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Abstract 

 Slit/Robo signaling plays an important role in the guidance of developing neurons 

in developing embryos. However, it remains obscure whether and how Slit/Robo 

signaling is involved in the production of cranial neural crest cells. In this study, we 

examined Robo1 deficient mice to reveal developmental defects of mouse cranial 
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frontal and parietal bones, which are derivatives of cranial neural crest cells. 

Therefore, we determined the production of HNK1+ cranial neural crest cells in early 

chick embryo development after knock-down (KD) of Robo1 expression. Detection of 

markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed 

that production of both was affected by Robo1 KD. In addition, we found that the 

transcription factor slug is responsible for the aberrant delamination/EMT of cranial 

neural crest cells induced by Robo1 KD, which also led to elevated expression of E- 

and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling 

with dominant-negative FGFR1 in half of the neural tube. Taken together, we show 

that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, 

which is required for cranial bone development.  

 

Key words: cranial neural crest； Slit/Robo；EMT；delamination；intramembranous 

ossification 

 

Introduction 

In both invertebrate and vertebrate development Slit/Robo signaling exerts a 

fundamental role in axon guidance at the midline of the central nervous system 

through repulsing axons away from the midline[1,2]. Slit was initially identified in the 

Drosophila central nervous system as a secreted protein which modulates the growth 

and migration of glia cells[3]. The mammalian Slit family is composed of three 

members, Slit1, Slit2 and Slit3, which are expressed in the neural tube during 

neurulation. Slit1 is principally expressed in the nervous system, and Slit2 and Slit3 

are also present in tissues outside of the nervous system[4,5]. The receptors for Slit/ 

Robo transmembrane proteins, including Robo1, Robo2, Robo3/RIG-1 and Robo4, 

are predominately expressed on axon growth cones in the central nervous system[6,7]. 

In addition to its role in neuron development, Slit/Robo signaling also functions in the 

development of the lung, kidney, heart, muscle and reproductive system[8-11]. 

Furthermore, Slit/Robo has been implicated in a variety of pathological conditions, 

such as cancer and inflammation[12,13]. The role of Slit/Robo signaling in the 
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regulation of cranial neural crest cell (cNCC) production remains poorly understood, 

although there have been reports on Slit/Robo dependent interactions of cNCC with 

ectodermal placodes during cranial ganglia formation [14-16]. Many investigations 

have focused on Slit/Robo functions in trunk neural crest[17-19]. In this study, we 

address the function of Slit/Robo signaling during cranial neural crest production 

since cNCC generation is different from that of trunk NCC.  

Neural crest cells (NCCs) derive from the dorsal side of the neural tube during 

early embryo development. NCCs are a population of multipotent cells, which 

undergo the process of induction, delamination, epithelial-mesenchymal transition 

(EMT), migration, and eventually give rise to cellular components in almost every 

organ system in vertebrates[20]. The induction of neural crest at the border of the 

neural plate relies on signaling molecules from the surrounding neuroepithelium, 

neural plate and underlying mesoderm [21,22]. The signaling molecules produced by 

these tissues include bone morphogenetic proteins (BMPs), Wnts, fibroblast growth 

factors (FGFs) and retinoic acid (RA)[23,24]. An initial BMP gradient activity 

specifies the neural crest cells at the border of neural plate. The concerted action of 

Wnt proteins, fibroblast growth factors (FGFs) and retinoic acid (RA) then convert the 

cells of neural plate border into neural crest cells[25,26]. EMT in neural crest cells is 

modulated by a number of transcription factor families, including slug, sox, and 

endothelins (Ets) gene families. These transcription factors regulate cell–cell and 

cell–matrix adhesion and the detachment of neural crest cells from the 

neuroepithelium[14].  

Massive delamination from the neuroepithelium is characteristic for cranial 

neural crest cells[27], however the timing for cranial neural crest production varies 

between chick, mouse and Xenopus[28]. In chick embryos, NCC delaminate 

concomitantly with the fusion of the neural folds, whereas in mouse and Xenopus 

NCC depart when the neural plate is still open[29,30]. P53 is a crucial factor 

controlling the timing of delamination/EMT of cephalic neural crest cells by 

repressing the transcription factors, slug and Ets1, which then promotes EMT[31]. 

The regulation of delamination of cNCC is governed by different mechanisms, in part 
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due to specific morphological characteristics: cNCC are not adjacent to somitic 

mesoderm as trunk NCC are, instead they receive signals from cranial mesenchyme. 

Cranial neural crest cells (cNCC) contribute to craniofacial skeleton, cranial ganglia 

of the sensory nervous system, enteric nervous system, Schwann cells, the wall of the 

aorta and cardiac septa[32,33]. The abnormal development of neural crest can result 

in congenital malformations, such as neural tube defects (NTD), atrioventricular 

septal defects, persistent ductus arteriosus and Waardenburg syndrome[34,35].  

Slit/Robo signaling has been shown to be involved in the guidance of cranial 

neural crest cell migration. For example, Slit/Robo signaling is indispensable for 

organizing neural crest cells and placode-derived neurons to form the trigeminal 

ganglion [16]. Slit/Robo signaling is also involved in preventing neuronal and glial 

neural crest cells from entering the dorsolateral route and the gut[19,17]. However, 

our experimental data indicated that Slit/Robo signaling might be involved in 

regulating earlier events during cNCC production. In this study, we employed 

Robo1+/-Robo2+/- double-heterozygous mice (Robo1/2+/-) and combined this with 

Robo1 gain-of-function approaches in early chick embryos to investigate the 

molecular mechanism of cNCC production.  

 

Materials and Methods 

Mouse experiments and alizarin red s staining of whole embryos 

Robo1+/- Robo2+/- double-heterozygous mice were purchased from MMRRC/ 

University of Missouri. They were crossed to obtain Robo1+/+ Robo2+/+wild-type and 

Robo1+/- Robo2+/- double-heterozygous controls, as well as Robo1-/- Robo2-/- 

double-knock-out embryos, which were analyzed at E15.5. 

To visualize the vertebrate skeleton, the 15.5-day mouse embryos were stained 

with alizarin red dyes as previously described[36]. Briefly, embryos were fixed in 

95% ethanol for 3 days, skin and viscera were carefully removed and embryos were 

post-fixed for 1 week. Next, embryos were stained in 0.1% alizarin red (Solarbio, 

Beijing, China) dyes in 70% ethanol for 1 week and then cleared in 25% glycerol/1% 

KOH for 3 days. Finally, embryos were treated in a graded series of glycerol. The 
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skeletons were dissected and photographed using a stereomicroscope (Olympus 

MVX10, Japan). For each genotype replicates of at least 6 embryos were examined 

and 6 sections were counted for each embryo. All animal experiments were performed 

according to relevant national and international guidelines and approved by the 

Medical Research Animal Ethics Committee of Jinan University. 

 

Chick embryos and gene transfection 

Fertilized leghorn eggs were acquired from the Avian Farm of South China 

Agriculture University. They were incubated in a humidified incubator (Yiheng 

Instruments, Shanghai, China) set at 38oC with 70% humidity. The eggs were 

incubated until chick embryos reached the desired developmental stage (according to 

Hamburger and Hamilton 1992).  

Empty vector pMES was generously supplied by Catherine Krull.  The 

shRNA-Robo1, used for silencing Robo1 expression, was purchased from Open 

Biosystems. FL-Robo1, a full length rat Robo1 cDNA ligated into pMES, was used 

for over-expressing Robo1 expression. HH3 (Hamburger and Hamilton stage 3)[37] 

chick embryos were prepared for early chick culture, according to methods previously 

described[38]. The embryos were transfected with plasmid vectors encoding 

Control-GFP, shRAN-Robo1-GFP or PMES-Robo1-GFP gene by electroporation. 

Briefly, 0.5 μl plasmid DNA (1.5 mg/ml) was microinjected into the space between 

the vitelline membrane and the epiblast of chick embryos during gastrulation. The 

electroporation parameters used were as previously described[39]. For one-sided gene 

transfection, the polarity of the pulses was kept constant. After electroporation, the 

embryos were incubated for 30 hours. The embryos were photographed and fixed for 

immunofluorescent staining and in situ hybridization. All experiments were 

performed in replicates of at least 14 embryos.  

 

Immunostaining 

Immunofluorescent staining was performed on whole-mount embryos using 

HNK1, PAX7, AP-2α, E-Cadherin and N-Cadherin antibodies, as previously 
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described [40,41]. Briefly, embryos were fixed in 4% paraformaldehyde (PFA) at 4oC 

overnight and then washed with PBS. Unspecific immunoreactions were blocked 

using 2% Bovine Serum Albumin (BSA) + 1% Triton-X + 1% Tween 20 in PBS for 2 

hours at room temperature. The embryos were washed in PBS and incubated with 

primary monoclonal antibody raised against PAX7 (1:100, DSHB), N-Cadherin 

(1:100, 6B3, DSHB), HNK1 (1:200, Sigma) and E-Cadherin (1:100, BD), overnight 

at 4oC on a shaker. Following extensive washing, the embryos were incubated in goat 

anti-mouse IgG secondary antibody conjugated to Alexa Fluor 555 (1:1000, 

Invitrogen) overnight at 4oC. All embryos were counterstained with DAPI 

(4'-6-Diamidino-2-phenylindole, 1:1000, Invitrogen) for 30 min at room temperature. 

All immunofluorescent staining was performed in replicates of at least 6 embryos.  

After immunofluorescent staining, the whole-mount embryos were photographed 

by using a stereo-fluorescence microscope (Olympus MVX10; OLYMPUS, Tokyo, 

Japan) and processed with Olympus software package Image-Pro Plus 7.0. Then, the 

embryos were sectioned into 15-μm thick slices by using a cryostat microtome (Leica 

CM1900; LEICA, Solms, Germany) and photographed by using an epi-fluorescent 

microscope (Olympus IX51, Leica DM 4000B) at a magnification of 200 × or 400 ×. 

The images were analyzed and processed by using a CW4000 FISH Olympus 

software package.  

 

In situ hybridization 

Whole-mount in situ hybridization of chick embryos was performed according to 

previously described protocols[42]. Digoxigenin-labeled antisense RNA probes were 

synthesized against Slug[43]. The whole-mount stained embryos were photographed 

and 15 μm sections were prepared on a cryostat microtome (Leica CM1900). 

 

RNA isolation and RT-PCR 

Total RNA was isolated from embryonic cranial tissues using Trizol kit 

(Invitrogen, USA) according to the manufacturer's instructions. First-strand cDNA 

was synthesized in a final volume of 25µl using SuperScript Ⅲ First-Strand 
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(Invitrogen, USA). Following reverse transcription, PCR amplification was performed 

using specific primers for chick PAX7 (5’-GCTTACTGAAGAGGTCCGACTGTG-3’ 

and 5’-ACAAGTTGATGCGAGGTGGAAGG-3’), slug (5’- 

CTGCCTTCAAAATGCCAC-3’ and 5’-TCTCTCTTAGGTCAGGTT-3’ ） ，

E-Cadherin (5’-CGCTTCCCCGTGTTGGT-3’ and 

5’-GGCCGTTTTGTTGAGACGAC-3’ 60°C), Robo1 

(5’-AAGCACCAAAACGAGAAGGC-3’ and 5’-TCTCCCTCCTGATCCTCTCG-3’) 

and GAPDH (5’-GAGAACGGGAAACTTGTCAT-3’ and 

5’-GGCAGGTCAGGTCAACAA-3’). PCR was performed in a Bio-Rad S1000TM 

Thermal cycler (Bio-Rad, USA). cDNAs were amplified for 30 cycles. One round of 

amplification was performed at 98°C for 10 sec, at 60°C for 15 sec and at 72°C for 30 

sec (TaKaRa, Japan). The PCR products (20 µl) were resolved on 1% agarose gels 

(Biowest, Spain) in 1× TAE buffer (0.04 M Tris-acetate and 0.001 M EDTA), and 

GeneGreen Nucleic Acid Dye (TIANGEN, China). Reaction products were visualized 

using a trans illuminator (SYNGENE, UK) and a computer-assisted gel 

documentation system (SYNGENE). 

 

Data analysis 

We define the phenotypes of inhibition, no effect, and promotion mainly based on 

the analysis of sections from per embryo. Immunofluorescent staining was quantified 

from at least five sections which are at midbrain level per embryo, and five embryos 

were at least chosen from per group. Sections were randomly selected and analyzed 

under blinded conditions. All immunofluorescent analyses were repeated at least three 

times and the representative images were presented eventually. 

A minimum of four experimental animals and controls were evaluated in all 

experiments. Data analyses and construction of statistical charts were performed using 

Graphpad Prism 5 software (Graphpad Software, CA, USA). Results were presented 

as mean value ( x ±SE). The data of frequency was analyzed using nonparametric 

tests，the other data were analyzed using ANOVA, which was employed to establish 

whether there was any difference between control and experimental data. *P<0.05, 
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**P<0.01 and ***P<0.001 indicate significant difference between experimental and 

control embryos. 

 

Results 

Development of the mouse craniofacial skeleton is affected in absence of Robo1  

 To determine the role of Robo1 and Robo2 for the formation of the craniofacial 

skeleton, we used an available strain of Robo1/2 knock-out mice. We found that 

E15.5 double-knock-out Robo1-/-; Robo2-/- mice were smaller (11.34±0.11 mm, N=12, 

P<0. 05) compared to E15.5 wild type (Robo1+/+ Robo2+/+) (12.03±0.13 mm, N=12) 

or double-heterozygous (Robo1+/- Robo2+/-) (11.91±0.12 mm, N=12) mice (Fig. 1a-d). 

In addition, double-knock-out Robo1-/-; Robo2-/- mice exhibited internal hemorrhaging. 

Alizarin Red staining of E15.5 mouse embryonic heads revealed a defect in parietal 

and frontal bone development (Fig. 1e’-g’ arrows) in 66.7% (Fig. 1h) of Robo1-/-; 

Robo2-/- mice in comparison to wild-type Robo1+/+; Robo2+/+ mice. There was no 

apparent defect observed in Robo1+/-; Robo2+/- double-heterozygous mice. These data 

suggest that loss of Robo1/2 during development led to defects in the craniofacial 

skeleton.  

In addition, we used function blocking R5 antibody to suppress Slit/Robo 

signaling[34]. After injection of R5 antibody into neural tubes of HH10 chick 

embryos, and incubation until E15, the treated embryos were smaller and had defects 

in parietal and frontal bone development in comparison to control embryos (Fig. S1). 

The phenotypes observed were quantified (Fig. S1e) and the majority of embryos 

showed the effect. 

 

Manipulation of Robo1 expression levels in chick embryos altered the generation of 

cranial neural crest cells 

 Cranial neural crest cells (cNCC) gives rise to cartilage and bone of the face and 

skull[44]. To determine the developmental origin of the defects observed in parietal 

and frontal bones of Robo1-/-; Robo2-/- double-knock-out mice, we examined the 

function of Robo1 in the early stage of neural crest generation. Both knock-down and 
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over-expression experiments were performed in chick embryos. Plasmids encoding 

either shRNA-Robo1-GFP or PMES-Robo1 were transfected into half of the neural 

plate at HH3. Embryos were further incubated for 30 hours. RT-PCR analysis showed 

that Robo1 was expressed in cranial and trunk neural tubes of HH10 chick embryos 

(Fig. 2a), and Robo1 expression was slightly decreased after shRNA-Robo1-GFP 

transfection and slightly increased after PMES-Robo1 transfection in chick neural 

tube (Fig. 2b). Cranial migratory neural crest cells were detected by whole-mount 

HNK1 immunofluorescent staining[45]. Control embryos were transfected with 

empty vector, Control-GFP (Fig. 2c-e). Whole mount embryos (Fig. 2d) and sections 

(Fig. 2e-e”) illustrate that gene transfection was successful and the procedure itself 

did not affect HNK1+ cranial neural crest cell production (Fig. 2c-e, l). However, after 

Robo1 knock-down using shRNA-Robo1-GFP transfection the production of HNK1+ 

cranial neural crest cells was inhibited in 68.6% of embryos as shown in whole mount 

and in sections, compared to 19.05% in Control-GFP group (n= 24/35, P<0.001) (Fig. 

2f-h, l). Targeted over-expression of Robo1 using transfection of PMES-Robo1-GFP 

promoted the production of HNK1+ cranial neural crest cells (n=12/21, P<0.01) (Fig. 

2i-k, l). Higher magnifications of transverse sections allow comparisons between the 

transfected and control sides of embryos (Fig. 2e-e”, h-h”, k-k”) and counting of 

HNK1+ cells. Also, there were significantly less HNK-1+ cells in the 

shRNA-Robo1-GFP embryos (17.97±1.60%, n=8, P<0.001), while significantly more 

HNK-1+ cells were presented in the PMES-Robo1 embryos (62.32±2.48%, n=7, 

P<0.01) compared to control (52.12±0.86%, n=8, Fig. 2m). Taken together, 

manipulation of Robo1 function in vivo implicates Slit2/Robo1 signaling in the 

regulation of cranial neural crest cell production.  

Next, we determined the production of PAX7+ cranial neural crest cells after 

Robo1 gain- or loss-of-function using transfection of either shRNA-Robo1 or 

PMES-Robo1 in neural tubes of HH10 chick embryos (Fig. 2). PAX7 is expressed in 

pre-migratory (dorsal neural tube) and migratory neural crest cells during 

neurulation[46,47]. Transfection of Control-GFP had no effect on production of 

PAX7+ cranial neural crest cells, which are shown in whole mount embryos and 
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transverse sections (Fig. 2n, n’). However, 50% of embryos after shRNA-Robo1 

transfected in neural tube restricted the production of PAX7+ cranial neural crest cells 

(n=9/18, P<0.05) (Fig. 2o, o’, q), while elevated Robo1 expression promoted the 

production of PAX7+ cranial neural crest cells in 71.43% of embryos after 

PMES-Robo1 transfection (n=10/14, P<0.01) (Fig. 2p, p’, q). We quantified the 

results obtained by counting the number of GFP+ and PAX7+ cells in transverse 

sections of transfected embryos (Fig. 2n’, o’ p’). This showed a decrease in 

GFP+/PAX7+ cells（54.54±1.71%, n=5）following Robo1 KD (29.66±4.08%, n=5, 

P<0.01) and an increase following Robo1 over-expression (68.12±3.63%, n=5, 

P<0.01, Fig. 2r). RT-PCR data demonstrated reduced levels of PAX7 transcripts after 

KD and increased levels of PAX7 transcripts in dissected dorsal neural tubes (Fig. 2s). 

This was consistent with PAX7 immunostaining and confirmed observations of 

HNK1 staining of cranial neural tubes. 

 

Robo1 KD resulted in down-regulation of slug expression in chick neural tube.  

Pre-migratory neural crest cells undergo epithelial-to-mesenchymal transition 

(EMT) to become migratory and to emerge from the dorsal neural tube[48]. The 

transcription factor, Slug, can induce EMT in neural epithelial cells[49]. Therefore, 

we examined if Slug expression was affected by Robo1 KD in developing neural 

tubes (Fig. 3). GFP expression indicates successful transfection and merged images of 

Control-GFP or shRNA-Robo1 (Fig.3b, f) with slug in situ hybridization are shown 

(Fig. 3a, e). To confirm the negative effect of Robo1 KD on cNCC production, we 

carried out HNK1 immunostaining in the same transfected embryos (Fig. 3c-d, g-h). 

The number of HNK1+ cNCCs was reduced as before. The quantitative analysis of the 

observed phenotypes is shown in Fig. 3i (n=28/36, P<0.01). RT-PCR data showed 

that slug gene expression in the dissected dorsal/cranial neural tube was reduced 

following transfection of shRNA-Robo1 (Fig. 3j). The results suggest that inhibitory 

effects on migratory cNCC and EMT might be due to reduced slug expression 

induced by Robo1 KD in neural tubes.  

 



 11 

Robo1 KD promoted expression of adhesion molecules in chick neural tube.  

 During EMT, epithelial cells lose their cell-cell adhesion and acquire individual 

migratory properties. Thus, we next determined whether reduced slug expression after 

Robo1 KD correlated with a change in expression of adhesion molecules. E-Cadherin 

was expressed in the neural tube of HH9 embryos (Fig. 4a, c), the cranial neural tube 

and neural crest in embryos transfected with Control-GFP or shRNA-Robo1 (Fig. 

4a-a”’, b-b”’, c-c’’) and transfection of Control-GFP had no effect on production of 

HNK1+ cranial neural crest cells, which are shown in whole mount embryos and 

transverse sections (Fig. 4a-a’’’, d). However, Robo1 KD in neural tube increased the 

expression of E-Cadherin in a majority of embryos (n=15/22, P<0.001) (Fig. 4b-b’’’, 

c-c’’’, d). RT-PCR showed that E-Cadherin expression was enhanced after 

shRNA-Robo1 transfection in chick cranial neural tube (Fig. 4e). 

 Next, we detected the expression of N-Cadherin following the transfection of 

shRNA-Robo1 into one half of the neural tube (Fig. 5c-d). In comparison to 

Control-GFP control (Fig. 5a-b), N-Cadherin expression was enhanced in the 

shRNA-Robo1 transfected side of the neural tube and migrating NCCs (Fig. 5c-d). 

The numbers of different phenotype are shown in Fig. 5h (n=15/19, P<0.001). To 

confirm the importance of N-Cadherin expression for neural crest EMT we 

determined the effect of manipulating N-Cadherin expression on cranial neural crest 

production. We transfected either wild-type N-Cadherin (Wt-N-Cad) (Fig. 5f-f”) or 

dominant negative N-Cadherin (Dn-N-Cad) (Fig. 5g-g”) into one half of the neural 

tube, Control-GFP transfection served as control (Fig. 5e-e’’). Over-expression of 

wt-N-Cad resulted in reduced production of HNK1+ cNCCs compared to the control 

side (n=12/18, P<0.01) (Fig. 5f-f”, i), whilst Dn-N-Cad transfection led to enhanced 

HNK1+ cNCC production (n=15/24, P<0.01 ) (Fig. 5g-g”, i).  

Next, we determined whether the effect of Robo1 KD could be reversed by 

co-transfecting Robo1-shRNA-GFP with Dn-N-Cad-GFP into one side of the neural 

tube. HNK1 expression was restored to normal in these embryos (Fig. 6d-f). 

Co-transfection of Control-GFP-GFP with Dn-N-Cad-GFP served as control (Fig. 

6a-c) and the phenotype of these embryos was similar to those transfected with 
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Dn-N-Cad-GFP alone (Fig. 5g-g”). The phenotypes observed were quantified (Fig. 6g) 

and in a majority of embryos cNCC production was rescued (n=12/22, P<0.01). The 

data indicate that the Robo1-shRNA-induced phenotype - reduced HNK1+ cNCC 

production, was rescued by interfering with N-Cadherin function suggesting Robo1 

may negatively regulate N-Cadherin expression.  

 

FGF signaling regulates N-cadherin mediated EMT during cNCC production  

 FGF signaling has been shown to affect production of trunk NCCs through 

regulating EMT[50,51]. To investigate whether disruption of FGF signaling can affect 

expression of N-Cadherin in cranial neural tube, we transfected dominant negative 

FGFR1 (Dn-FGFR1) (Fig. 7b-b’’). The empty vector, Control-GFP, served as 

transfection control (Fig. 7a-a’’). N-Cadherin immunostaining showed that 

Control-GFP transfection did not affect its expression in neural tube (Fig. 7a’-a”). In 

contrast, blocking FGF signaling with Dn-FGFR1 transfection increased N-Cadherin 

expression in transfected neural tube compared to control side (n=17/24, P<0.001) 

(Fig. 7b’-b”,g). Furthermore, fewer PAX7+ migratory cNCCs were observed on the 

Dn-FGFR1-GFP transfected side of the cranial neural tube (25.68±0.90%, n=6, 

P<0.001, Fig. 7d’-d’’, f’-f”) compared to control neural tubes (55.89±1.90%, n=6, Fig. 

7d’-d”, e’-e’’, h). The empty vector, Control-GFP, serves as transfection control (Fig. 

7c-c’’). This shows that FGFR signaling is required for the production of cranial NCC 

and indicates a possible interaction of FGF and Robo1 during cNCC production. 

 

Discussion  

 Although there are differences between cranial and trunk neural crest production, 

both of these populations are determined by a combination of intrinsic and extrinsic 

factors. Intrinsic factors include genetic networks and extrinsic factors define the 

microenvironment during neural crest induction, delamination and migration. 

Therefore, understanding how these factors are involved in regulating the 

delamination/EMT and migration of NCCs is essential to comprehend the mechanism 

of their production[15].  
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In HH4 chick embryos, Slit is expressed in the Hensne’s node, and it appears in 

the prechordal plate, the notochord, and the somites at HH8 stage of chick embryo. In 

HH 10 stage of chick embryo, Slit expresses in the prechordal plate, the floor plate 

(FP), the roof plate (RP) and notochord, as well as in the early neural tube and muscle 

[14]. Robo1, the Slit receptor, is also expressed in the developing neural tube and 

proximal somites in the early stages of chick embryo development [15,16]. The neural 

crest cells delaminate at the edge of the neural plate, where there is not expression of 

Slit/Robo in vertebrates. In this study, we reveal that Slit/Robo signaling influences 

on the delamination/EMT of neural crest, which extends an earlier regulative role of 

Robo1 in the development of neural crest cells. 

As we know，many adverse nutritional or environmental factors that occur during 

critical periods of fetal development may have a permanent effect on organ 

morphology, metabolism and function at the time of adulthood[9,10].  And Slit-Robo 

signaling is deemed to be involved in the regulation of cell migration, cell death and 

angiogenesis and so on. Mathilda T.M. et al. have demonstrated the Robo signal also 

played an important role during embryonic cardiogenesis. Their study reveals that the 

embryos without robo1 displayed the lack part of the pericardium and systemic 

venous return defects. In addition, the reduction of the Slit3 protein in the absence of 

Robo1, resulting in damaged heart neural crest, adhesion and migration, is the basis of 

cardiac defects[11]. Slit-Robo signaling plays important roles in the axon guidance, 

axon branching, neuronal migration and morphological differentiation. Furthermore, 

SRGAP genes, originally identified as a downstream mediator of Slit and Robo 

receptor, may be linked to some neurodevelopmental disorders such as mental 

retardation, schizophrenia and so on [12]. Volker Endris et al. have confirmed that the 

lack of MEGAP srGAP3, the direct intracellular portion of this signal transduction 

pathway, may inhibit the normal migration of neural progenitor cells to their ultimate  

location in the nervous system[13]. In summary, dysfunction of Slit-Robo signaling 

contributes to the congenital cardiac and nervous system diseases. 

 Osteogenesis in the vertebrate skull is achieved through intramembranous 

ossification of mesenchymal cNCCs[44]. In order to investigate whether Robo 
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signaling is involved in this process, we analyzed phenotypes of Robo1 and Robo2 

double knock-out mice. This revealed that Robo1/2 double knock-out mice were 

smaller, had internal hemorrhaging and, importantly, abnormal development of frontal 

and parietal bones (Fig. 1), which are neural crest-derived and mesoderm-derived 

respectively. In addition, most craniofacial bones come from cranial neural crest 

cells[32,44], which thus contribute to the developing face. Therefore, the potential 

involvement of Robo signaling in the production of cNCCs, which is a prerequisite 

for the formation of intramembranous bones, was investigated in early stage chick 

embryos. These are readily accessible and allow the spatiotemporal manipulation of 

gene expression. Targeted mis-expression or knock-down (KD) of Robo1 was 

achieved during cNCC production (Fig. 2). Using markers for pre-migratory (PAX7) 

and migratory NCCs (HNK1), we showed that KD of Robo1 expression mediated by 

shRNA-Robo1 significantly inhibited cNCC production on the transfected side of the 

neural tube (Fig. 2). In contrast, up-regulation of Robo1 expression by transfection of 

PMES-Robo1 increased cNCC production based on immunostaining with HNK1 and 

PAX7. Thus, Robo signaling is important during both pre-migratory and migratory 

cNCC production. This could be for multiple reasons such as effects on 

proliferation/apoptosis of NCCs. In this study, we focused on potential defects during 

neural crest delamination/EMT.  

The transcription factor, Slug, plays a vital role in NCC delamination/EMT 

through modulating the expression of adhesion molecules[31]. For example, 

cadherin6B is directly suppressed by Slug during EMT of the neural crest[52]. Here, 

we chose HH9 and HH11, which are the most active periods for cNCC 

delamination/EMT. Slug expression was repressed by Robo1 KD at both time points, 

shown by transverse sections (Fig. 3). This correlated with fewer HNK1+ cells and 

enhanced expression of N-Cadherin (Figs. 3 and 4). Neural crest cell specification at 

the neural plate border is regulated by a series of inductive signals and transcription 

factors[21,22]. After they are specified, neural crest cell undergo an 

epithelial-to-mesenchymal transition companied by dramatic changes in cell adhesion. 

Then they emigrate from the neural tube to reach their final destinations in the 



 15 

embryo[53,54]. Many studies have confirmed that N-cadherin has an essential role in 

neural cell migration[55,56]. In addition, the crucial role of N-cadherin in cell 

adhesion and its interaction with Slit1-Robo2 during gangliogenesis was 

demonstrated in vivo[16]. Our observations regarding the interplay between Robo 

with N-cadherin during the production of cranial NCCs are consistent with these 

previous studies. Targeted mis-expression of Wt-N-Cadherin in neural tube led to 

reduced production of HNK1+ cNCCs, whereas Dn-N-Cadherin transfection had the 

opposite effect (Fig. 5). Furthermore, the effect of Robo KD was rescued by 

co-transfection of Dn-N-Cadherin (Fig. 6). Our findings also suggest that reduced 

Slug expression resulting from Robo1 KD is at least partially responsible for the 

defect in cNCC delamination/EMT. This is consistent with the known expression 

patterns of these factors during neural development[57]. We propose that altered 

Robo signaling affects Slug expression and thus cNCC delamination/EMT, which is 

achieved via targeting adhesion molecules[31,52].  

It was shown previously that FGFR1 plays an important role for the development 

of cranial neural crest derivatives, and blocking FGF signaling with Dn-FGFR1 in 

NCCs leads to cleft palate in later stage embryos[58]. FGFR1 mutants affect cranial 

crest cell differentiation and result in the activation of chondrogenesis. Furthermore, 

FGFR-mediated signaling is required for EMT of mesoderm cells emerging from the 

primitive streak during gastrulation[51,39]. We demonstrate here that FGFR1 is also 

involved in regulating N-Cadherin expression and the production of PAX7+ migratory 

cNCCs (Fig. 7) consistent with a previous report showing that inhibition of FGF 

signaling decreased the expression of Pax7[59].  

We showed previously that PDGF and FGF signaling influence N-Cadherin 

expression in migrating mesoderm cells during chick gastrulation, enabling them to 

migrate towards their target destinations[40]. N-Cadherin might play a similar role in 

cNCCs migration as it does in mesoderm cells of gastrula embryos. Interestingly, 

Robo signaling has been shown to target E-Cadherin in colorectal cancer cells[60] and 

an E- to N-Cadherin switch regulates contact inhibition of locomotion migrating 

neural crest in Xenopus, where these adhesion molecules contribute to redistribution 
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of forces to the extracellular matrix[61]. Thus, both E- and N-Cadherin are important 

for the processes of neural crest delamination and migration, and we propose that 

delamination/EMT of cNCCs depends on the interaction between E-Cadherin to 

N-Cadherin, which is regulated by Slug in response to Robo1 and FGFR signaling 

(Fig. 8)[62,63]. At present it is not possible to determine how FGF and Robo1 

signaling pathways interact, and further studies will be necessary to investigate 

whether they are dependent on each other or act in parallel. 
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Figure and Figure legends 

 

  Figure 1 The deficiency of Robo1 gene caused the defect of cranial osteogenesis 

of mouse embryos  

a-c: The representative 15.5-day mouse images from Robo1+/+Robo2+/+ (a), 

Robo1+/-Robo2+/- (b) and Robo1-/-Robo2-/- (c) mouse group respectively (n≥4). d: The 

bar chart showing the comparison of mouse length among Robo1+/+Robo2+/+, 

Robo1+/-Robo2+/- and Robo1-/-Robo2-/- mouse groups. e-g: Alizarin Red S staining 

was performed in A-C mouse embryos. Representative images of upper part of mouse 

body from Robo1+/+Robo2+/+ (e), Robo1+/-Robo2+/- (f) and Robo1-/-Robo2-/- (g) mouse 

group respectively. e’-g’: High magnification images from the sites indicated by black 

dotted squares in E-G respectively. h: Bar chart showing the comparison of the 

incidence of pa, fr, md, x and px developmental defects among Robo1+/+Robo2+/+, 

Robo1+/-Robo2+/- and Robo1-/-Robo2-/- mouse groups. Abbreviations: pa, parietal bone; 

fr, frontal bone; md, mandible; x, maxilla; px, premaxilla. Scale bars =1mm in a-c, 

1mm in e-g, and 1mm in e’-g’. Data are represented as mean±s.e.m. (n≥4). 

*P<0.05. 
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Figure 2 The up- or down-regulation of Robo1 gene expression affected the 

production of HNK1+ and PAX7+ chick cranial neural crest cells  

Half-sides of HH3 chick embryos were transfected with the plasmids of 

Control-GFP (control), shRNA-Robo1-GFP (knock-down) and PMES-Robo1-GFP 

(over-expression), and the whole-mount fluorescent staining against HNK1 and PAX7 

were performed after incubation for 30 hours. a: RT-PCR results revealed Robo1 

expression in cranial and trunk portions of HH10 chick embryos. b: RT-PCR results 
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revealed Robo1 expression down-regulated or over-expressed in chick neural tube 

following shRNA-Robo1 and PMES-Robo1 transfection. The bar chart showing the 

ratio of shRNA-Robo1 and PMES-Robo1 expression to GAPDH in control and 

transfected embryos from RT-PCR data. c-d: Representative bright-field (c) and 

merge fluorescent images (d, GFP: green, HNK1: red) of chick embryo head 

transfected with Control-GFP. e: Transverse sections at the level indicated by dotted 

line in d. e’-e’’: High magnification images from the sites indicated by black dotted 

squares in e respectively. f-g: Representative bright-field (f) and merge fluorescent 

images (g, shRNA-Robo1-GFP: green, HNK1: red) of chick embryo head transfected 

with shRNA-Robo1-GFP. h: Transverse sections at the level indicated by dotted line 

in g. h’-h’’: High magnification images from the sites indicated by black dotted 

squares in h respectively. i-j: Representative bright-field (i) and merge fluorescent 

images (j, PMES-Robo1-GFP: green, HNK1: red) of chick embryo head transfected 

with PMES-Robo1. k: Transverse sections at the level indicated by dotted line in j. 

k’-k’’: High magnification images from the sites indicated by black dotted squares in 

k respectively. l: Bar chart showing the comparison of phenotype numbers (inhibited, 

unchanged and elevated production of HNK1 positive cranial crest cells) among 

control, shRNA-Robo1 and PMES-Robo1 transfected embryos. m: Bar chart showing 

the ratios of GFP+ cell and HNK1+ cell number in the transverses sections of control, 

shRNA-Robo1 and PMES-Robo1 transfected embryos. n-p: Chick embryo head 

transfected with Control-GFP (n), shRNA-Robo1-GFP (o) and PMES-Robo1 (p). 

n’-p’: Transverse sections at the levels indicated by white dotted lines in n, o and p. 

PAX7 labeled neural crest cells from Control-GFP (n’), shRNA-Robo1-GFP (o’) and 

PMES-Robo1 (p’). DAPI staining was performed for each section. The solid line 

square showing the transverse section from the embryo that was transfected with 

Control-GFP, shRNA-Robo1-GFP or PMES-Robo1 in neural tube. The arrows show 

the transfected side in the neural tube. q: Bar chart showing the number of 

experimental embryos and phenotype numbers (inhibited, unchanged and elevated 

production of PAX7 positive cranial crest cells) among control, shRNA-Robo1 and 

PMES-Robo1 transfected embryos. r: The bar chart showing the ratio of GFP+ cell 
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numbers and total PAX7+ neural crest cell numbers among control, shRNA-Robo1 

and PMES-Robo1 transfected embryos. s: RT-PCR results revealed PAX7 expression 

down-regulated and over-expression in chick neural tube following 

shRNA-Robo1-GFP and PMES-Robo1 transfection. The bar chart showing the ratio 

of Pax7 expression to GAPDH in control and transfected embryos from RT-PCR data. 

Abbreviations: fb, forebrain; mb, midbrain; BF, bright-field; nt, neural tube; cnc, crest 

neural cell. Scale bars =500 um in c-d, f-g, i-j, n-p; 40 um in e, h, k; 20um in e’-e”, 

h’-h”, k’-k”, 30um in n’-p’. Data are represented as mean±s.e.m. (n≥4). *P<0.05, 

**P<0.01 and ***P<0.001. 

 

Figure 3 Down-regulating Robo1 gene level restricted slug expression in cranial 

neural crest cells 

Half-side neural tubes of HH3 chick embryos were transfected with the plasmids 
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of shRNA-Robo1-GFP (knock-down) and Control-GFP. a-d: Slug in situ 

hybridization and HNK1 immunofluorescent staining were performed in Control-GFP 

transfected chick embryos. e-h: Slug in situ hybridization and HNK1 

immunofluorescent staining were performed in shRNA-Robo1-GFP transfected chick 

embryos. a, e Slug in situ hybridization in head region. b, f Image of Control-GFP and 

shRNA-Robo1-GFP transfected embryo. c, g Image HNK1 immunofluorescent 

staining one. d, h Merged image of DAPI, image b, f and c, g. i: Bar chart showing the 

number of experimental embryo and phenotype numbers (inhibited, unchanged and 

elevated production of slug+ cranial crest cells) among control and shRNA-Robo1 

transfected embryos. j: RT-PCR results revealed slug expression down-regulated in 

chick neural tube following shRNA-Robo1-GFP transfection. The bar chart showing 

the ratio of slug expression to GAPDH in control and transfected embryos from 

RT-PCR data. Abbreviations: nt, neural tube; cnc, crest neural cell. Scale bars = 30um 

in a-h. (n≥4). ***P<0.001. 

 

Figure 4 Down-regulating Robo1 gene level promoted E-Cadherin expression in 

early chick embryos 
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a: Fluorescent images for E-Cadherin expression (red) and Control-GFP (green) 

transfection in chick embryonic head. b-c: Representative bright-field image (b) and 

fluorescent images for E-Cadherin expression (red) and shRNA-Robo1-GFP (green) 

transfection (c) in chick embryonic head. a’-a”’, b’-b”’ and c’-c’’’: Transverse 

sections at the levels indicated by white dotted lines in a, b and c respectively showing 

E-Cadherin expression (a’-c’), Control-GFP and shRNA-Robo1-GFP transfected 

(a”-c”) and merged (a”’-c”’) in chick embryonic head. The arrows point to examples 

of co-localization of GFP and E-Cadherin cells (a”’-c”’). d: Bar chart showing the 

number of experimental embryo and E-Cadherin promote expressed numbers among 

control and shRNA-Robo1 transfected embryos. e: RT-PCR results showing 

E-Cadherin expression in chick neural tube following shRNA-Robo1-GFP 

transfection. The bar chart showing the ratio of E-Cadherin expression to GAPDH in 

control and transfected embryos from RT-PCR data. Abbreviations: fb, forebrain; mb, 

midbrain; nt, neural tube. Scale bars = 500 um in a-c, 30 um in a’-a’’’, b’-b’’’ and 

c’-c’’’. (n≥4). ***P<0.001. 

 

Figure 5 Down-regulating Robo1 gene level also elevated N-Cadherin expression in 

developing neural tube 

a-b: Transverse sections of Control-GFP transfection showing the N-Cadherin 



 27 

expression (a) and the combination with DAPI staining and GFP (b). The solid line 

square showing the transverse section from the embryo that was transfected with 

Control-GFP in half of neural tube (a). c-d: Transverse sections showing 

shRNA-Robo1 transfection (c), the N-Cadherin expression (c) and the merged image 

with DAPI (d) half-side neural tube. The solid line square showing the transverse 

section from the embryo that was transfected with shRNA-Robo1-GFP in half of 

neural tube (c). The arrows point to the examples of co-localization of GFP and 

N-Cadherin cells (c-d). h: Bar chart showing the number of experimental embryo and 

N-Cadherin promote expressed numbers among control and shRNA-Robo1 

transfected embryos. e: Transverse section from the embryo that was transfected with 

Control-GFP in half-side neural tube. e’-e’’: e’ HNK1 immunofluorescent staining 

(red) was performed in the same transverse sections in e. e” merged image of e , e’ 

and DAPI. f: Transverse section from the embryo that was transfected with 

Wt-N-Cad-GFP in half-side neural tube. f’-f’’: f’ HNK1 immunofluorescent staining 

(red) was performed in the same transverse sections in f. f” is the merge image of f, f’ 

and DAPI. g: Transverse section from the embryo that was transfected with 

Dn-N-Cad-GFP in half-side neural tube. g’-g’’: g’ HNK1 immunofluorescent staining 

(red) was performed in the same transverse sections in g. g” is the merge image of g, 

g’and DAPI. i: Bar chart showing the number of experimental embryo and phenotype 

numbers (inhibited, unchanged and elevated production of HNK1+ cranial neural crest 

cells) among control and either Wt-N-Cad or Dn-N-Cad transfected embryos. 

Abbreviations: N-Cad, N-Cadherin; Wt-N-Cad, wild type N-Cadherin; Dn-N-Cad, 

dominant negative N-Cadherin; nt, neural tube; cnc, cranial neural crest. Scale bars 

=20 um in a-d, 20 um in e-g and 20um in e’-e’’, f’-f’’ and g’-g’’. (n≥4). **P<0.01, 

***P<0.001. 
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Figure 6 Simultaneously knocking down robo1 and N-Cadherin did not affect 

cranial neural crest cell production in chick embryos  

a-c: Transverse sections showing the co-transfection of Control-GFP and 

dn-N-Cadherin representive GFP image (a), HNK1 immunofluorescent staining image 

(b), and the merge images of a-b and DAPI staining (c). d-f: Transverse sections 

showing the co-transfection of shRNA-Robo1-GFP and dn-N-Cadherin representive 

GFP image (d), HNK1 immunofluorescent staining (e) and merged image of d-e and 

DAPI staining (f). g: Bar chart showing the percent of the number of experimental 

embryo and phenotype numbers (inhibited, unchanged and elevated production of 

HNK1+ cranial neural crest cells) among the transfection of Control-GFP, the 

co-transfection of Control-GFP and dn-N-Cadherin, the co-transfection of 

shRNA-Robo1-GFP and dn-N-Cadherin transfected embryos. Abbreviations: nt, 
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neural tube; cnc, crest neural cell. Scale bars = 30 um in a-f. (n≥6). **P<0.01 

 

Figure 7 Down-regulating FGFR1 did not affect the expression of N-Cadherin in 

chick embryos and down-regulating FGFR1 restricted the production of PAX7+ 

cranial neural crest cells 

a-b: Half-side neural tubes were transfected with either Control-GFP (a, control) 

or Dn-FGFR1 (b). a’-b’: N-cadherin immunofluorescent staining was performed in 

the same transverse sections in a and b respectively. a’’-b’’: Merged images of a-b and 

a’-b’ respectively. The arrows indicate the examples of co-localization of GFP and 

N-Cadherin positive cells (b’’). c-c’’: Half-side neural tubes were transfected with 

Control-GFP (c), PAX7 immunofluorescent staining image (c’), and merged images 

of c-c’ and DAPI staining (c’’). d-d’’: Half-side neural tubes were transfected with 

Dn-FGFR1 (d), PAX7 immunofluorescent staining image (d’), and merged images of 

d-d’ and DAPI staining (d’’). e-f: Transverse sections showing the control-side neural 

tube (e) and Dn-FGFR1 transfected side (f) in the neural tube. e’-f’: Pax7 

immunofluorescent staining was performed in the same transverse sections in e and f 

respectively. e’’-f’’: Merged images of e-f and e’-f’, and DAPI stained in each 

sections. g: Bar chart showing the phenotype frequency (inhibited or unchanged 

production of N-Cadherin+ cranial neural crest cells) among control and Dn-FGFR1 
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transfected embryos. h: Bar chart showing the ratio of GFP+ cell numbers and total 

PAX7+ neural crest cell numbers among control, Dn-FGFR1-GFP transfected 

embryos. Abbreviations: N-Cad, N-Cadherin; Dn-FGFR1, dominant negative FGFR1; 

cnc, cranial neural crest; ps, primitive streak; nt, neural tube. Scale bars = 20 um in 

a-a’’, b-b’’, c-c’’, d-d’’, e-e’’ and f-f’’. Data are represented as mean±s.e.m. (n≥4), 

***P<0.001. 

 

 

 

Figure 8 A proposed model that depicts the potential mechanisms for how 

knocking-down Robo1 reduced production of cranial neural crest cells 

 


