et 

al., 2006) directing attention to the most diagnostically meaningful regions of a face reduces the FAR 

deficit. This highlights the importance of selective attention in FAR (Gamer and Buchel, 2009; Han et al., 

2012). These findings are consistent with our observation that dPFC was a significant predictor of 

behavioral accuracy in FAR for partial faces. Conversely, FAR deficits in frontotemporal dementia cannot 

be improved by manipulating selective attention (Oliver et al., 2015), suggesting the importance of a 

different mechanism. Selective attention may also provide top-down influence on representations in VT 

& STS, which is not possible if neural dysfunction is present in aspects of the temporal-occipital regions 

(Virani et al., 2013). Nevertheless, our observation of cross-classification from differing face parts could 

also suggest that partial faces generate simulations of facial affect, particularly within parts of the IFG 

and lateral PFC (Carr et al., 2003; Hennenlotter et al., 2005; Jabbi and Keysers, 2008). Such processes 

may be sufficient for driving our cross-classification results, though they are deficient is some clinical 

populations. Future research employing cross-classification in clinical populations could help clarify the 

mechanisms contributing to FAR deficits, and to socio-emotional deficits more generally. 
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