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ABSTRACT Isoprene is produced in abundance by plants and constitutes a car-
bon source for microbes. The genomes of three isoprene degraders isolated from
tree leaves or soil from the campus of the University of East Anglia were se-
quenced. These high-GC-content isolates are actinobacteria belonging to the ge-
nus Rhodococcus.

The emissions of isoprene to the atmosphere from terrestrial plants, principally trees,
are similar in magnitude to those of methane (approximately 550 Tg per year).

Some bacteria are capable of using isoprene as a sole source of carbon and energy, but
their diversity and contribution to cycling of this climate-active trace gas have not been
intensively studied until recently (1, 2). So far, genome sequences for a relatively small
number of isoprene-degrading strains have been published (3–5).

Rhodococcus sp. strains ACPA1 and ACPA4 were isolated from the leaves of a white
poplar tree (Populus alba) and Rhodococcus sp. strain ACS1 was isolated from soil in the
vicinity of willow trees (Salix fragilis) located on the campus of the University of East
Anglia, Norwich, United Kingdom. Isolates were grown in liquid culture supplied with
isoprene, as described previously (3). Genomic DNA was extracted using a conventional
phenol-chloroform method (3). For each strain, genomic DNA was sequenced by
Edinburgh Genomics (Edinburgh, UK), following the construction of three libraries with
inserts of 330, 550, and 4,500 bp, on an Illumina MiSeq instrument generating 300-
nucleotide (nt) paired-end reads. Reads were trimmed using Cutadapt version 1.8.3 (6)
using parameters -q 30 and -m 50, assembled using SPAdes version 3.7.0 (7) (removing
contigs shorter than 200 bp), and annotated using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP). The basic genome statistics are shown in Table 1.

The large genome sizes (7 to 11 Mbp) are typical of metabolically versatile rhodo-
cocci (8), although the genome of Rhodococcus sp. ACPA4 is significantly smaller and of
lower GC content than those of the other two strains. Based on analysis of the 16S rRNA
genes, Rhodococcus sp. strains ACPA1 and ACPA4 are most closely related to the
isoprene degraders Rhodococcus opacus PD630 (9) and Rhodococcus sp. strain AD45 (3),
respectively, and Rhodococcus sp. strain ACS1 is related most closely to a non-isoprene-
degrading Rhodococcus koreensis strain (10). All three genomes contain high-similarity
homologues (�80% amino acid identity) of the isoprene metabolic genes described in
Rhodococcus sp. AD45 (3, 11), including those encoding the soluble diiron center
isoprene monooxygenase (isoABCDEF), glutathione-S-transferase (isoI), dehydrogenase
(isoH), and genes for enzymes predicted to perform subsequent metabolic steps (isoG
and isoJ). As in other isoprene degraders, isoGHIJ are duplicated nearby, while Rhodo-
coccus sp. ACPA4 also contains a third copy of isoH and isoJ. The glutathione biosyn-
thesis genes gshA and gshB are also present in all three strains, consistent with the
observation that conjugation of isoprene epoxide with glutathione appears to be
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universal among isoprene degraders, despite the uncommon usage of this small thiol
in Gram-positive bacteria (12, 13).

Interestingly, the genomes of Rhodococcus sp. strains ACPA1 and ACS1 contain an
additional soluble diiron center monooxygenase in a different region of the genome,
with high similarity (�90% amino acid identity) to propane monooxygenase from
Gordonia TY-5 (14), indicative of the ability of many isoprene-degrading strains to grow
on short-chain alkanes in addition to isoprene (5, 15).

These genome sequences extend the diversity of known iso genes and will enable
the development of improved gene probes and molecular ecology methods for the
detection of isoprene degraders in the environment.

Accession number(s). This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession numbers shown in Table 1. The versions
described in this paper are the first versions.
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TABLE 1 Genome statistics and accession numbers

Isolate
Genome
size (Mbp)

Coverage
(�)

No. of
contigs

N50

(Mbp)
G�C
content (%)

No. of
rRNA operons

No. of
tRNAs

No. of
CDSsa

GenBank
accession no.

ACPA1 10.06 238 47 1.38 66.9 1 68 9,193 NSDX00000000
ACPA4 7.07 296 9 5.07 61.6 3 55 6,473 NSDY00000000
ACS1 10.89 172 40 1.74 67.1 1 70 10,062 NSDZ00000000
aCDSs, coding sequences.
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